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Evaluation of forest landscape model (FLM) predictions is indispensable to establish the credibility of
predictions. We present a framework that evaluates short- and long-term FLM predictions at site and
landscape scales. Site-scale evaluation is conducted through comparing raster cell-level predictions with
inventory plot data whereas landscape-scale evaluation is conducted through comparing predictions
stratified by extraneous drivers with aggregated values in inventory plots. Long-term predictions are
evaluated using empirical data and knowledge. We demonstrate the applicability of the framework using
LANDIS PRO FLM. We showed how inventory data were used to initialize the landscape and calibrate

ﬁj&%?gd;ko model parameters. Evaluation of the short-term LANDIS PRO predictions based on multiple metrics
Validation showed good overall performance at site and landscape scales. The predicted long-term stand devel-
U.S. Forest Service Inventory and Analysis opment patterns were consistent with the established theories of stand dynamics. The predicted long-
(FIA) data term forest composition and successional trajectories conformed well to empirical old-growth studies
Stand density management diagrams in the region.
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1. Introduction

Forest landscape models (FLMs) predict forest change that re-
sults from the complex interactions of endogenous dynamics (e.g.,
growth, competition, mortality) and exogenous drivers (e.g.,
climate, anthropogenic forces) (Mladenoff, 2004; Perry and Enright,
2006; Lischke et al., 2006; He, 2008). They have increasingly
become useful tools to explore the effects of management (Syphard
et al, 2011; Wang et al., 2013a), disturbance (Schumacher and
Bugmann, 2006; Sturtevant et al., 2009), and climate change (He
et al., 2005; Keane et al., 2008; Thompson et al., 2011; Liang
et al., 2014) on forest composition and structure at landscape
scales. However, effective applications of FLMs to inform stake-
holders and policy makers largely depend on the credibility of
predictions, thus making the evaluation of FLM predictions indis-
pensable (Rykiel, 1996; Gardner and Urban, 2003; Shifley et al.,
2009; Alexandrov et al., 2011; Bennett et al.,, 2013). In part, the
success in mitigating and adapting to changes in disturbance and
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climate is dependent on our capacity to predict the consequences of
these changes (Coreau et al., 2009; McMahon et al., 2011; Dawson
et al., 2011; Cheaib et al., 2012).

A framework for evaluating FLMs predictions is currently lack-
ing. In fact, FLMs share common features that enable a framework
for model evaluation. FLM predictions emerge from interacting
processes at site (raster cell) and landscape scales (Lischke et al.,
2006; He, 2008; Seidl et al., 2012). For individual-based FLMs
such as iLand (Seidl et al., 2012) and to some extent ED (Moorcroft
et al., 2001), site-scale dynamics are simulated as establishment,
growth, competition for light, and mortality for each tree. Land-
scape dynamics are simulated as outcomes of exogenous drivers
(e.g., radiation, water, nutrients, and CO;) that can vary temporarily
interacting with site-scale processes. For cellular automata based
FLMs such as BFOLDS (Yemshanov and Perera, 2002), LANDCLIM
(Schumacher et al., 2004), TreeMig (Lischke et al., 2006), LANDIS II
(Scheller et al., 2007), and LANDIS PRO (Wang et al., 2013b), site-
scale dynamics are simulated as establishment, growth, competi-
tion for space, and mortality for each age or height class. Landscape
dynamics are simulated as outcomes of the landscape processes
(e.g., seed dispersal and disturbances) and exogenous drivers (e.g.,
terrain, soil, land use change, and climate).
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Most FLMs predictions are evaluated by comparing with pub-
lished results, predictions from other models, and empirical data at
a given site or time (Gardner and Urban, 2003; Busing et al., 2007;
Blanco et al., 2007; Shifley et al., 2009). For example, the simulated
aboveground net primary productivity and biomass at the land-
scape scale in LANDIS Il were compared with reported values in
published literature (Scheller et al, 2007). The simulated tree
growth and mortality at site scale in iLand were evaluated against
the observe values in FIA data and experimental data of old-growth
stands (Seidl et al., 2012). In TreeMig, the simulated spatial pattern
of species biomass for a theoretical landscape were evaluated using
empirical knowledge and the simulated tree species spread in the
region of the Valais, Switzerland were compared with the current
species composition (Lischke et al., 2006). The simulated biomass,
soil carbon, and NPP at the landscape scale in ED were compared
with various databases and other model predictions (Moorcroft
et al., 2001).

In general, site-scale processes (e.g., individual tree growth)
utilize potential resources from the bottom up, whereas the total
resources determined using physiological principles regulates
growth of individual trees. On the other hand, landscape processes
and exogenous drivers capture the landscape heterogeneity (Seidl
et al., 2012). Thus, evaluating FLM predictions should be conduct-
ed at both site and landscape scales. Site-scale evaluation ensures
that key model predictions (e.g., tree density, size, biomass, and
NPP) at the basic units (e.g., species and stand) are comparable to
either observed or empirical data. Landscape-scale evaluation en-
sures that the effects of exogenous forces and landscape processes
are reasonably simulated (Syphard et al., 2007; He, 2008; Shifley
et al., 2009; Alexander and Cruz, 2013; Luo et al., 2014).

Evaluating FLMs predictions is ideally accomplished through
comparison of the model predictions with independent time series
of spatiotemporal data (Rykiel, 1996; Gardner and Urban, 2003;
Shifley et al., 2009). However, such data rarely exist since many
national-level data were not available until after 1990s. With the
advent of new measurement techniques and nearly three decades
of accumulation, inventory data are increasingly abundant. For
example, U.S. Forest Inventory and Analysis (FIA) data (Woodall
et al., 2010) provide tremendous potential to evaluate short-term
(e.g., 30 years) FLMs predictions. The increasing quantity of FIA
data also offers an opportunity to improve FLM predictions of
future changes using data assimilation (DA) (Luo et al., 2011). DA
techniques integrate inventory data with ecological models to
constrain the initial conditions and parameters; thus, the simulated
results can best match the observed data before applying models to
future predictions (Peng et al., 2011).

Evaluating long-term FLM predictions, however, is still limited
because data for evaluating future conditions do not exist. Thus,
evaluating long-term FLM predictions has to rely on the established
theories and empirical studies (He, 2008). For example, old-growth
forest studies provide the best available references on forest
composition and structure of late-successional forests and species
assemblage shifts along with forest successional trajectories. Stand
density management diagrams (SDMDs) (e.g., Gingrich (1967)
stocking charts and Reineke (1933) density diagrams) are average
stand-scale models that graphically illustrate the relationships
between yield (e.g. biomass, basal area, carbon, stocking), tree size
(quadratic mean tree diameter or DBHq), and mortality throughout
all stages of stand development. These diagrams are also the best
available tools used by foresters, managers, and planners to eval-
uate the long-term predictive stand development trajectories
(Larsen et al., 2010). SDMDs are therefore excellent exploratory
tools in evaluating relationships among tree growth, self-thinning
(competition-caused mortality), and yield over long periods of
time (Jack and Long, 1996).

Our overall objective is to demonstrate a comprehensive
framework of evaluating FLM predictions. Our framework involves
evaluating short- and long-term predictions at both site-
landscape-scales. Short-term model predictions are compared
with extensive inventory data and long-term model predictions
are evaluated using empirical data and knowledge. We use the
LANDIS PRO FLM as an example to illustrate the framework that:
(1) use historic FIA data to constrain the initial forest conditions
and calibrate model parameters before predicting future changes,
(2) evaluate the short-term predictions (30 years) against FIA data
at site and landscape scales, (3) evaluate the long-term predictions
(150 years) of stand development patterns using SDMDs and of
successional trajectories against old-growth forest studies. This
framework is not only relevant for forest landscape models but
also for biogeochemical or ecophysiographical models such as LPJ-
DGVM (Smith et al., 2011), Biome-BGC (Bond-Lamberty et al.,
2005) and PnET II (Aber et al., 1997), and ecosystem demog-
raphy models (e.g., and CAIN (Caspersen et al., 2011), which
include both site-scale dynamics and exogenous drivers operating
at broad scales.

2. Methods
2.1. Study area

The study area encompassed the entire Ozark Mountains and Boston Mountains
of Northern Arkansas covering about 107 ha. The boundaries corresponded to FIA
Survey Unit 5 in Arkansas (Fig. 1). The topography in the study area is deeply
dissected and rugged, with elevations ranging from 213 m to 762 m. Soils in this
region are mostly Ultisols. Average annual temperature and precipitation ranged
from 14 to 17 °C and from 1150 to 1325 mm, respectively, and most rainfall occurred
in spring and fall. Most of this area was covered by deciduous forest dominated by
white oak (Quercus alba L.), post oak (Quercus stellata Wangenh.), chinkapin oak
(Quercus muehlenbergii Engelm.), black oak (Quercus velutina Lam.), northern red oak
(Quercus rubra L.), blackjack oak (Quercus marilandica Muenchh.), southern red oak
(Quercus falcate Michx.), pignut hickory (Carya glabra Sweet), and black hickory
(Carya texana Buckl.). Shortleaf pine (Pinus echinata Mill) was abundant in the
southern part of the study area. Majority of forest stands in this region regenerated
following the extensive timber harvest during early 1900s. Those cut-over forests
regenerated naturally, and with the aid of more than a half-century of effective fire
suppression the stem density greatly increased to reach full stocking (Heitzman,
2003). The dominant and codominant oaks typically ranged in age from 60 to 90
years.

2.2. The LANDIS PRO model

LANDIS PRO is a cellular automaton FLM that evolved over 15 years or research
and development (Mladenoff and He, 1999; He and Mladenoff, 1999; He et al., 2002;
Yang et al., 2011; Wang et al., 2013a,b, 2014). It simulates forest changes over large
spatial (~10® ha) and temporal (~10° years) extents with flexible spatial (10—500 m)
and temporal resolutions (1—10 years). Within each raster cell, tree species are
recorded by number of trees by species age cohort; tree size (e.g., DBH) for a given
species age cohort is derived from empirical age-DBH relationships (e.g.,
Loewenstein et al., 2000). LANDIS PRO simulates forest changes by incorporating
species-, stand-, and landscape-scale processes (Wang et al., 2013b). Species-scale
processes include tree growth, establishment, and mortality, which are simulated
using species' vital attributes (e.g., longevity, maximum DBH/SDI, and seedling
establishment probability (SEP)) and species growth curves.

Stand-scale processes simulate resource competition that regulates stand
development patterns, seedling establishment, and self-thinning (Wang et al.,
2013b). The intensity of competition among trees within each raster cell is quanti-
fied using tree density and size information to apply the Reineke stand density index
(SDI) (Reineke, 1933) and compute the amount of growing space occupied (GSO)
relative to the maximum growing space available (Maximum SDI) for each cell. This
provides a metrics for the proportion of total growing space occupied as well as for
the proportion currently unutilized. Together GSO and tree size information for each
cell govern progression through the stages of stand development described by
(Oliver and Larson, 1996): stand initiation, stem exclusion, understory reinitiation,
and old-growth stages. Within LANDIS PRO, seedlings are established during the
stand initiation stage of development depending on species shade tolerance and SEP
that differ by ecological landtype and/or climate regime. When stands are modelled
to exceed maximum growing capacity (MGSO), they enter the stem exclusion stage
of development and the self-thinning process is modelled to mimic this period of
intense competition (self-thinning) among trees (Oliver and Larson, 1996). Self-
thinning is implemented using Yoda's —3/2 self-thinning theory (Yoda et al.,
1963): as trees get larger the total number of trees declines. Within LANDIS PRO
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Fig. 1. The 107 ha study area located in Northern Arkansas within FIA survey unit 5 (left panel). The area was dominated by oak forests (deciduous forest, right-top panel) and

topography was highly dissected with 5 landtypes (right-bottom panel).

this occurs as trees that are small, shade intolerant, or suppressed are predicted to
die due to completion from larger trees. LANDIS PRO does not use climate param-
eters directly as drivers of tree growth and survival. Instead, anticipated climate
effects are incorporated by altering the model parameters for SEP and MGSO. SEP
and MGSO can vary by landtype and change temporally. Values for those parameters
under a changing climate can be modeled outside LANDIS PRO platform using

ecosystem 160 process model (e.g. LINKAGES II, Wullschleger et al., 2003), which
uses climate and soil variables as drivers reflecting environment (or climate) change
resulting from nitrogen, CO, fertilization, temperature and precipitation changes
(He et al., 2005). When those modified parameters are applied in LANDIS PRO they
model differences in species regeneration and maximum resource availability for
alternative climate regimes.
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Fig. 2. Approach for initialization, calibration, and evaluation processes.
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Landscape-scale processes modelled within LANDIS PRO include seed dispersal
(including exotic species invasion), fire, wind, insect and disease spread, forest
harvesting, and fuel treatments, each being an independent module (Wang et al.,
2013a). LANDIS PRO simulates spatially explicit seed dispersal accounting for
dispersal distance limitations and seed availability based on characteristics of trees
at surrounding sites. Dispersal is simulated using a dispersal kernel determined by
species’ maximum dispersal distances, where the seed dispersal probabilities follow
anegative exponential decay function (He and Mladenoff, 1999). Seed availability for
each species is accumulated from all available mature trees within the dispersal
kernel. Number of potential germination seeds (NPGS) refers to the number of seeds
with potential to germinate that are produced by one sexually mature tree per year.
NPGS for each species is a user-defined parameter and is a state variable over the
duration of the simulation. NPGS values which influence simulated tree density and
basal area can be derived from Burns and Honkala (1990) and iteratively calibrated
to ensure the predicted trees density, basal area, and species composition match
observed forest inventory data. Exogenous disturbances (e.g., harvest or fire) were
not simulated in this study, although it is possible to do so within LANDIS PRO.
Further information of each disturbance module is reported elsewhere (e.g. Fraser
et al,, 2013).

2.3. FIA data for forest landscape initialization and calibration

In our study, FIA were available only for inventory years 1978, 1988, 1993, 2003,
and 2008 (Fig. 2). Our study area was largely comprised of national forests, where
fires were effectively suppressed and timber harvest was limited (less than 5% of FIA
plots experienced disturbances over the past 30 years). Thus, we selected the plots
that did not experience disturbance to construct historical landscape, calibrate
model parameters, and evaluate model predictions. Only FIA inventory plots
meeting the following conditions were included in the samples: (1) classified as
forest, and (2) no evidence of disturbance including logging, insects, disease and fire
since the prior measurement.

We grouped the eleven most common species in our study area into six func-
tional species groups, which accounted for 90% of total basal area: white oak (white
oak and post oak), red oak (northern red oak and southern red oak), black oak,
hickory, pine (shortleaf pine and loblolly pine (P. taeda L.)), and maple (red maple
and sugar maple) (Table 1). We initialized the forest species composition map for the
study area containing number of trees by species age cohort in each cell directly
from 1978 FIA data using Landscape Builder software (Dijak, 2013), which was
developed specifically for LANDIS PRO (Fig. 2). This program stochastically selected
and assigned a representative FIA plot to each cell according to their frequency in
forest type, forest size class, and landform. We compiled the species' vital attributes
(Table 1), landtype map, and SEPs by landtype from existing data sets for the study
area (Wang et al., 2013a,b). Digital input maps were gridded to 90 m resolution.

We iteratively adjusted parameters of the Landscape Builder software to ensure
the initial basal area and density for the modelled landscape matched the sum-
marized FIA data for 1978 (Fig. 2) (Wang et al., 2013a). We then used the initial
landscape for 1978 as the starting point and simulated forest succession without
disturbance until 2008 (30 years) to calibrate the model parameter (NPGS) for each
species. Because FIA data were available for only a 30-year time period (1978—2008),
we used a data-splitting approach for model calibration and evaluation in this study
(Thuiller, 2004). We used 50% of the FIA plots for 1988, 1993, 2003 and 2008 for
model calibration (calibration subset) and reserved the other 50% of FIA plots for
those four respective years for short-term model evaluation (evaluation subset)
(Fig. 2). Specifically, we iteratively adjusted NPGS for each species until the predicted
density and basal area by species group at 1988, 1996, 2003 and 2008 closely
matched the observed changes (no differences based on a chi-square test (p > 0.05))
in the calibration subset for same time period at landscape scales (Wang et al.,
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and landtype scales (Fig. 2). We also evaluated the long term (150 year) LANDIS PRO
predictions of forest composition, structure, stand development patterns, and suc-
cessional trajectories using SDMDs and data from studies of old-growth oak forests
(Fig. 2) (Richards et al., 1995; Shifley et al., 1995).

2.4. Evaluation of the short-term model predictions

2.4.1. Sampling design at site and landscape scales

The short-term model predictions at site scales were evaluated for two
forest types: oak-hickory and loblolly-shortleaf pine. We first classified the
LANDIS PRO predictions (raster cells) into two forest types and then randomly
selected 5000 raster cells from each forest type for each evaluation year. We
computed the basal area and density by species group for each subsample of
sites from modelled landscape and compared the results with the FIA data for
1988, 1993, 2003, and 2008. Likewise, the FIA plots were stratified into two
forest types. To ensure observed values from FIA evaluation subset were com-
parable to LANDIS PRO predictions, the density and basal area by species group
for each FIA plot were extrapolated to a 90 m cell size using the FIA tree area
expansion factors.

The short-term landscape-scale evaluations were conducted by stratifying
predictions (raster cells) into landtypes, because landtypes were used to reflect
exogenous forces in LANDIS PRO. Resources availability and species assemblages
were assumed to be similar within a landtype and vary among landtypes. Five
landtypes were included: southwest landtype, northeast landtype, ridgetop, upland
drainage, and bottomland (Fig. 1). We only evaluated the model predictions at the
southwest and northeast landtypes, because they were most abundant and
comprised about 70 percentage of the total area. We aggregated the predicted
density and basal area of individual cells into landtype polygons. In the FIA evalu-
ation subset, we stratified FIA plots into southwest and northeast landtypes, and
then used FIA area expansion factors to scale the FIA plot estimates of density and
basal area to the area of the landtype polygons. We then randomly selected 5000
southwest and northeast landtype polygons from both simulated and FIA evaluation
subset for each evaluation year to conduct significant tests.

2.4.2. Evaluating the short-term model predictions using forest inventory data

Due to the stochastic components included in the models (Mladenoff and He,
1999), FLMs are not designed to predict the occurrence of a given event or struc-
ture at a specific location. Thus only aggregated statistical properties can be esti-
mated meaningfully across broad spatial and temporal scales (Levin et al., 1997). In
this study, we used the mean of samples for the statistical comparisons.

Goodness-of-fit measurements were used to quantify the accuracy of LANDIS
PRO short-term predictions: the relative mean error (e%) (Eq. (1)), the relative
mean absolute error (MAE%) (Eq. (2)), the relative root mean square error (RMSE
%) (Eq. (3)), and the Nash-Sutcliffe index of model efficiency (ME) (Eq. (4))
(Walther and Moore, 2005; Miehle et al., 2006; Bennett et al., 2013). €% esti-
mated the mean bias and the accuracy of model predictions, whereas MAE% and
RMSE% measured the prediction accuracy using absolute prediction errors on an
individual level. Since RMSE% was based on squared prediction errors, it was
more sensitive to outliers than MAE% that was a linear function of the errors. The
greater the difference between MAE% and RMSE% was, the greater was the
likelihood of significant prediction errors (Walther and Moore, 2005). The ME
index examined the agreement of individual predicted and observed values; the
closer the computed value of ME to +1, the better was the predicted accuracy
(Miehle et al., 2006).

2013a). The adjustment process was analogous to sensitivity analysis because the -~ LR
adjustments were incremental. e% = 100#' M
We then applied the calibrated mode to simulate forest changes from 1978 to
2128 (150 years) without including any exogenous disturbances. We evaluated the S 10i-Pi
short-term predictions of basal area and density by species group at 1988, 1993, MAE% =100 —1 . 2)
2003 and 2008 against the observed values from the FIA evaluation subset at site Y
Table 1
Species life history parameters used in the forest landscape model LANDIS PRO in Northern Arkansas.
Species group Longevity Mean Shade Fire tolerance Maximum Vegetative Minimum  Maximum Maximum Maximum Number of
(years) maturity tolerance (Class) seeding reproduction sprouting  sprouting  DBH (cm) SDI (trees/ha) potential
(years) (class) distance (m) probability age (years) age (years) germination
seeds
Pine 200 20 3 4 200 0.5 1 47 60 990 50
Black oak 120 20 3 3 200 0.4 10 70 60 570 90
Red oak 150 20 3 3 200 04 10 70 60 570 920
White oak 300 20 4 4 200 0.5 10 50 65 570 90
Hickory 250 20 3 3 200 0.5 10 70 60 570 30
Maple 200 20 5 1 200 0.3 10 70 60 570 920
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0O; indicates observed values for species group i, P; indicates predicted values for
species group i, and n is the number of paired-values for comparison between
observed values and predicted values (i.e. the number of species group in this study).

2.5. Evaluation of the long-term model predictions

2.5.1. Sample design at site and landscape scales

For the site-scale evaluation, we randomly selected 5000 raster cells from
LANDIS PRO outputs for each simulation time step from 1978 to 2128 and calculated
the metrics of basal area, density, and quadratic mean diameter for each sampled
cell. For the landscape-scale evaluation, we used all raster cells in the study area and
calculated the basal area, density, biomass, and carbon by species age cohort from
1978 to 2128 for the whole landscape to compare with forest composition, structure,
and successional trajectories with data from old-growth forest studies.

2.5.2. Evaluating the long-term model predictions using SDMDs and old-growth
forest studies

To evaluate the long-term predicted stand development patterns, we plotted the
metrics of the 5000 cells on Gingrich stocking charts and Reineke stand density
diagrams as graphical representations of projected stand development patterns for a
wide range of initial stands. Gingrich stocking charts demonstrated the interplay of
DBHq (Dg, inch), basal area (square feet per acre), and density (number of trees per
acre) with respect to available growing stock. The upper limit of stand occupancy
was indicated by the line for 100 percent stocking (termed the A-line) in Gingrich
stocking charts. The minimum conditions at which the trees can fully occupy the
growing space occurred at approximately 58 percent stocking (termed the B-line). In
theory, undisturbed upland oak forests stands at a stocking level less than 100
percent would gradually increase in basal area and decrease in number of trees that
would move the stands toward but not consistently above 100 percent stocking
(Shifley et al., 1995). Reineke density diagrams, which were algebraically analogous
to the Gingrich stocking guides, provided another graphical framework to examine
trajectories of mean stand conditions between DBHq and density with respect to
available growing space. The predicted mortality was compared to the theoretical
models of self-thinning mortality by Yoda et al. (1963). The plotted trajectories in
Gingrich stocking charts and Reineke density diagram were then compared against
the known characteristics of stands at various development stages (stand initiation,
stem exclusion, understory reinitiation, and old-growth) to evaluate whether the
simulated trajectories were reasonable.

To evaluate the long-term model predictions of forest composition, structure,
and successional trajectories at landscape scales, we used five criteria: 1) whether
high mortality rates reflected the anticipated patterns of self-thinning expected with
high forest density, 2) whether the predicted maximum total basal area in the later
simulation stage was consistent with the observed data for upland, old-growth oak
forests (Shifley et al., 1995; Richards et al., 1995), 3) whether the predicted density,
basal area, biomass, and carbon for the northeast landtype were higher than those
for the southwest landtypes, because northeast landtypes had more resources (e.g.,
nutrients and water) than southwest landtypes in our study area, and 4) whether
the oak-dominated forests were successionally replaced by longer-lived species (e.g.
white oak) and shade-tolerant species (e.g. maple) in absence of disturbance
(Johnson et al., 2009).

3. Results
3.1. The initial forest landscape and model parameters

The initial forest landscape constructed from 1978 FIA data
captured the species composition of FIA data at 1978 reasonably
well. The white oak group comprised 35 percent of the total basal
area and was the dominant species group across the landscape. The
red oak and black oak species groups together comprised 30
percent of the total basal area. Hickory, pine, and maple groups
accounted for 20, 10, and 5 percent of the total basal area, respec-
tively. There were no significant differences between the FIA data
and the initialized landscape for species density (southwest land-
type: x> = 2.55, df = 5, P = 0.77; northeast landtype: x* = 2.82,
df =5, P = 0.73) (Fig. 3a); nor for basal area (southwest landtype:
¥? = 148, df = 5, P = 0.92; northeast landtype: *> = 1.18, df = 5,
P = 0.95) (Fig. 3b).

Prior to calibrating model parameters (NPGS), the predicted
density and basal area from 1978 to 2008 were significantly
different from observed values from the same period of FIA data.
Following the calibration of the NPGS, there were no significant
differences in species density and basal area at landscape scales
between LANDIS PRO predictions and observed FIA estimates for
1988,1992, 2003 and 2008 (Fig. 4a—d). For example, the Chi-Square
tests results for species density at 2008 were y° = 1.04, df = 5,
P = 0.96 at southwest landtype, and x° = 2.68, df = 5, P = 0.75 at
northeast landtype; The Chi-Square results for basal area at 2008
were x> = 3.70, df = 5, P = 0.59 at southwest landtype, and
x° =1.85,df =5, P = 0.87 at northeast landtype. Thus, the calibrated
model parameters predicted reasonable outcomes.

3.2. Evaluation of the short-term model predictions

Differences between predicted and observed density and basal
area at site scales in 1988, 1993, 2003, and 2008 were small for the
50% of data reserved for model evaluation (Fig. 5a,b). The minor
difference between MAE% and RMSE% indicated there were no
extreme prediction errors at 1988, 1993, 2003, and 2008. ME values
close to 1 indicated a reasonable level of predicted accuracy. Spe-
cifically, there was smaller bias and better accuracy for loblolly-
shortleaf pine sites (Fig. 5a) than for oak-hickory sites (Fig. 5b).

There were small differences between the predicted and the
observed values at landscape scales that were within 10% of e%,
MAE%, and RMSE?% (Fig. 5¢,d). The small differences between MAE%
and RMSE% indicated there were no extreme prediction outliers.
Values for ME were close to 1.0. Specifically, the predicted accuracy
on the northeast landtype (Fig. 5¢) was higher than that on the
southwest landtype (Fig. 5d). Furthermore, there was also smaller
bias and better accuracy of predicted species density than basal
area (Fig. 5a—d), and better predicted accuracy at landscape scales
(Fig. 5¢,d) than at site scales (Fig. 5a,b). The comparisons of pre-
dictions at 1988, 1993, 2003, and 2008 demonstrated that the bias
increased and predicted accuracy decreased over time from 1993 to
2008 (Fig. 5a—d). Overall, the short-term predictions (1978—2008)
showed a reasonable level of performance with accuracy better at
landscape than the site scales, and there were greater discrepancies
in predicted basal area than density.

3.3. Evaluation of the long-term model predictions

3.3.1. Evaluating the predicted stand development patterns at site
scales

The predicted stand development patterns from 1978 to 2128
plotted on Gingrich stocking charts and Reineke density diagrams
illustrated changes over time for three typical groups that encom-
passed a wide range of initial stand conditions (Fig. 6). Group I
represented the development of stands initialized at the stand
initiation stage (Fig. 6). The initial stands in group I were typically
characterized by relatively fewer trees, lower basal area, and lower
stocking percent. As succession proceeded, more seedlings became
established resulting in an increase of tree density, a decrease of the
mean diameter, and a slight increase in basal area. When those
stands reached the stem exclusion stage, self-thinning resulted in a
rapid decrease of trees density. The remaining live trees increased
in diameter and thus basal area increased over time. Group II rep-
resented the development of stands initialized at the stem exclu-
sion stage (Fig. 6). They had more trees and higher basal area than
group I. The modelled self-thinning process decreased tree density
while the basal area increased slightly. Continued tree growth
resulted in a rapid increase in mean diameter and basal area later in
the prediction period. Group III represented the development of
stands initialized at the late-stand initiation stage with high
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Fig. 3. Comparison of the initialized density (a) and basal area (b) by species group from LANDIS PRO outputs against observed values from FIA data at 1978 to constrain the

initialized forest landscape in Northern Arkansas.

stocking but a small mean diameter (Fig. 6). These stands started at
or above the maximum stocking line on Gingrich stocking charts
and Reineke density diagrams, so the predicted mortality rates
were high due to intense self-thinning within the stand. After
growing space was released and stocking decreased below the
maximum, the subsequent tree growth led to increases in basal
area and mean diameter. The simulated rates of mortality were not
significant different compared to the theoretical models of self-
thinning mortality by Reineke (1933) and Yoda et al. (1963)
(Fig. 6b). Therefore, the comparisons between the SDMDs and the
established theories of forest stand development suggested that
LANDIS PRO predicted reasonable patterns of stand development
for stands representing a wide range of initial conditions.

3.3.2. Evaluating the predicted forest composition, structure, and
successional trajectories at landscape scales

The predicted density of white oak, red oak, black oak, hickory,
and pine species groups decreased over the 150 simulation years as
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a result of self-thinning and forest maturation (Fig. 7a,b). However,
the predicted density for maple species group gradually increased
over the 150 years, because the lack of simulated disturbance
favored the establishment of shade tolerant species. The predicted
total basal area, biomass, and carbon increased from 1978 to a peak
at 2098, followed subsequently by slight declines from 1998 to 2128
(Fig. 7c—h). The declines after 2098 resulted from the predicted
mortality of a large proportion of trees in the red oak and black oak
species groups that reached maximum longevity, died, and were
replaced by young trees. The predicted basal area reached a
maximum of 23 m?/ha on the southwest landtypes and 28 m?/ha
on the northeast landtypes (Fig. 7c,d). These values were consistent
with the basal area estimates of 23.5—28 m?/ha reported by Shifley
et al. (1995) and Richards et al. (1995) for mature, undisturbed
upland oak forests in the Ozark Highlands.

Our model predictions also indicated that without disturbances
the white oak species group would continually dominate the
landscape from 1978 to 2128 (Fig. 7c—f). Trees in the red oak species
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Fig. 4. Comparison of predicted density and basal area by species group from LANDIS PRO outputs against observed values from 50% FIA data (calibration subset) at 1988, 1993,
2003 and 2008 at landscape scales to calibrate model parameters for a landscape in Northern Arkansas.
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and black oak group declined in basal area after 2098, because
many trees of those species were established in the early to
mid1900's and were predicted to experience increased mortality as
they approached their maximum longevity (Fig. 7c,d). The basal
area for maple species was predicted to gradually increase from
1978 to 2128. These predicted successional trajectories were
consistent with previous studies in oak-dominated forest and
empirical knowledge. In the absence of disturbance, oak-
dominated forests in this region typically transition to a greater
proportion of longer-lived white oak species and shade-tolerant
species such as maple (Johnson et al., 2009).

4. Discussion
4.1. Result implications

Our study demonstrates a process for extensively evaluating
FLM predictions at site and landscape scales using forest inventory
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data, SDMDs, and empirical studies. Evaluation results for the
calibrated model demonstrated reasonable performance, and were
encouraging for subsequent applications of the model. Overall, the
prediction accuracy at landscape scales was higher than that at site
scales. This was consistent with previous studies because the
variance in model prediction decreased as the predicted attributes
were aggregated into a higher spatial hierarchy (Guisan et al.,
2007). Prediction accuracy was greater for northeast landtypes
than for southwest landtypes, which may be because there was
greater variation in FIA data for the lower-quality sites found on
southwest landtypes (Gordon et al., 2004). The prediction accuracy
decreased as the simulations continued over time because un-
certainties (e.g., parameter uncertainty and model stochasticity)
accumulated through time (Xu et al, 2009). Our results also
showed that the prediction accuracy for species density was higher
than basal area. This was because predicted density was largely
determined by a single parameter (NPGS) in the model. Besides the
NPGS, the predicted basal area was additionally affected by species
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diameter growth curves that introduced additional uncertainties
into basal area estimates.

Our results showed that the predicted patterns of forest suc-
cession conformed well to theories and empirical knowledge of
old-growth forest conditions in this region. Likewise, the predicted
long-term patterns of stand development when measured jointly
by changes in mean size, tree density, and basal area and examined
in the SDMD framework were consistent with both theoretical and
empirical knowledge of forest stand development. We showed that
FLM predictions can be directly linked with SDMDs that were
commonly used by forest managers and planners. This helps
establish the credibility and utility of model predictions for
informing management and policy decisions. This type and detail of
model evaluation represents a significant advance in forest land-
scape modeling.

We used the differences between predicted results and
observed values from FIA data to quantify the prediction accuracy
of LANDIS PRO at site and landscape scales. Quantifying such dif-
ferences is essential for effective applications of FLMs for scenario
analyses. The impracticality of conducting real landscape-scale
forest ecosystem experiments has resulted in increasing use of

FLMs for scenario modeling to analyze the effects of different
management actions on forest landscapes (Mladenoff and He,
1999). Model scenarios are generally created by altering input pa-
rameters to reflect changes in climate, disturbance, and/or man-
agement while the other calibrated model relationships remain
unchanged (He, 2008; Coreau et al., 2009; Schmolke et al., 2010).
Thus, quantifying the differences between simulation results and
the real world data provides a basis to separate whether a response
is due to the different simulated scenarios or inherent uncertainty
in the model. Only if we quantify and understand the uncertainties
in the initial conditions, model internal algorithms, and stochastic
modeling components can we legitimately analyze the effects of
different model scenarios.

4.2. Approach implications

We proposed a framework for evaluating FLM predictions,
which involved evaluating short- and long-term predictions at both
site and landscape scales. Evaluating site-scale predictions is con-
ducted through comparing predicted results within raster cells
with observed values in inventory plots randomly sampled across
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the landscape. Evaluating landscape-scale predictions is conducted
through comparing predicted results stratified by extraneous
drivers (e.g., weather, soil, or terrain) with observed values in in-
ventory plots aggregated by extraneous drivers. The short-term
FLM predictions are evaluated using forest inventory data
whereas the long-term FLM predictions are evaluated using stand
density management diagrams (SDMDs) and empirical studies.

We have demonstrated the applicability of this framework by
using LANDIS PRO. However, such framework is also applicable to
other large-scale models such as landscape and regional models.
The response variables for evaluating LANDIS PRO predictions are
basal area and density by species group. These variables can be
different for different models. For example, Seidl et al. (2012)
evaluated short-term, site-level predictions of iland by
comparing site index at age 100 (growth) and mortality from the
simulated and FIA data. Landscape evaluation was conducted by
replicating the site-level evaluation method over the elevation
transects in the Eastern Alps. Long-term, site-scale model pre-
dictions were evaluated by comparing the simulated and observed
mortality rate of old-growth forests. Lischke et al. (2006) evaluated
the long-term predictions of TreeMig at a small and a very large
landscape scale, by comparing the simulated species distribution
patterns with the empirical understanding of these patterns. They
showed that the model was capable of producing different
endogenously driven patterns as a result of seed production,
dispersal, and regeneration, as well as species competition for re-
sources and environmental change.

Spatial and temporal autocorrelations in FIA data may present
some limitations of using FIA data since the short-term model
predictions were initialized and evaluated using the same set of FIA
plots that were remeasured over time. The data splitting method
for initializing and evaluating model predictions increased the
average distances between plots and consequently reduced the
spatial autocorrelation. However, since the time span for FIA data is
only 30 years apart, temporal autocorrelation may still be high,
which may lead to optimistic estimates of predictive ability. While
independent landscape-scale data sets with a longer time series of
repeated measurements would have been desirable, these FIA data
provided a rare record of observed changes over several decades
and allowed direct comparisons between observed and simulated
results for a real forest landscape. This type of data-intensive
evaluation has not been previously attempted at this level of
detail in forest landscape modeling. It helps improving the realism
of model assumptions, algorithms, and parameters (Aragjo et al.,
2005).

Long-term predictions of forest change require accounting for
climate change effects. We did not include climate change in this
study, because the objective of this study was to demonstrate a
framework of evaluating FLM predictions. Our premise is that the
model must be able to produce acceptable results under current
climate, before it will be plausible for projections under a changed
climate. In addition, the field data from the old-growth studies used
to evaluate the long-term predictions corresponded to the past and
current climate; comparable evaluation datasets under a changing
climate do not exist. Thus, we only simulated the forest growth and
succession under the current climate. However, we acknowledge
that climate change is an important factor, especially for long-term
predictions.

Our study responds to an unprecedented demand in the current
data-rich era to combine inventory or observational data from the
long-term accumulation with ecological models to improve pre-
dictions of future change towards a predictive science (Clark and
Gelfand, 2006; Moorcroft, 2006; Peng et al, 2011). Advanced
ecological forecasting is critical for informing natural resource
policy and management decisions concerning ecosystem

management and climate change (Coreau et al., 2009; Schmolke
et al,, 2010; Cheaib et al., 2012). In our study, FIA data were inte-
grated with FLMs to constrain the initial landscape and model pa-
rameters, and ultimately to improve model predictions.
Establishing appropriated initial conditions is critical, because they
can greatly affect the subsequent forest dynamics (Luo et al., 2011).
The accurate representations of the initial landscape and model
parameters that approximate reality as close as possible improve
model predictions (Peng et al., 2011).

Finally, in this study we evaluated predicted results only for
forest succession in the absence of disturbances. Quantitative
evaluation of cumulative effects for landscape with exogenous
disturbances is more difficult because most FLMs employ stochastic
methods to simulate disturbances. Thus far, the effects of distur-
bance have been widely explored at stand scales using observa-
tional data (e.g., Johnstone et al., 2010; Fraser et al., 2013; Luo et al.,
2014). However, few studies have actually used a data infusion
approach to validate predicted disturbance effects or the interac-
tion of disturbance and succession at landscape scales. New ap-
proaches are yet to be developed on this front.
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