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Abstract - Overbrowsing has created depauperate plant communities throughout the eastern 
deciduous forest. We hypothesized these low-diversity plant communities are associated 
with lower insect diversity. We compared insects inside and outside a 60-year-old fenced 
deer exclosure where plant species richness is 5x higher inside versus outside. We sampled 
aboveground and litter insects using sweep nets and pitfall traps and identified specimens 
to family. Aboveground insect abundance, richness, and diversity were up to 50% higher 
inside the fenced exclosure versus outside. Conversely, litter insect abundance and diversity 
were consistently higher outside the exclosure. Community composition of aboveground 
insects differed throughout the summer (P < 0.05), but litter insects differed only in late 
summer. Our results demonstrate that the indirect effects of long-term overbrowsing can 
reduce aboveground insect diversity and abundance, and change composition even when 
plant communities are in close proximity. 

Introduction

 The extirpation of Canis lupus L. (Gray Wolf) and Puma concolor L. (Cougar) 
combined with lax deer management have caused Odocoileus virginianus (Zim-
mermann) (White-tailed Deer) to become overabundant throughout the eastern 
deciduous forest, often creating structurally simple and depauperate understory 
plant communities (Côté et al. 2004, McCabe and McCabe 1997, Ripple et al. 
2010). This scenario is particularly true in the Allegheny National Forest region 
of Pennsylvania where decades of overbrowsing have reduced understory plant 
diversity by as much as 50–75% (Banta et al. 2005, Carson et al. 2014, Goetsch 
et al. 2011, Kain et al. 2011, Rooney and Dress 1997) and caused the formation of 
recalcitrant understory layers (sensu Royo and Carson 2006) dominated by a few 
unpalatable species that are inimical to biodiversity recovery (Royo and Carson 
2006, Royo et al. 2010). 
 While the deleterious impact of overbrowsing on forest understories is well 
known (Côté et al. 2004, Rooney and Waller 2003, Waller 2014), the cascading 
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effects that browsing has on arthropod communities are less clear. It is predicted 
that depauperate understories dominated by browse-tolerant plant species will cas-
cade up trophic levels to lower the abundance and diversity of arthropod groups 
(Hunter and Price 1992, Siemann et al. 1998, Stewart 2001). This cascade may be 
driven by losses of both structural complexity and food-resource diversity (Stewart 
2001). Alternatively, arthropods may simply track plant abundance and thus be 
somewhat buffered from declines in host-plant diversity (Siemann 1998, Siemann 
et al. 1998).
 To date, studies within the eastern deciduous forest have focused almost en-
tirely on arthropods in the litter layer and have found that overbrowsing indirectly 
decreases arthropod abundance with variable effects on diversity (Bressette et al. 
2012, Brousseau et al. 2013, Christopher and Cameron 2012, Greenwald et al. 2008, 
Lessard et al. 2012). Oddly, these studies have overlooked aboveground arthropod 
communities inhabiting the understory (but see Brousseau et al. 2013) or were 
hampered by small sample sizes (e.g., Bressette et al. 2012). Studies within other 
forest types in the southwestern United States (Huffman et al. 2009), on islands in 
the Pacific Northwest (Allombert et al. 2005), and in forests in Europe (Baines et 
al. 1994, Suominen et al. 2003) have all found that overbrowsing causes decreases 
in aboveground arthropod richness. If this is a typical response, overbrowsing could 
be a serious threat to ecosystem services. Arthropods are principal pollinators, seed 
dispersers, predators, decomposers, and herbivores, and account for the majority of 
the animal biomass in ecosystems throughout the world (Handel et al. 1981, Wilson 
1987, Wise 1993).
 Here, we compared arthropod communities within a 60-year-old deer exclosure 
to an adjacent reference site in the Allegheny National Forest region of Pennsyl-
vania. This is the oldest known deer fence in the eastern deciduous forest. The 
understory vegetation inside the fenced plot is composed of a diverse layer of 
forbs, shrubs, and saplings, while the vegetation directly outside, and in much of 
this region, is depauperate, structurally simple, and often dominated by a single, 
highly productive fern species, Dennstaedtia punctilobula (Michx.) T. Moore (Hay-
Scented Fern; Carson et al. 2014, Goetsch et al. 2011, Kain et al. 2011). We tested 
the hypothesis that long-term deer overbrowsing indirectly decreases the diversity 
and richness of insects as well as changes insect community composition.

Field-Site Description

 We conducted this study within the Allegheny high plateau region of north-cen-
tral Pennsylvania on State Game Lands #30 (McKean County, 41°38'N, 78°19'W), 
which is part of the Hemlock–Northern Hardwood Association (Whitney 1990). 
Further descriptions of the region’s natural history can be found in Bjorkbom and 
Larson (1977) and Hough and Forbes (1943). Deer have overbrowsed this region, 
as well as much of Pennsylvania, since the 1930s (Carson et al. 2014, Horsley et al. 
2003, Redding 1995). 
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Methods

 We compared insect communities between a 0.4-ha plot surrounded by a well-
maintained deer fence (height: 2.1 m, mesh size: 15 cm x 20 cm) versus a nearby 
reference site (~75 m x 55 m). The fence was erected in the late 1940s and excludes 
White-tailed Deer, but the mesh is likely large enough to allow in smaller verte-
brates such as Marmota monax (L.) (Woodchuck; Chips et al. 2014). The exclosure 
and reference site were exactly the same ones used by Goetsch et al. (2011) and 
Kain et al. (2011) to evaluate the long-term impact of browsing on the understory 
and overstory, respectively (see Stout 1998 for further details). The overstory of 
each site was 60–80 years old and characterized in decreasing order of abundance 
by Prunus serotina Ehrh. (Black Cherry), Acer saccharum Marshall (Sugar Maple), 
Fagus grandifolia Ehrh. (American Beech), Acer rubrum L. (Red Maple), and 
Betula spp. (birch) (Kain et al. 2011). 
 A diverse and abundant group of wildflowers and shrubs characterized the un-
derstory vegetation inside the fenced plot versus the adjacent reference site (percent 
plant cover: inside exclosure = 63.42 ± 6.10; reference site = 9.28 ± 1.55, P < 0.05; 
mean species richness: inside exclosure = 6.2; reference site = 1.1, P < 0.05; Goetsch 
et al. 2011). Many of these wildflowers peak in abundance in May prior to canopy 
closure in late spring. A single species, Hay-scented Fern, dominated the reference 
site and also dominates understories throughout much of the entire region (Carson et 
al. 2014, Goetsch et al. 2011, Hill and Silander 2001, Rooney and Dress 1997, Royo 
et al. 2010). Hay-scented Fern is an unpalatable and fairly shade-tolerant species that 
peaks in biomass in mid- to late June (Hill and Silander 2001, Horsley and Marquis 
1983, Horsley et al. 2003, Rooney and Dress 1997, Royo and Carson 2006).

Insect sampling 
 We sampled insects on 12 May, 29 June, and 26 August 2011 within the exclo-
sure and in the unfenced reference site 200 m away of the same size, elevation, 
and slope. We sampled litter insects with pitfall traps and aboveground insects 
with sweep nets. On each date and throughout each site, we collected 20 sweep-
net and 20 pitfall-trap samples. Sweep nets were made of fine mesh with a hoop 
30 cm in diameter with a 1-m handle. We swept the top 10–30 cm of all vegeta-
tion within reach along 10-m transects starting every 10 m with respect to the 75 
m edge of the plot and from random locations with respect to the 55 m edge. All 
sweep-net transects were at least 3 m from the fence or edge of the reference plot 
and at least 10 m from each other. All pitfall traps were placed within random 
locations at least 3 m from the fence and at least 10 m away from each other to 
minimize edge effects. Pitfall traps were half-liter plastic containers, 8 cm di-
ameter x 10 cm height, filled with 2 cm of 95% ethanol. We placed the rim of the 
pitfall trap flush with the soil surface and collected them after 24 hours (House 
and Stinner 1983, Williams 1958). With the help of commonly used identification 
guides (Borror and White 1970, BugGuide.net, Marshall 2007), we identified all 
insects larger than 5 mm to family. In addition, identifications were verified at the 
Carnegie Museum of Natural History.
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Statistical analyses
 We used univariate repeated-measures analysis of variance (RM-ANOVA; Von 
Ende 2001) with SAS (PROC GLIMMIX, version 9.3.1; SAS Institute, Inc., Cary, 
NC) to examine differences in insect abundance, richness, and exponential Shannon 
diversity (eH') throughout the spring and summer. We used this diversity index be-
cause it scales Shannon diversity to a comparable measure of species richness (e.g., 
number of species; see Jost 2006, 2007). The month of sampling was the repeated 
measure and the treatment was the deer fence. We treated pitfall and sweep-net 
sampling techniques as independent measures of arthropod communities and ana-
lyzed them separately. To assess differences in arthropod community composition, 
we performed permutational multivariate analysis of variance (PERMANOVA) via 
ADONIS using the Vegan Package (R core development team; Anderson 2001). 
Our experimental treatment (fenced exclosure) was not replicated and our analyses 
were based upon subsamples (pseudoreplicates sensu Hurlburt 1984), thus our re-
sults should be interpreted with appropriate caution (see Oksanen 2001 for a wider 
discussion on this issue). Nonetheless, because deer have been excluded for 60+ 
years, this study is quite unique.

Results

 We found that decades of overbrowsing indirectly reduced aboveground insect 
abundance ~40%, richness ~45%, and diversity ~50% throughout spring and sum-
mer, but this effect was particularly strong in August (fence x time interaction: 
P < 0.001; Fig. 1A, B, C; Table 1). In addition, overbrowsing shifted aboveground 

Figure 1. Mean (± S.E.) abundance, family richness, and diversity (eH’) of insects larger than 
5 mm collected in the spring and summer of 2011 in the Allegheny National Forest region of 
north-central Pennsylvania in sweep nets (A–C) and pitfall traps (D–F) inside a 60-year-old 
fenced exclosure and in a nearby reference site. 
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insect composition over the entire sampling period, particularly in June (Fig. 2A, 
B, C; Table 2). This shift was primarily driven by higher counts of elaterid beetles 
in the reference site (19 vs. 6) and more mirid bugs inside of the fenced exclosure 
(2 vs. 30) (Appendix 1). In contrast, overbrowsing increased litter insect abundance 
by ~85%, richness by ~30%, and diversity by ~30% throughout spring and summer 
(Fig. 1D, E, F; Table 1). However, only in August did community composition of 
litter insects differ between the 2 sites (Fig. 2D, E, F; Table 2). Specifically, brows-
ing increased the abundance of carabid beetles, chrysomelid beetles, and litter ants 
particularly in August (Appendix 2). 

Discussion

Aboveground insects 
 We found that overbrowsing caused a reduction in the abundance, richness, and 
diversity of aboveground insects and also changed the composition of these insect 

Table 2. PERMANOVA results to test for compositional differences of insects larger than 5 mm 
caught in sweep nets and pitfall traps in the spring and summer of 2011 in a 60-year-old deer fence 
and an adjacent reference site in the Allegheny National Forest region in north-central Pennsylvania. 
* indicates significant P-values. See Appendices 1 and 2 as well as Figure 2 for a breakdown of insect 
orders and families.

	 Sweep net	 Pitfall trap

	 df	 R2	 F	 P	 df	 R2	 F	 P

May	 1, 26	 0.03	 0.65	 0.8335	 1, 33	 0.05	 1.66	 0.1265
June	 1, 36	 0.11	 4.17	 0.0010*	 1, 36	 0.04	 1.40	 0.2170
August	 1, 34	 0.05	 1.65	 0.0815	 1, 31	 0.10	 3.50	 0.0145*
Overall	 1, 98	 0.03	 2.89	 0.0005*	 1, 102	 0.02	 1.83	 0.1045

Table 1. Mixed-model ANOVA results to test for differences in abundance, family richness, and 
diversity (eH’) of insects larger than 5 mm caught in sweep nets and pitfall traps in the spring and 
summer of 2011 within a 60-year-old fenced exclosure and a nearby reference site in the Allegheny 
National Forest Region in north-central Pennsylvania. * indicates significant P-values. See Figure 1 
for all fence x time interactions.

	 Abundance	 Richness	 Diversity (eH’)

		  df	 F	 P	 df	 F	 P	 df	 F	 P

Fence
	 Sweep Net	 1, 114	 8.23	 0.0049* 	 1, 114	 14.77	 0.0002* 	 1, 114	 16.26	 0.0001* 
	 Pitfall Trap	 1, 114	 10.73	 0.0014* 	 1, 114	 4.82	 0.0301*	 1, 114	 3.95	 0.0492* 

Time
	 Sweep Net	 2, 114	 5.43	 0.0056*	 2, 114	 7.14	 0.0012*	 2, 114	 7.46	 0.0009*
	 Pitfall Trap	 2, 114	 6.68	 0.0018*	 2, 114	 0.75	 0.4768	 2, 114	 0.79	 0.4564

Fence x time
	 Sweep Net	 2, 114	 3.50	 0.0334*	 2, 114	 5.27	 0.0065*	 2, 114	 5.74	 0.0042*
	 Pitfall Trap	 2, 114	 0.11	 0.8965	 2, 114	 0.21	 0.8140	 2, 114	 0.31	 0.7374
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communities. These reductions and changes were likely caused by the depauperate 
nature of the understory vegetation that occurred in the reference site versus the 
rich understory layer that occurred inside the exclosure. Indeed, the general reduc-
tion of herbivorous hemipteran insects (Miridae) drove much of this decline across 
the sampling period (Appendix 1). Our results may apply broadly because over-
browsing has caused the formation of a depauperate understory plant community 
throughout the region (Carson et al. 2014) and elsewhere (Royo and Carson 2006, 
Waller 2014). Our findings are consistent with the impact of ungulate browsers 
on aboveground insects in lowland rainforests in the Pacific Northwest, European 
woodlands, boreal forests, and Ponderosa forests (Allombert et al. 2005, Baines et 
al. 1994, Brousseau et al. 2013, Huffman et al. 2009). While results varied through-
out spring and summer (Fig. 1A, B, and C), the overall signal was that long-term 
deer overabundance caused a decline in the diversity, richness, and abundance of 
aboveground insects and significantly changed arthropod community composition.
 Peaks in arthropod abundance and richness later in the season in the refer-
ence site may be attributed to high percent cover of Hay-scented Fern, which 
reaches peak frond density in June and July followed by senesce in August (Hill 
and Silander 2001). Though we know very little about insect associations with 
Hay-scented Fern (Balick et al. 1978), high frond density may create a favorable 
habitat for understory insects in June (e.g., Elaterid beetles; Fig. 2B, Appendix 1). 
Arthropod abundance is known to track plant abundance rather than plant diversity 

Figure 2. Percent relative abundance in the fenced exclosure (Fence) and reference site at 
each sampling date in 2011 for both sweep nets in (A) May, (B) June, and (C) August, and 
pitfall trap samples for (D) May, (E) June, and (F) August. Aboveground insect communi-
ties were significantly different throughout the summer, but particularly in June and litter 
insect communities were significantly different only in August (see Table 2). See Appendi-
ces 1 and 2 for the relative abundance of each insect family.
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in other community types, particularly grasslands (Siemann 1998, Siemann et al. 
1998), and dense host concentrations cause increases in insect herbivore abundance 
(Long et al. 2003, Root 1973). 

Litter insects
 Overbrowsing increased litter insect richness, abundance, and diversity through-
out the sampling period and led to changes in insect community composition only 
in late summer. Increases in the absolute abundance of predatory ground beetles as 
well as ants likely drive these changes. Our findings build upon previous studies 
in North America and Europe, which documented that the indirect effects of over-
browsing led to increases in the absolute abundance of predatory ground beetles 
(Brousseau et al. 2013, Melis et al. 2006). The mechanism by which browsing in-
creases the abundance of particular litter insects is unclear, but is likely caused by 
increased temperatures and lower humidity in the litter layer because of decreased 
plant cover (Stewart 2001). Specifically, browsers likely create environments favor-
able to arthropods adapted for high-light, dry environments (Gonzalez-Megias et 
al. 2004, Melis et al. 2006, Suominem et al. 2003). In contrast, some studies found 
that overbrowsing causes declines in litter arthropod abundance and diversity via an 
increase in vulnerability to avian predators and changes in soil nutrients (Bressette 
et al. 2012, Wardle et al. 2001).

Conclusions
 We found that aboveground insect richness, abundance, and diversity were 
higher and insect species composition different inside a >60-year-old deer ex-
closure versus a nearby reference site. The sharply contrasting understory plant 
communities that occurred in each site likely caused these differences. In contrast, 
we found higher abundance, richness and diversity of litter insects in an area 
exposed to browsing. Our results, and the results of others, call for large-scale, 
well-replicated experiments that evaluate not only the impact of overbrowsing on 
arthropod abundance but also how these may subsequently alter entire food webs in 
the understory as well as in forest canopies over long time scales. We are aware of 
only one White-tailed Deer exclosure of this advanced age; therefore deer refugia 
(e.g., tall boulders) could substitute for very old deer exclosures in this approach 
(Banta et al. 2005, Chollet et al. 2013, Comisky et al. 2005, Rooney 1997). We sug-
gest that differences in the arthropod communities could cascade further up the food 
chain and impact the abundance and diversity of higher trophic levels, particularly 
avian insectivores (e.g., Nuttle et al. 2011). 
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Appendix 1. Mean relative abundance (± S.E.) and total count of insects larger than 5 mm caught 
in sweep nets in the spring and summer of 2011 in a 60-year-old deer fence and adjacent reference 
site in the Allegheny National Forest Region in northcentral Pennsylvania. All insects were identi-
fied to family.

	 Sweep-net samples

Order/family	 Treatment	 May	 June	 August

Coleoptera
 Canthandae	 Reference	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 Cerembycidae	 Reference	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 Chrysomelidae	 Reference	 0.11 (0.08)	 0.01 (0.01)	 0.00 (0.00)  
 	 Fence	 0.07 (0.04)	 0.01 (0.01)	 0.01 (0.01)
 Curculionidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 Elateridae	 Reference	 0.00 (0.00)  	 0.23 (0.05)	 0.00 (0.00)  
 	 Fence	 0.02 (0.02)	 0.01 (0.04)	 0.00 (0.00)  
 Lucanidae	 Reference	 0.11 (0.08)	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 Staphylinidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.02 (0.02)	 0.01 (0.01)	 0.01 (0.01)
Diptera
 Anthomyiidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.11 (0.06)
 	 Fence	 0.00 (0.00)  	 0.01 (0.01)	 0.05 (0.02)
 Anthomyzidae	 Reference	 0.06 (0.06)	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 Calliphoridae	 Reference	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.01 (0.01)
 Chironomidae	 Reference	 0.06 (0.06)	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 Dolichopodidae	 Reference	 0.06 (0.06)	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.02 (0.02)	 0.00 (0.00)  	 0.05 (0.03)
 Drosophilidae	 Reference	 0.06 (0.06)	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.05 (0.03)	 0.00 (0.00)  	 0.00 (0.00)  
 Empididae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.05 (0.03)	 0.00 (0.00)  	 0.00 (0.00)  
 Heleomyzidae	 Reference	 0.06 (0.06)	 0.00 (0.00)  	 0.04 (0.04)
 	 Fence	 0.00 (0.00)  	 0.03 (0.02)	 0.02 (0.01)
 Lauxaniidae	 Reference	 0.00 (0.00)  	 0.18 (0.09)	 0.11 (0.08)
 	 Fence	 0.00 (0.00)  	 0.05 (0.02)	 0.08 (0.03)
 Lonchaeidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.02 (0.02)	 0.00 (0.00)  	 0.00 (0.00)  
 Micropezidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 Muscidae	 Reference	 0.00 (0.00)  	 0.04 (0.04)	 0.04 (0.04)
 	 Fence	 0.00 (0.00)  	 0.04 (0.02)	 0.04 (0.01)
 Mycetophilidae	 Reference	 0.00 (0.00)  	 0.01 (0.01)	 0.04 (0.04)
 	 Fence	 0.00 (0.00)  	 0.04 (0.02)	 0.00 (0.00)  
 Phoridae	 Reference	 0.06 (0.06)	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.07 (0.04)	 0.00 (0.00)  	 0.00 (0.00)  
 Rhagionidae	 Reference	 0.06 (0.06)	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.02 (0.02)	 0.00 (0.00)  	 0.00 (0.00)  
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	 Sweep-net samples

Order/family	 Treatment	 May	 June	 August

 Simuliidae	 Reference	 0.11 (0.08)	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.05 (0.03)	 0.00 (0.00)  	 0.00 (0.00)  
 Stratiomyidae	 Reference	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 Syrphidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.01 (0.01)	 0.02 (0.02)
 Tachinidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.04 (0.04)
 	 Fence	 0.07 (0.04)	 0.00 (0.00)  	 0.00 (0.00)  
 Tipulidae	 Reference	 0.00 (0.00)  	 0.05 (0.03)	 0.00 (0.00)  
 	 Fence	 0.05 (0.03)	 0.12 (0.04)	 0.01 (0.01)
Hemiptera
 Aphididae	 Reference	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 	 Fence	 0.02 (0.02)	 0.00 (0.00)  	 0.00 (0.00)  
 Berytidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.01 (0.01)
 Cercopidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 Cicadellidae	 Reference	 0.11 (0.08)	 0.01 (0.01)	 0.14 (0.07)
 	 Fence	 0.07 (0.04)	 0.03 (0.02)	 0.09 (0.02)
 Membracidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.02 (0.01)	 0.04 (0.02)
 Miridae	 Reference	 0.00 (0.00)  	 0.02 (0.02)	 0.11 (0.06)
 Nabidae	 Reference	 0.00 (0.00)  	 0.02 (0.02)	 0.14 (0.08)
 	 Fence	 0.02 (0.02)	 0.00 (0.00)  	 0.16 (0.05)
 Pentatomidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.04 (0.01)
Hymenoptera
 Braconidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.04 (0.04)
 	 Fence	 0.02 (0.02)	 0.01 (0.01)	 0.01 (0.01)
 Formicidae	 Reference	 0.11 (0.08)	 0.00 (0.00)  	 0.00 (0.00) 
 	 Fence	 0.10 (0.04)	 0.00 (0.00)  	 0.00 (0.00) 
 Ichneumonidae	 Reference	 0.00 (0.00)  	 0.05 (0.02)	 0.14 (0.07)
 	 Fence	 0.00 (0.00)  	 0.03 (0.02)	 0.09 (0.03)
 Pteromalidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.01 (0.01)
 Tenthredinidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.05 (0.03)	 0.05 (0.04)	 0.05 (0.02)
Lepidoptera
 Arctiidae	 Reference	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 Galechiidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 Geometridae	 Reference	 0.06 (0.06)	 0.06 (0.02)	 0.04 (0.04)
 	 Fence	 0.02 (0.02)	 0.00 (0.00)  	 0.01 (0.01)
 Noctuidae	 Reference	 0.00 (0.00)  	 0.04 (0.02)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.02 (0.01)	 0.02 (0.01)
 Notodontidae	 Reference	 0.00 (0.00)  	 0.04 (0.02)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.02 (0.02)
Mecoptera
 Panorpidae	 Reference	 0.00 (0.00)  	 0.15 (0.04)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.18 (0.05)	 0.00 (0.00)  
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	 Sweep-net samples

Order/family	 Treatment	 May	 June	 August

Neuroptera
 Hemerobiidae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.04 (0.04)
 	 Fence	 0.05 (0.05)	 0.00 (0.00)  	 0.00 (0.00)  
Orthoptera
 Acrididae	 Reference	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  
 	 Fence	 0.02 (0.02)	 0.00 (0.00)  	 0.00 (0.00)  
Psocodea
 Pseudocaecilidae	 Reference	 0.00 (0.00)  	 0.01 (0.01)	 0.00 (0.00)  
 	 Fence	 0.00 (0.00)  	 0.00 (0.00)  	 0.00 (0.00)  

Total count	 Reference	 18	 82	 28
 	 Fence	 42	 106	 141
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Appendix 2. Mean relative abundance (± S.E.) and total count of insects larger than 5 mm caught 
in pitfall traps in the spring and summer of 2011 in a 60-year-old deer fence and adjacent reference 
site in the Allegheny National Forest Region in north-central Pennsylvania. All insects were identi-
fied to family.

	 Pitfall-trap samples

Order/family	 Treatment	 May	 June	 Aug

Coleoptera
 Anthribidae	 Reference	 0.03 (0.02)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.03 (0.03)	 0.00 (0.00) 	 0.00 (0.00) 
 Carabidae	 Reference	 0.17 (0.10)	 0.05 (0.02)	 0.35 (0.08)
 	 Fence	 0.24 (0.07)	 0.10 (0.04)	 0.11 (0.05)
 Chrysomelidae	 Reference	 0.16 (0.05)	 0.00 (0.00) 	 0.05 (0.02)
 	 Fence	 0.11 (0.05)	 0.00 (0.00) 	 0.00 (0.00) 
 Curculionidae	 Reference	 0.00 (0.00) 	 0.01 (0.01)	 0.03 (0.03)
 	 Fence	 0.03 (0.03)	 0.00 (0.00) 	 0.00 (0.00) 
 Elateridae	 Reference	 0.06 (0.05)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Erotylidae	 Reference	 0.02 (0.02)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.05 (0.04)	 0.00 (0.00) 	 0.00 (0.00) 
 Histeridae	 Reference	 0.02 (0.02)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Lampyridae	 Reference	 0.00 (0.00) 	 0.00 (0.00) 	 0.01 (0.01)
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Nitidulidae	 Reference	 0.09 (0.05)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Scarabacidae	 Reference	 0.00 (0.00) 	 0.01 (0.01)	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Silphidae	 Reference	 0.06 (0.04)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Staphylinidae	 Reference	 0.20 (0.07)	 0.14 (0.05)	 0.01 (0.01)
 	 Fence	 0.24 (0.09)	 0.15 (0.07)	 0.08 (0.04)
 Tenebrionidae	 Reference	 0.02 (0.02)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
Collembola
 Tomoceridae	 Reference	 0.00 (0.00) 	 0.00 (0.00) 	 0.01 (0.01)
 	 Fence	 0.00 (0.00) 	 0.01 (0.01)	 0.00 (0.00) 
Diptera
 Anisopodidae	 Reference	 0.02 (0.02)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Anthomyiidae	 Reference	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.03 (0.03)
 Calliphoridae	 Reference	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.08 (0.04)
 Lauxaniidae	 Reference	 0.00 (0.00) 	 0.01 (0.01)	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Muscidae	 Reference	 0.00 (0.00) 	 0.01 (0.01)	 0.01 (0.01)
 	 Fence	 0.00 (0.00) 	 0.03 (0.02)	 0.03 (0.03)
 Nematocera	 Reference	 0.02 (0.02)	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Tipulidae	 Reference	 0.00 (0.00) 	 0.06 (0.03)	 0.01 (0.01)
 	 Fence	 0.00 (0.00) 	 0.12 (0.05)	 0.00 (0.00) 
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	 Pitfall-trap samples

Order/family	 Treatment	 May	 June	 Aug

Hemiptera
 Cicadellidae	 Reference	 0.02 (0.02)	 0.01 (0.01)	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Pentatomidae	 Reference	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.03 (0.03)	 0.00 (0.00) 	 0.00 (0.00) 
Hymenoptera
 Formicidae	 Reference	 0.13 (0.05)	 0.69 (0.18)	 0.48 (0.10)
 	 Fence	 0.29 (0.11)	 0.59 (0.2)	 0.59 (0.15)
Lepidoptera
 Geometridae	 Reference	 0.00 (0.00) 	 0.02 (0.02)	 0.01 (0.01)
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 Noctuidae	 Reference	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.05 (0.04)
Mecoptera
 Panorpidae	 Reference	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.03 (0.03)
Orthoptera
 Gryllaeridae	 Reference	 0.00 (0.00) 	 0.00 (0.00) 	 0.01 (0.01)
 	 Fence	 0.00 (0.00) 	 0.00 (0.00) 	 0.00 (0.00) 

Total count	 Reference	 64	 116	 75
 	 Fence	 38	 68	 37


