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We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne
laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a rel-
atively undisturbed period (2004–2007; Δ07–04), a contrasting period of disturbance (2007–2009; Δ09–07),
and an integrated period (2004–2009;Δ09–04). A simple random sampling (SRS) estimator was used to estimate
means and variances of biomass and biomass change for eachmeasurement occasion and interval. For each year,
linear regressionmodels were used to predict mean total aboveground tree biomass for live, dead, and total bio-
mass components from ALS-derived variables. These models predicted biomass with R2 = 0.68, 0.59, and 0.70
and RMSEs of 32.7, 30.5, and 31.7 Mg ha−1 for 2004, 2007 and 2009, respectively. A model assisted indirect
estimatorwas then used to estimate biomass andbiomass change for comparison to thefield-based SRSestimator.
This model assisted indirect approach decreased standard errors of biomass estimation relative to the SRS
estimator, but had larger variances for biomass change estimation. Linear regression models were also used to
directly predict field-estimated biomass change using ALS Δ-variables, calculated as the difference between
multi-temporal ALS variables, for the study area. Integrated over the 6 year period, these change models had
R2 = 0.81, 0.72, and 0.68 with RMSEs of 2.0, 9.3, and 1.0 Mg ha−1 yr−1 for live, dead, and total aboveground
tree biomass, respectively. A model assisted direct estimator reduced standard errors of change estimates by
100–200% compared to the field-based estimates. We discuss several potential advantages and limitations of the
direct and indirect approaches. Our primary finding is that model assisted direct estimation of biomass change
decreased estimation uncertainty relative to both field and model assisted indirect estimation.

Published by Elsevier Inc.
1. Introduction

There is large uncertainty in the carbon sink strength of terrestrial
ecosystems, recently estimated at 1.1 ± 0.8 Pg C yr−1 globally (Pan
et al., 2011). In response, several international initiatives are aimed at
increasing the precision of forest biomass and estimates of biomass
change at multiple spatial and temporal scales. These include, but are
not limited to, the United Nations Collaborative Programme on Reduc-
ing Emissions fromDeforestation and Forest Degradation in Developing
Countries (UN-REDD; http://www.un-redd.org), the Kyoto Protocol's
Land Use, Land Use Change and Forestry section (IPCC, 2006) and the
North American Carbon Program (NACP; http://www.nacarbon.org/
nacp). These initiatives have brought into focus the need for repeatable,
cost-effective, and simple remote sensing methodologies for monitor-
ing, reporting, and verification (MRV) of biomass stocks (Goetz &
Dubayah, 2011).
town, WV 26505, USA. Tel.: +1

ski).
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The estimation of change in biomass stocks is an area of particular
interest (Houghton, Hall, & Goetz, 2009). Because of strong interest in
the net exchange of CO2 between the land and the atmosphere, it may
be more important that we understand the trajectory of the global car-
bon storage than to accurately estimate the storage itself. The estima-
tion of biomass loss and accumulation through time as a response to
various disturbance events presents methodological challenges, partic-
ularly at larger spatial scales (Goetz et al., 2012). Disturbances such as
wildfire, hurricanes, and insect invasions impact both standing biomass
and the future rates of change in these pools. Spatially, we have been
able to incorporate time-series spatial reflectance data to illustrate
the extent and patterning of disturbance at high temporal resolution
(e.g., Zhu, Woodcock, & Olofsson, 2012) and broad spatial scales
(e.g., Blackard et al., 2008; Masek et al., 2008). Many studies have dem-
onstrated, under some conditions, the ability of spatial reflectance data
to reflect the severity of disturbance, particularly in the realm of wild-
land fire intensity (e.g., Keeley, 2009; Veraverbeke & Hook, 2013).

The application of Light Detection and Ranging (LiDAR) data to the
problem of mapping and estimation of terrestrial biomass has been
shown to greatly increase the spatial resolution and accuracy of above-
ground biomass estimates inmany studies (see Asner et al., 2010, 2011;
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Zolkos, Goetz, & Dubayah, 2013). Several recent studies have incorpo-
rated more thorough statistical techniques to estimate the uncertainty
of various biomass estimators across landscapes (Mascaro, Detto,
Asner, & Muller-Landau, 2011; Næsset et al. 2011), with one example
reporting uncertainty at b1% (standard error of themean; SE) of the es-
timated landscape-scale mean carbon density (Gonzalez et al., 2010).
Several studies have successfully decreased estimation uncertainty
while maximizing cost-effectiveness by targeting airborne laser scanner
(ALS) data collections to sample small portions of the population, rather
than gathering wall to wall data (e.g., Andersen, Strunk, Temesgen,
Atwood, & Winterberger, 2012, Gobakken et al., 2012). This work has
been complemented by additional simulation studies thatwere designed
to optimize sampling designs inways that maximized sampling efficien-
cy while minimizing estimation uncertainty (Ene et al., 2012, 2013).

The characterization of change usingmulti-date ALS acquisitions has
not received the same attention as single-date characterization because
of the overall paucity of these repeated-measure datasets. However, as
multi-temporal datasets have become available, several studies have
demonstrated the utility of this approach. For example, Solberg,
Næsset, Hanssen, and Christiansen (2006) illustrated the use of repeat-
ed ALS acquisitions to detect changes in LAI during an insect attack on
Scots pine (Pinus sylvestris L.) in Norway. Additional research has docu-
mented canopy gap formation and closure over two time periods
(Vepakomma, St-Onge, & Keenshaw, 2008, 2011). The estimation of in-
dividual stem height growth has also been reported in several studies
(Yu, Hyyppä, Kaartinen, & Maltamo, 2004; Yu et al., 2005; Yu, Hyyppä,
Kukko, Maltamo, & Kaartinen, 2006). Additionally, Næsset and
Gobakken (2005), Hopkinson, Chasmer, and Hall (2008), and Yu,
Hyyppä, Kaartinen, Maltamo, and Hyyppä (2008) reported that they
were able to estimate mean height and volume change at the plot
level, albeit with low precision.

Even fewer studies have addressed the efficacy of using multi-date
LiDAR acquisitions for the estimation of biomass change. Dubayah
et al. (2010) used large-footprint airborne LiDAR data (LVIS) to estimate
forest structure and biomass change at 1 ha resolution at La Selva Bio-
logical Station, Costa Rica. They reported success at estimating change
in younger forest areas, but were not able to discern increment in
older stands. Hudak et al. (2012) employed multi-date ALS acquisitions
to estimate biomass changes in an actively-managed forest landscape
and concluded that their methodology of modeling biomass separately
for two ALS acquisitions and differencing the resultant model outputs
yielded estimates of biomass change that could be used to monitor bio-
mass change and carbon flux across large tracts of land. Both Næsset,
Bollandsås, Gobakken, Gregoire, and Ståhl (2013) and Bollandsås,
Gregoire, Næsset, and Øyen (2013) employed a similar indirect estima-
tion technique as Hudak et al. (2012), and also directly modeled the
change in biomass using corresponding change in predictor variables
(Δ-variables) derived from the ALS datasets. Bollandsås et al. (2013) in-
dicated that this direct predictionmethodology produced smaller resid-
uals and RMSEs than the indirect approach. Næsset et al. (2013) also
indicated a smaller standard error of the landscape mean biomass
change using a similar direct modeling and estimation approach.

The potential for using ALS as an auxiliary dataset for improving
estimates of forest attribute change is exciting in many fields. Of partic-
ular interest is the estimation of changes to these attributes following
disturbance events such as wildfire, insect defoliation, or blowdown
events. Linking spatially explicit estimates of attribute change with
stratification schemes would allow for categorical assessment of these
events, thereby increasing reporting precision and contributing to the
analysis of events that may be spatially complex and thus difficult to
capturewith traditionalfield inventories. However, the paucity of repeat-
ed ALS datasets and the scarcity of appropriately re-measured inventory
data within their bounds have limited the study and application of ALS-
based change estimation. Thus, fundamental studies are necessary to
develop a knowledge base that builds towards estimating complex
biomass changes with improved estimation uncertainties.
Our study aims to estimate aboveground biomass change for dis-
turbed and undisturbed time periods usingmultitemporal ALS datasets.
Specifically, our objective was to compare the effectiveness of model-
assisted direct and indirect approaches for estimating biomass and bio-
mass change over a 3 × 3 km area using three repeated ALS datasets as
auxiliary data. The repeated ALS acquisitions allowed us to compare es-
timates developed over two contrasting time periods. The first time pe-
riod (3 years) had little field observed mortality while the second
period (2 years) included extensive, heterogeneous, stemmortality fol-
lowing Gypsy moth (Lymantria dispar) defoliation. We also integrated
both time periods for a 5-year analysis of biomass change. We explored
three techniques for the estimation of biomass change. As the first
method, we used a field-based simple random sampling estimator of
aboveground biomass change. We then used linear regression models
to predict biomass across the study area for each of the three ALS acqui-
sitions. The second method indirectly estimated mean biomass change
by differencing estimates of biomass for two measurement occasions.
The third method used models to directly predict the change in biomass
over three timeperiods in response to corresponding changes inALS pre-
dictor variables. These predictions were then used to directly estimate
mean biomass change across the study area. While primarily focused
on comparing approaches for change estimation, this work also provides
analysis that informs several other knowledge gaps. For instance, there is
no literature currently available that demonstrates and evaluates the
efficacy of using repeated ALS datasets to estimate biomass change on
the Atlantic Coastal Plain of the United States. Additionally, there are
few studies that provide estimates of biomass change before and after
heterogeneous, non-stand replacing disturbance events.

2. Data

The study site is located in Burlington County, New Jersey, USA,
within the Pinelands Management Area (PMA), a UNESCOMAB reserve
site (Fig. 1; Latitude 39° 54′ 58.70″ N, Longitude 74° 35′ 51.38″W). The
study area is 3 × 3 km centered on an eddy-covariance and meteoro-
logical tower at the Silas Little Experimental Forest (SLEF) in New
Lisbon, NJ (Fig. 1). The vegetation within the spatial extent of the site
is composed of a predominantly oak (Quercus spp.) overstory with
some pitch (Pinus rigida L.) and shortleaf pines (Pinus echinata Mill.).
The understory is dense, and consists mostly of oak and pine saplings,
scrub oaks, and shrubs, primarily huckleberry (Gaylussacia spp.) and
blueberry (Vaccinium spp.). Much of the study area experienced defoli-
ation by Gypsy moth over three years, beginning in 2006. The intensity
of this disturbance was uneven and caused a spatially variable amount
of stem mortality of mature oaks through the course of the study (see
Clark, Skowronski, Gallagher, Renninger, & Schäfer, 2012; Clark,
Skowronski, & Hom, 2010).

2.1. Field data

We installed 16 forest survey plots, patterned after the United States
Department of Agriculture, Forest Service, Forest Inventory and Analysis
(FIA) plot protocol (http://www.fia.fs.fed.us/), in a regular 4 by 4 pat-
tern following the NACP Tier 3 plot design (Fig. 1; Hollinger, 2008).
Each plot consisted of four circular 14.6 m diameter subplots
(0.07 ha), with one subplot located in the center and three equidistant
subplots distributed symmetrically around and located 36.6 m from
the center subplot. 63 sub-plots were available for analysis following
the rejection of a plot that was partially located on a non-forested
area. Subplot centers were spatially recorded using a differentially
corrected GPS (Pathfinder ProXT, Model # 52240-20, Trimble Naviga-
tion Limited, Sunnydale, CA).Wemade use of variables from the 63 sub-
plots, as opposed to the 16 aggregated plots, to increase the number of
data points available for biomass and biomass change predictive
model fitting. This design is somewhat problematic because of the po-
tential for spatial correlation between observations, given their

http://www.fia.fs.fed.us/)


Fig. 1. Location of the study area. The right panel illustrates the study area extent and spatial arrangement of field plots overlaid on the mean canopy height from the 2007 ALS dataset.
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clustered arrangement. We addressed this issue by testing for spatial
correlation of model residuals, described in further detail below.

Plots were measured during the dormant season, December
through February, of 2004, 2007, and 2009 (T04, T07, and T09). The ini-
tial, T04, measurement occurred before any evidence of gypsy moth
defoliation, which was first observed in 2006 (Clark et al., 2010).
Trees greater than 12.7 cm in diameter (at 1.37 m height from the
forest floor, dbh) were measured for species, dbh, canopy base-
height, height and status (live/dead) in each plot at each time step.
Live and dead stem density (Dlive and Ddead, respectively; stems ha−1)
and live and dead basal area (BAlive and BAdead, respectively; m2 ha−1)
were estimated for every plot at each time step. We used allometric
models from various sources (Clark, Phillips, & Frederick, 1985, 1986;
Hocker & Early, 1983; Jenkins, Chojnacky, Heath, & Birdsey, 2004;
Martin, Kloeppel, Schaefer, Kimbler, & McNulty, 1998; Perala & Alban,
1994; Whittaker & Woodwell, 1968; Young, Ribe, & Wainwright, 1980)
to estimate live, dead and total tree biomass (Blive, Bdead, and Btotal, re-
spectively; Mg ha−1). We estimated the mean annual change of each
variable for the three measurement periods: 2004–2007 (Δ07–04),
2007–2009 (Δ09–07), and 2004–2009 (Δ09–04). The observations of the
response variables were then averaged over the measurement period
to represent a single year time-step (e.g., Mg ha−1 yr−1) to maintain
comparability as the periods differed in length.
2.2. ALS data

ALS data were acquired three times over the course of the study.
These data were collected during times of maximum leaf-area in the
growing season prior to each field data collection (October 2004, June
2006, andOctober 2008). Tomaintain consistencywith the correspond-
ing field dataset, we refer to these acquisitions by their corresponding
field measured year (T04_ALS, T07_ALS, and T09_ALS, respectively). The
T04_ALS and T07_ALS datasets were collected with an Optech ALTM 2050
with average densities of 1.6 and 5.9 pulses m−2, respectively. The
T09_ALS dataset was collectedwith a Leica ALS60with an average density
of approximately 4.8 pulses m−2.
We used the Toolbox for LiDAR Data Filtering and Forest Studies
(TiFFS; Chen, 2007) to estimate digital elevation models (DEMs),
canopy height models (CHMs), and statistical predictor variables
for each acquisition. The three ALS datasets were processed using
a consistent spatial origin to ensure a uniform spatial extent and
geographic consistency between their respective gridded data
products. DEMs were estimated using all available returns at
1 × 1 m resolution by the TiFFS filtering algorithm (Chen, 2007).
Return height values were then adjusted to represent their height
above corresponding DEM grid cells. We estimated ALS predictor
variables within the spatial extent of each sub-plot for model
fitting. These same predictor variables were also estimated for a
lattice of 25 × 25 m cells that covered the 3 × 3 km study area.
Only first returns at least 1 m above the estimated ground level
were used for the estimation of predictor variables. Predictor vari-
ables included percent cover (non-ground returns/all returns),
percent cover at height greater than 4 m, mean height, maximum
return height, standard deviation, skewness, kurtosis, and decile
heights (p10–p90) (see Næsset, 2002). Additionally, a canopy
height profile was estimated, accounting for optical occlusion per
MacArthur and Horn (1969), and these predictor variables were es-
timated for discrete 1 m height bins (1–2 m, 2–3 m…24–25 m),
the sum of the canopy height profile, and the maximum of the pro-
file for each cell, following Skowronski, Clark, Duveneck, and Hom
(2011). Additionally, similar to the approach taken by Bollandsås
et al. (2013), we estimated Δ-variables that were the difference of
each ALS variable between corresponding ALS acquisitions. For exam-
ple, the difference between 2009 p10 and 2007 p10 is represented as
p10Δ09–07. These Δ-variables were estimated for Δ07–04, Δ09–07, and
Δ09–04 (e.g., p10Δ09–07, p10Δ09–07, and p10Δ09–04).

3. Methods

3.1. Biomass and biomass change models

Wefirst developedmodels to predict biomass for eachmeasurement
occasion.We fit OLS linear regressionmodels for all-subsets and ranked
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the models by their respective adjusted coefficient of determination
(adj. R2), to predict Blive, Bdead, and Btotal from the individual ALS variable
sets for 2004, 2007 and 2009. We used adj. R2 as our ranking statistic
because it adjusts to the number of parameters used in a model and in-
creases only when a new term improves the model, as opposed to the
coefficient of determination (R2) which increases with the addition of
a new term regardless of model improvement. We then selected the
model that used the fewest predictor variables from the 10 highest
ranked models for each biomass component and measurement occa-
sion. As a form of cross validation, we calculated the predicted residual
sum of squares (PRESS) statistic (Myers, 1990) for each selected model.
PRESS is calculated by iteratively omitting a single observation from the
estimation of amodel and then computing the sumof the squared resid-
uals. The root mean square error (RMSE) of the PRESS statistic was then
compared to the RMSE of the full model to characterize model over-
parameterization. We confirmed that residual variance was homosce-
dastic in each model using White's test (White, 1980). The clustered
nature of the sampling scheme caused concern over spatial correlation
of the sample data so we also calculated an omni-directional Moran's I
coefficient to test the residuals of each model for spatial correlation.
These calculations were made with a lag of 50 m to ensure the calcula-
tion related each of the 4 sub-plots in a single FIA plot. Biomass change
was then estimated by differencing study area-wide estimates of mean
biomass for each time period.

We thendirectly predicted the change in biomass as a response to the
change in ALS-derived Δ-variables for each cell over the two time steps.
We first calculated the changes in the aboveground biomass pools of the
field-measured plots for the threemeasurement periods.We then fit OLS
linear regression models for all-subsets and ranked the models by their
respective adjusted coefficient of determination (adj. R2), to predict the
changes in Blive, Bdead, and Btotal for the measurement intervals (Δ07–04,
Δ09–07, andΔall).We again used adj. R2 as our ranking statistic and select-
ed the model that used the fewest predictor variables from the 10
highest ranked models for each biomass component and time step. For
cross validation, we again compared the RMSE of the PRESS statistic to
the RMSE of the full model. As above, we confirmed that residual
variance of these change models was homoscedastic using White's test.
Residuals were tested for spatial correlation using an omni-directional
Moran's I coefficient at a lag of 50 m.

3.2. Estimators

Here, we provide estimates of mean biomass and biomass change
and associated variances from the three approaches: field-based simple
random sampling estimation, model-assisted indirect estimation, and
model assisted direct estimation. Calculating the ratios of the variances,
or relative efficiencies (REs), of various approaches allows us to evaluate
the added benefit of combining auxiliary ALS data with a field survey
and to compare the results obtained between the direct and indirect
modeling approaches.

3.2.1. Simple random sampling estimation
We estimated population means of biomass and biomass change

from field sample data using the simple random sample (SRS) estimator
given inMcRoberts, Næsset, and Gobakken (2013). In this case, FIA sub-
plot data was aggregated to represent a single FIA-type plot (n = 16).
This is consistent with the approach that is taken by the FIA program.
We let y represent the observed biomass (b) or biomass change (Δb)
for the field observations (n), and let μ denote the mean biomass (B)
per unit area or mean biomass change per unit area (ΔB) for sampling
year or interval (t; T04, T07, and T09;Δ07–04,Δ09–07, andΔall) and for com-
ponents (c; Blive, Bdead, and Btotal; ΔBlive, ΔBdead, and ΔBtotal). We then
estimated the mean for each set as:

μ̂SRStc ¼
1
n

X
k∈tc

yk; ð1Þ
where k indexes the n sample observations and yk is the observation for
the kth population unit selected from the sample. A variance estimator
is given as:

VârSRStc μ̂SRStcð Þ ¼
X

k∈tc
yk−μ̂SRSð Þ2

n n−1ð Þ : ð2Þ

While the variance estimator Vârtc μ̂SRStcð Þ is likely biased because of
our systematic sampling design, this bias is likely to result in an overes-
timate of the true variance (McRoberts et al., 2013; Næsset et al., 2013;
Särndal et al., 1992, p. 83).

3.2.2. Model-assisted estimation
Model-assisted estimation uses models and auxiliary variables, in

our case ALS-derived, to produce areal estimates of parameters and es-
timation uncertainties at various scales.We utilized the ALS variables to
predict biomass and biomass change for every population element and
to assist in the estimation of correspondingmeans over the entire study
area. Here, because the predictive models were developed using the
subplots, rather than the aggregated plots, we estimated variances
using all subplots (n = 63).We used the regressionmodels constructed
in Section 3.1 to predict ŷ for t and c using the direct and indirectmodels
developedwith the ALS auxiliary dataset above for the samples n. In this
case, we let N denote the population size of 25 × 25 m grid cells for the
study area and we assume the availability of the auxiliary ALS data for
each grid cell. Further, we let m denote the modeling approach used
for estimating û, either the direct or indirect approach. We then used
the model-assisted (MA) estimator presented by McRoberts (2010)
that was based on Särndal et al. (1992, pp. 221–225) as:

μ̂m
MAtc ¼

1
N

X
k∈tc

ŷmk −
1
n

X
i∈tc

ŷmk −yk
� �

; ð3Þ

where ŷk is predicted for every population element from the modeling
described above and 1

n∑k∈tc ŷmk −yk
� �

is an estimator of the bias. The
variance for the direct (d) modeling approach is given as,

VârdMAtc μ̂d
MAtc

� �
¼ 1

n n−1ð Þ
X

k∈tc
εdk−εdk

� �2
; ð4Þ

where εdk ¼ ŷdk−yk and εdk is the mean of the errors. The variance for the
indirect method (i) is estimated as,

VâriMAtc Δμ̂ i
MAtc

� �
¼ VâriMAtc μ̂2

MAtc−μ̂1
MAtc

� �

¼ VâriMAtc μ̂1
MAtc

� �
−2Côv μ̂2

MAtc; μ̂
1
MAtc

� �
þ VâriMAtc μ̂2

MAtc

� �
;

ð5Þ

where the superscripts denote times 1 and 2. Because the temporal pre-
dictions are from the same mapping units, the covariance is estimated
as,

Côv μ̂2
MAtc; μ̂

1
MAtc

� �
¼ 1

n n−1ð Þ
X

k∈tc
δ1k−δ1

� �
δ2k−δ2

� �
; ð6Þ

where δ1k ¼ ŷ1k−y1k and δ2k ¼ ŷ2k−y2k are errors and δ1 and δ2 are the
means of these errors, again for times 1 and 2. Thus, wewere able to de-
velop estimates of biomass and their associated variances for the field-
based and direct and indirect modeling approaches. We use relative ef-
ficiency (RE) as a way to compare the precision of the two contrasting
modeling approaches for the study area, given as:

RE ¼ VârSRStc μ̂SRStcð Þ
VârmMAtc μ̂m

MAtcð Þ : ð7Þ

This ratio allows for the evaluation of the two model-assisted esti-
mators, with instances greater than 1.0 indicating an improvement
over the variance as they relate to the field-based estimate.



Table 2
Statistics of aboveground biomass models for 2004, 2007, and 2009 (n = 63).

n(v) RMSEreg RMSEPRESS R2 Adj. R2

Live tree biomass (Blive)
T04 17 23.6 (29%) 32.7 (40%) 0.69 0.57
T07 10 25.6 (29%) 30.5 (34%) 0.59 0.51
T09 16 23.1 (28%) 31.7 (38%) 0.69 0.57

Dead tree biomass (Bdead)
T04 18 2.3 (196%) 3.7 (313%) 0.42 0.18
T07 16 1.7 (225%) 2.9 (476%) 0.47 0.28
T09 11 13.6 (137%) 17.2 (174%) 0.43 0.30

Total tree biomass (Btotal)
T04 16 23.7 (28%) 30.9 (37%) 0.68 0.56
T07 10 23.3 (29%) 30.3 (34%) 0.59 0.51
T09 18 23.8 (26%) 32.2 (34%) 0.70 0.58

n(v) = number of predictor variables used in themodel, RMSEreg = rootmean square error
of the regression (Mg ha−1, % of mean), RMSEPRESS = root mean square error of the PRESS
statistic (Mg ha−1, % of mean), R2 = coefficient of determination, Adj. R2 = adjusted R2.
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4. Results

4.1. Field-based SRS estimators and estimation

We estimated biomass for the study area using SRS for estimation
from the field survey data. The field-based estimates of total above-
ground biomass were 83.7 (SE = 5.0) in 2004, 88.1 (SE = 5.0) in
2007, and 93.1 (SE = 4.9) Mg ha−1 in 2009 (Table 1). Estimates of
live tree biomass from the field survey were similar in magnitude to
total tree biomass at 82.4 (SE = 4.5), 87.6 (SE = 4.6) and 83.4
(SE = 4.5) Mg ha−1 for 2004, 2007, and 2009, respectively (Table 1).
Live tree biomass increased between 2004 and 2007 because of stem in-
crement, and decreased between 2007 and 2009 because of mortality
resulting from defoliation by Gypsy moth in 2007 and 2008.

The field-based SRS estimates of biomass change illustrate a contrast
between theΔ07–04 andΔ09–07measurement periods. ForΔ07–04,field es-
timated Blive increased at a mean rate of 1.7 (SE = 0.2) Mg ha−1 yr−1

while the Bdead pool decreased at a rate of −0.1 (SE = 0.1; Table 1)
Mg ha−1 yr−1. Conversely, forΔ09–07, the estimated Blive pool decreased
at a rate of −2.0 Mg ha−1 yr−1 (SE = 1.7) while the dead pool in-
creased at a rate of 4.6 Mg ha−1 yr−1 (SE = 1.4 Mg ha−1; Table 1).
However, somewhat counter intuitively, mean Btotal change is greater
for Δ09–07 than Δ07–04, 2.5 and 1.5 Mg ha−1 yr−1 (SE = 0.6 and
0.2 Mg ha−1 yr−1), respectively, evenwith the increased stemmortality
(Table 1).When integrated over the entire time period (Δ09–04), biomass
change was estimated as 0.2 Mg ha−1 yr−1 (SE = 0.6 Mg ha−1 yr−1),
1.7 Mg ha−1 yr−1 (SE = 0.5 Mg ha−1 yr−1) and 1.9 Mg ha−1 yr−1

(SE = 0.3 Mg ha−1 yr−1) for the live, dead, and total pools,
respectively.
4.2. Model-assisted indirect estimator

4.2.1. Models
The statistical characteristics of the models selected to predict bio-

mass using the auxiliary ALS data are presented in Table 2. The spatial
correlation of residualswas not found to be statistically significantly dif-
ferent from zero (Moran's I, p N 0.05). The selected models were rela-
tively consistent in strength for all three measurement occasions (T04,
T07, and T09). Coefficients of determination ranged from 0.59 to 0.69
and 0.59–0.70 for live tree biomass and total tree biomass estimation,
respectively (Table 2). Fig. 2A–C presents the relationships between ob-
served and predicted values of Btotal for T04, T07, and T09l. For Bdead, the
coefficients of determination are statistically significant, but weaker
than the Blive and Btotal models for T04, T07, and T09 (0.41 ≤ R2 ≤ 0.47,
Table 2). The RMSEs relative to themeans (73%–196%, Table 2) indicate
poor model fit for Bdead. The RMSEPRESS statistics for all models of Blive,
Bdead, and Btotal illustrate a consistent overfit, which can be attributed
to the relatively low variability within, and poor correlation of the ALS
predictor variables to, the field-based estimates. Lack of fit is evident
Table 1
Estimated mean biomass and biomass change and associated standard error (SE) of the estima

Field estimate Model-assisted direct e

Live Dead Total Live Dea

Mean SE Mean SE Mean SE Mean SE Mea

Biomass (Mg ha−1)
T04 82.4 4.9 1.2 0.5 83.7 5.0 a a a

T07 87.4 5.1 0.8 0.2 88.1 5.0 a a a

T09 83.3 4.4 9.8 2.9 93.1 4.9 a a a

Biomass Δ (Mg ha−1 yr−1)
Δ07–04 1.7 0.2 −0.1 0.1 1.5 0.2 2.3 0.1 −0
Δ09–07 −2.0 1.7 4.6 1.4 2.5 0.6 0.6 0.7 0
Δ09–04 0.2 0.6 1.7 0.5 1.9 0.3 1.8 0.2 0

a Biomass was not estimated in the direct estimation methodology.
in these models (Fig. 2A–C) as there is systematic over-prediction of
small biomass values and under-prediction of larger values.

4.2.2. Estimation
The model-assisted indirect estimates of total tree biomass were

110.1 (SE = 2.6) for 2004, 106.4 (SE = 3.0) for 2007, and 95.8
(SE = 2.5) Mg ha−1 for 2009 (Table 1). The use of the model assisted
indirect estimation produced REs ranging from 2.8 to 3.8 for total tree
biomass over the 3 surveys. Model assisted indirect estimates of live
tree biomass ranged from 74.7 to 91.9 Mg ha−1 and from 2.2 to 2.6
for standard errors (Table 1). RE for live tree biomass ranged from 2.9
to 5.0. Model-assisted indirect estimates of dead tree biomass and stan-
dard errors were similar to field estimates (Table 1) and produced REs
ranging from 0.8 to 6.3.

For biomass change, the model-assisted indirect approach yielded
estimates of the total change in biomass of −1.2 (SE = 1.4), −5.3
(SE = 1.6), and −2.9 (SE = 1.6) Mg ha−1 yr−1, for Δ07–04, Δ09–07,
and Δ09–04, respectively (Table 1). Live biomass change was estimated
as 4.7 (SE = 1.5), 0.7 (SE = 1.6), and 3.4 (SE = 1.6) Mg ha−1 yr−1

for the same periods, respectively (Table 1). For themajority of biomass
change components and measurement intervals, indirect estimation
yielded fractional REs (0.01–0.18). Only the estimation of the biomass
change in the live (RE = 1.1) and dead (RE = 1.3) components in
Δ09–07 yielded improved efficiency over the field-based SRS estimators.

4.3. Model-assisted direct estimator

4.3.1. Models
For the Δ07–04 period, the direct estimation approach produced

models that explained a statistically significant portion of the
tes.

stimate Model-assisted indirect estimate

d Total Live Dead Total

n SE Mean SE Mean SE Mean SE Mean SE

a a a 74.7 2.2 2.2 0.2 110.1 2.6
a a a 88.9 2.8 2.1 0.2 106.4 3.0
a a a 91.9 2.6 6.6 1.5 95.8 2.5

.3 0.1 2.9 0.1 4.7 1.5 −0.1 0.5 −1.2 1.4

.7 0.7 1.6 0.3 0.7 1.6 1.1 1.3 −5.3 1.6

.5 0.2 2.5 0.1 3.4 1.6 0.9 1.3 −2.9 1.6



Fig. 2.Model predicted vs. observed total tree biomass for 2004, 2007, and 2009 at 63 field
plots.

Table 3
Statistics for direct estimation of aboveground biomass Δ models developed for Δ07–04,
Δ09–07, and Δall (n = 63).

n(v) RMSEreg RMSEPRESS R2 Adj. R2

Δ Live tree biomass (ΔBlive)
Δ07–04 9 1.0 1.1 0.24 0.11
Δ09–07 18 6.6 10.0 0.66 0.52
Δall 18 2.0 3.3 0.81 0.73

Δ Dead tree biomass (ΔBdead)
Δ07–04 5 5.1 7.8 0.16 0.09
Δ09–07 18 12.0 14.6 0.59 0.43
Δall 13 9.3 12.1 0.72 0.64

Δ Total tree biomass (ΔBtotal)
Δ07–04 7 1.0 1.1 0.23 0.13
Δ09–07 14 2.1 2.8 0.63 0.53
Δall 12 1.0 1.3 0.68 0.60

n(v) = number of predictor variables used in the model, RMSEreg = root mean square
error of the regression (Mg ha−1 yr−1), RMSEPRESS = root mean square error of the
PRESS statistic (Mg ha−1 yr−1), R2 = coefficient of determination, Adj. R2 = adjusted R2.
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variability, but with small R2 values of 0.24, 0.15 and 0.23 for ΔBlive,
ΔBdead, and ΔBtotal, respectively (Table 3, Fig. 3A.). Model results for
Δ07–04 were much stronger, with the prediction of biomass change
having nearly the same predictive power as found in the biomass
models, with R2 of 0.66, 0.58, and 0.63 for ΔBlive, ΔBdead, and ΔBtotal,
respectively (Table 3, Fig. 3B.). The models predicting biomass
change for the full measurement period, Δall, performed the best,
with R2 values ranging from 0.68 to 0.81 (Table 3, Fig. 3C.). Residual
errors were not found to be spatially correlated (Moran's I, p N 0.05)
for any models. It is also notable that the models for predicting bio-
mass change over the entire period exhibited the least overfit, as in-
dicated by the similar RMSE and RMSEPRESS statistics (Table 3).

4.3.2. Estimation
The direct estimation approach produced means of 2.9 (SE = 0.1),

1.6 (SE = 0.3), and 2.5 (SE = 0.1) Mg ha−1 yr−1 for change in total
tree biomass for Δ07–04, Δ09–07, and Δ09–04, respectively (Table 1).
These results illustrate that the direct approach decreased the standard
error of themean biomass change estimate asmuch as 20 times relative
to the indirect approach. The direct estimation approach resulted in
smaller variances than the field-based survey for theΔ07–04 time period
(RE = 1–5.8). It is notable that this time period had little disturbance
across the study area and measurements of change were therefore
mostly restricted to ecosystem productivity. For the Δ09–07 time period,
model assisted direct REs were 3.4–5.6, indicating a marked improve-
ment over the efficiency of the field-based estimate. Effectiveness in-
creased further with the model-assisted direct estimation approach
when integrated over the full time period Δ09–04 (RE = 7.9–10.4).

5. Discussion

The sources of error in ALS-assisted surveys of forest structure and
biomass include errors associated with the allometric estimation of
field-estimated biomass (e.g. Zhao, Guo, & Kelly, 2012), spatial registra-
tion errors in plot location and individual ALS coordinates (e.g. Frazer,
Magnussen, Wulder, & Niemann, 2011), and error in the ability of re-
gression models to accurately characterize the plot-level response vari-
ables (Skowronski, Clark, Nelson, Hom, & Patterson, 2007). Basal area is
typically the strongest predictor of aboveground biomass inmany forest
types (e.g., Jenkins, Chojnacky, Heath, & Birdsey, 2003), consistent with
the allometric models we used to predict oak and pine biomass devel-
oped by Whittaker and Woodwell (1968) for Pine Barrens in Long Is-
land, NY. We have previously reported that because the ALS data
provides height-based predictor variables of forest structure, biomass
predictions based on ALS may not be as accurate in systems where the
relationship between stem height and biomass is asymptotic, as is the
case for multiple tree species in the study area (Skowronski et al.,
2007). Additionally, our study area contained relatively small amounts
of aboveground biomass and our training dataweremostly homogenous,
making it difficult to develop models that did not overfit the field data.
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Fig. 3. Predictions of biomass change using the direct prediction method.
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However, the accuracies of the Btotal models presented here (26–29%,
RMSE as a % of mean biomass), fall within the range reported in a
meta-analysis by Zolkos et al. (2013) for temperate deciduous forests.

Both Mascaro et al. (2011), in a study evaluating sources of uncer-
tainty in ALS-assisted maps of forest carbon, and Næsset et al. (2013),
in a study estimating forest biomass change using ALS data, have
presented results illustrating how the plot edge effect can negatively
impact the estimation biomass in an ALS-assisted survey. The introduc-
tion of error by the edge effect can be thought of in the sense of omission
or commission. For example, though a stemmay fall outside of thephys-
ical boundary of a field plot, and therefore not be tallied during the in-
ventory, a proportion of its crown area may still be physically located
within the volume of the plot and is sensed by the ALS system. Con-
versely, a stem may be tallied within the plot while a proportion of
the crown is located outside of the plot. As Næsset et al. (2013) and
Mascaro et al. (2011) indicated, the edge effect can have less influence
on estimation as the edge-to-interior ratio increases with larger plot
size and also inmore homogeneous forests. The influence of the edge ef-
fect in our study is particularly confounding because the heterogeneity
of the forest increased over time as a result of the disturbance event.
Our estimates of biomass and biomass change were negatively impact-
ed because we used relatively small plots that were not originally
intended for our application. Additionally, our plots were likely not
the ideal size to best integrate the heterogeneity that resulted from
the gypsy moth defoliation.

The calculation of RE allows us to compare the variability of the
model-assisted approaches relative to the field-based estimate. The
model assisted technique resulted in clear gains in efficiency when esti-
matingbiomass components for the threemeasurement occasions. How-
ever, the model assisted estimators produced contrasting results when
estimating changes in aboveground biomass. The model assisted-
indirect estimation did not improve the uncertainty of the biomass esti-
mates when compared to the field-based SRS estimators. In fact, the
resulting variances were an order of magnitude smaller in some cases.
These results contrast with an indirect method presented by Hudak
et al. (2012), who used sequential ALS acquisitions to predict biomass in-
crement in a commercially harvested, mixed conifer forest in northern
Idaho, USA. They reported an overall R2 = 0.58 when differencing pre-
dictions from models that were developed from sequential ALS acquisi-
tions (similar to our indirect prediction technique). Their success may
be linked to the magnitude of the change that they observed since har-
vest activities resulted in a mean change of−167 Mg ha−1 in disturbed
stands. Theirmodel performancewas reported to have rootmean square
deviations (RMSDs) of 92.75 and 101.87 Mg ha−1 for T0 and T1, respec-
tively (Hudak et al., 2012). In comparison, the disturbance in our study
resulted in an average of −8.5 Mg ha−1 yr−1 being transferred from
the live to dead pools, which meant that the RMSE of our Btotal models
(approx. 23 Mg ha−1) is an order of magnitude greater than the change
that we attempted to estimate. Thus, the weakness in our results for the
indirect prediction approachmay be partially due to the discrepancy be-
tween the predictive performance of the models of tree biomass and the
magnitude of change that was present in the field. Dubayah et al. (2010)
had similar conclusions when they attempted to estimate biomass
change from LVIS footprints in La Selva, Costa Rica. They had difficulty es-
timating biomass in older forest types that had little biomass increment,
but weremore successful in secondary forests with greater growth rates.
Because of the magnitude of the prediction errors in the models, and the
small biomass increment estimated from the biometric plots across the
landscape, this approach may be less suitable for estimating biomass in-
crement at high temporal frequencies or in less productive forests.

In contrast, the model assisted direct estimators had variances that
were consistently smaller than the field-based SRS estimators. The REs
for these estimators indicate a marked increase in efficiency versus
the field-based SRS estimators for both the undisturbed (Δ07–04) and
disturbed periods (Δ09–07). The Δ09–04 period had themost pronounced
increase in efficiency for themodel-assisted direct estimation approach.
The longer time integration, with greater biomass accumulation for
many population elements and substantial shifts in biomass pools
from mortality in others, stretched the distributions of both predictor
and response variables resulting in the estimation of stronger models.
Over this time period, the REs of the biomass change estimation were
greater than those of the biomass estimation. These results suggest
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that ALS resurvey campaigns could be optimized by estimating expect-
ed biomass increments and accounting for themagnitude of the expect-
ed change relative to the change in ALS predictor variables.

6. Conclusions

The results of our study illustrate a relative consistency of model
error associatedwithmodeling aboveground biomass across ALS collec-
tions, evidenced by the similar fit characteristics of models developed
for the three separate acquisitions. Our study also echoes the results of
Bollandsås et al. (2013) that a direct approach to modeling biomass
change with ALS-variables produces models with fit characteristics
that are similar to thosewidely reported (see Zolkos et al., 2013) for sin-
gle date biomass prediction. We also found that, in our study, a model
assisted indirect approach to estimating biomass change did not im-
prove efficiency over field-based SRS estimators. In contrast, a model
assisted direct prediction approach produced smaller variances than
the SRS estimators. Integrated over the entire time period, these estima-
tors produced REs that indicate even greater gains in efficiency. Future
work that takes advantage of an empirical modeling approach could
help to determine the temporal thresholds at which sequential ALS ac-
quisitions would provide useful biomass change models under scenari-
os with varying amounts of change, whether biomass increment or
disturbance. The results of our study suggest that these methodologies
would perform substantially better when larger changes in above-
ground biomass pools were being estimated.
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