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A Comparison of Carbon Stock Estimates
and Projections for the Northeastern
United States
Richard G. MacLean, Mark J. Ducey, and Coeli M. Hoover

We conducted a comparison of carbon stock estimates produced by three different methods using regional data from the USDA Forest Service Forest Inventory and Analysis
(FIA). Two methods incorporated by the Forest Vegetation Simulator (FVS) were compared to each other and to the current FIA component ratio method. We also examined
the uncalibrated performance of FVS growth simulations for predicting net carbon accumulation in live trees. In general, the three carbon stock estimation approaches
do not produce estimates that are either equivalent or are simply convertible. A strong spatial pattern of relationships between estimates was associated with regional
variation in stand top height. Uncalibrated growth projections gave downwardly biased results that were also poorly correlated with observed carbon accumulation rates,
yielding little improvement in root mean square error over the use of a simple regional average. These results reinforce the need for managers and scientists to be
careful in choosing methods and reporting carbon stock estimates and to use appropriate model calibration methods in projecting future carbon accumulation.
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The role of forests in the global carbon cycle and the potential
of forests as a greenhouse gas mitigation tool have been
topics of increasing attention in recent years, both at the

national and international levels. Nongovernment organizations,
national governments, and corporations are some of the entities
implementing forest carbon projects around the world; the Forest
Carbon Portal provides a searchable index of planned and active
projects and currently lists 412 projects representing 7.9 million ha
(Forest Carbon Portal 2012). Maintaining and increasing forest
carbon stocks can also result in a number of cobenefits, including
wildlife habitat, soil quality, and water quality (for example, Imai et
al. 2009). The value of carbon sequestration as an ecosystem service
is perhaps best illustrated by the REDD� Programme of the United
Nations (Reducing Emissions from Deforestation and Forest Deg-
radation), which recognizes the role of forests as a tool for mitigating
both greenhouse gas emissions and poverty (UN-REDD 2012).

In the United States, forests sequestered enough carbon to offset
13.5% of national greenhouse gas emissions in 2010, the most re-
cent reporting year for which data are publicly available. (US Envi-
ronmental Protection Agency 2012). Recognizing the importance
of forests and their interactions with climate, and the role of national
forests, the USDA Forest Service has published a roadmap for re-

sponding to climate change and has directed each national forest
and grassland to use a 10-point scorecard to assess and report prog-
ress in implementing the agency’s climate change strategy (USDA
Forest Service 2011a). One of the elements of the scorecard relates
to carbon assessment (USDA Forest Service 2011b) and asks the
following: “Does the unit have a baseline assessment of carbon
stocks and the influence of disturbance and management activities
on these stocks? Is the unit integrating carbon stewardship with the
management of other benefits being provided by the unit?” The
increased emphasis on carbon in forests presents managers with a
need for tools to estimate forest carbon stocks, assess the implica-
tions of management actions on those stocks, and investigate the
tradeoffs between carbon sequestration and other forest manage-
ment objectives.

Because managers were receiving an increasing amount of inqui-
ries about the carbon consequences of planned management actions,
in 2006 carbon estimation was added to the Fire and Fuels Exten-
sion (FFE; Rebain 2010) of the Forest Vegetation Simulator (FVS;
Crookston and Dixon 2005). This functionality allows managers
who are familiar with FVS to quickly generate carbon estimates
along with standard FVS output as part of routine simulations. The
carbon reports in the FFE-FVS are widely used by researchers,
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public and private forest managers, and forestry consultants to gen-
erate carbon estimates and examine the carbon outcomes of man-
agement alternatives and are also recommended as a means of ad-
dressing the carbon assessment element of the Climate Scorecard for
National Forests and Grasslands. The carbon reports available in the
FFE-FVS offer a choice of two calculation methods for live above-
ground tree biomass: the FFE default method (FFE), based on re-
gional volume equations, and the Jenkins et al. (2003) national
biomass equations (Jenkins). Due to the increasing use of the carbon
reports for a range of objectives, we are conducting a region-by-re-
gion comparison of the aboveground carbon estimation methods.
Prior to 2009 the Forest Inventory and Analysis Program (FIA)
calculated aboveground biomass using the Jenkins approach but
currently implements the component ratio method (CRM), which
uses FIA regional volume equations combined with the tree com-
ponent rations from the Jenkins approach (Woodall et al. 2011).
Since FIA now provides the official US forest carbon stock estimates
it is important to assess how the FVS carbon report values compare
to the estimates resulting from the FIA CRM approach.

Here, we present a regional comparison carbon estimates for the
Northeast variant of the FVS growth-and-yield model. Specific ob-
jectives of this paper are:

1. To test whether the estimates produced by the FFE, Jenkins,
and FIA CRM approaches can be regarded as operationally
equivalent and, if not, to determine whether simple conver-
sion factors or other straightforward mathematical adjust-
ments can be used to translate results from one system to
another.

2. To describe between-plot and geographic variation in the
relationships between estimates, and to examine what factors
predict observed differences.

3. To test whether use of FIA data with the FVS growth-and-
yield model run without calibration to local conditions can
produce realistic estimates of carbon stock changes at the plot
or regional level.

Materials and Methods
Field Data and Growth Projections

We used data from the USDA Forest Service, Forest Inventory
and Analysis (FIA) to evaluate differences in estimated carbon stocks
and growth projections. We used all available remeasured phase 2
plot data from the current annualized design for those states appro-
priate to the Northeast variant of FVS. Remeasured plot data were
available for Connecticut (CT), Maine (ME), Massachusetts (MA),
New Hampshire (NH), New York (NY), Ohio (OH), Pennsylvania
(PA), and Vermont (VT). Data were obtained from the FIA Data-
base version 4.0.1 The phase 2 plots consist of a cluster of four
subplots, with one phase 2 plot per 2,428 ha arranged on a system-
atic national grid. Within each subplot, all trees larger than 12.7 cm
DBH are measured on a 7.32 m radius fixed-area sample, while trees
less than 12.7 cm DBH are measured on a 2.07 m radius sample.
In principle, all plots are remeasured on a 5-year interval, though
occasional slight deviations occur. Additional details on FIA proto-
cols and associated estimators can be found in Bechtold and Patter-
son (2005).

Each state-level database was processed with Structures Query
Language (SQL) scripts to isolate remeasured plots and their asso-
ciated data for conversion to FVS-ready formats. Remeasured plots

showing any harvested trees during the remeasurement interval were
eliminated. We then used the FIA2FVS program2 (Vandendriesche
2012) to convert each state-level database into an FVS-ready data-
base. All data were processed through the Northeast variant of FVS
(v. 6.21) with the same set of simulation parameters. For each set of
input data, carbon stocks were estimated using either the FFE or
Jenkins method generated by the FFE-FVS carbon reports. We
summarize both methods briefly here; further detail on the devel-
opment of carbon reporting within FVS can be found in Hoover
and Rebain (2008), Rebain (2010), and Hoover and Rebain (2011).

● The default FFE method for calculating aboveground live tree
carbon begins with estimates of merchantable cubic volume (in
the Northeast variant merchantable trees are defined as � 12.7
cm DBH for softwoods and � 12.7–20.3 cm DBH for hard-
woods, depending on location), calculated using variant-specific
volume equations that depend on DBH and tree height. If mea-
sured tree heights are available, these are used; if not, they are
predicted internally within FVS. The volume estimates are con-
verted to biomass using species-specific wood density (Forest
Products Laboratory 1999). In the Northeast variant, biomass of
crowns and nonmerchantable stems is estimated using Jenkins et
al. (2003), added to the merchantable biomass, and converted to
carbon assuming that half of all woody biomass is carbon. Bark is
not calculated as part of biomass in the FFE and so is not in-
cluded in the aboveground tree carbon estimate, although this
may change as the tool is updated over time.

● The Jenkins method predicts aboveground live tree biomass di-
rectly using a series of nationally averaged biomass allometric
equations from Jenkins et al. (2003), which lump tree species
into nine taxonomic and structural groups. These allometric
equations are simple power functions of DBH for trees greater
than 2.5 cm DBH (and include bark on the bole). For trees less
than 2.5 cm DBH, prediction of biomass is by linear interpola-
tion (assuming biomass is 0 when DBH is 0). For all trees, carbon
is assumed to be one-half of total aboveground biomass.

For comparison purposes, we also calculated aboveground live
tree carbon using the protocols recently adopted by the FIA program
for official reporting purposes (Heath et al. 2009, Woodall et al.
2011). Until reporting results from the 2010 inventories, FIA had
used protocols essentially identical to those used in the Jenkins
method described above. However, FIA now uses a volume conver-
sion factor approach (component ratio method, CRM) that is sim-
ilar to that of the FFE method but with some key differences. In the
northeast, for all trees greater than 12.7 cm DBH, gross cubic vol-
ume per tree is predicted using region- and species-specific volume
equations that depend on DBH and measurements of either total or
merchantable height (depending on the equation). In general, the
volume equations used by FIA (Woodall et al. 2011) are different
from those incorporated in FVS; for the Northeast variant, these can
be found in Miles and Hill (2010). Then, gross volume is converted
to sound volume after deduction for any observed rot or voids and
converted to bole biomass using species-specific wood density
(Miles and Smith 2009). Finally, bole biomass is converted to total
aboveground carbon using the volume conversion factors from Jen-
kins et al. (2003), an adjustment factor, and a carbon fraction of 0.5
(for further details, see Woodall et al. 2011). For smaller trees, the
procedure is different. Trees with DBH greater than 2.5 cm and less
than 2.7 cm the whole-tree allometric equations of Jenkins et al.
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(2003) are used to predict biomass (again with a carbon fraction of
0.5). Trees with DBH less than 2.5 cm are not included in the FIA
carbon estimates, and foliage is excluded for all trees.

In all cases, we used total aboveground live carbon, computed as
described above, as the metric for comparisons. Calculation meth-
ods and components included in the aboveground live tree carbon
pool vary by approach; the purpose of this study is to compare the
output of the tools as they are currently configured, and so no
adjustments were made to harmonize carbon pool components.
Because the live tree tally from FIA plots serves as the common
shared data for all the approaches used here and aboveground live
tree carbon represents the largest pool of carbon (soil carbon is not
included in FFE-FVS) reported, it is the focus of this study. Growth
was modeled in FVS using 1-year intervals from the initial measure-
ment year to the remeasurement year for each plot. Although ex-
tended modeling over long durations with 1-year intervals is not
typically advisable using FVS (Wykoff et al. 1982, Hoover and
Rebain 2011), the remeasurement interval of the FIA data is sub-
stantially less than the default 10-year projection interval of the
Northeast variant of FVS (Dixon and Keyser 2008). No local cali-
bration was used in the growth simulations, as we wished to assess
the impact of using FIA data “as translated” using the FIA2FVS tool
without additional supplementary information. For all compari-
sons, differences between carbon estimates calculated using the FIA
data at the initial measurement and remeasurement periods were
treated as observed net growth, while differences between estimates
based on projected stand conditions at the remeasurement period
and those from the initial measurement were treated as modeled net
growth.

Statistical Analysis
To test whether the estimates produced by FFE, Jenkins, and FIA

can be regarded as operationally equivalent, we used an equivalence
testing framework (e.g., Robinson and Froese 2004, Robinson et al.
2005) with the estimates produced at the initial measurement of all
plots. Equivalence testing reverses the usual “burden of proof” of
statistical hypothesis testing, in which “no difference” is treated as
the null hypothesis and the data must demonstrate that a difference
actually exists. Under the equivalence testing framework, two sets of
estimates are assumed not to be equivalent unless the data demon-
strate convincingly that the estimates are similar to within a pre-
defined tolerance interval. We initially considered a regression-
based equivalence test (Robinson et al. 2005). However recognizing
that for a plot without any trees all three approaches would return an
estimate of 0 t/ha, there is no basis for asserting a shift in intercept.
Instead, we used “two one-sided tests” (TOST; Berger and Hsu
1996) on the ratios between methods to determine if the ratio be-
tween estimates could be demonstrated to be sufficiently close to
one that the two methods should be regarded as equivalent. Because
some estimates were very close to zero the distribution of ratios
could be very long-tailed, so we conducted equivalence testing on
both the mean and median of the ratios. We defined two sets of
equivalence criteria. For tight equivalence, we required the data to
demonstrate that the mean or median ratio of estimates between two
methods was within a tolerance interval from 0.95 to 1.05. For
rough equivalence, we required the mean or median ratio to be
within a tolerance interval from 0.80 to 1.20. Although criteria and
discounting of uncertainty continue to evolve (Olander and
Haugen-Kozyra 2011), these limits correspond loosely to those sug-
gested under some greenhouse gas registries. For example, the Cal-

ifornia Climate Action Registry (2008) indicates that for credits
based on forest inventories, confidence limits of � 5% of the mean
are needed for an estimate to be accepted without discounting, while
confidence limits of � 20% of the mean require 100% discounting
(i.e., receive no credit). Under the TOST approach, using a nominal
� � 0.05, equivalence is demonstrated if both the upper and lower
90% confidence limits on the mean (or median) fall within the
tolerance interval (Berger and Hsu 1996, Wellek 2003). Confidence
limits for the mean were calculated using the conventional paramet-
ric approach; confidence limits for the median were calculated non-
parametrically following Conover (1999, p. 143–144).

To describe factors driving regional differences in carbon esti-
mates, we used a combination of geographic visualization and pre-
dictive modeling techniques. Mean ratios were mapped at the
county scale across the study region. We also used Random Forest
regression (Breiman 2001) to predict the ratio between methods at
the plot level. The Random Forest algorithm is a sophisticated “bag-
ging” algorithm that constructs multiple regression trees from resa-
mpled versions of the original data set. The resulting regression trees
are then averaged to produce a final prediction. We used 500 trees,
with several plot-level candidate predictors: the “fuzzed” plot coor-
dinates3 (latitude and longitude), plot elevation, stand age, trees per
ha, basal area per ha, quadratic mean diameter, crown competition
factor, Reineke’s (1933) stand density index, and top height. Mod-
eling was implemented using the Random Forest extension (Liaw
and Wiener 2002) of the R statistics package (R Development Core
Team 2010).

To evaluate FVS predictions of net carbon gain, we used simple
descriptive statistics along with visualization using the ggplot2 ex-
tension (Wickham 2009) of R. Our original intent had been to use
the regression-based equivalence testing approach of Robinson et al.
(2005) to assess whether predicted and observed growth fell suffi-
ciently close to a 1:1 line, but the outcomes of modeling proved that
to be largely unnecessary. We reemphasize that the growth projec-
tions used here were performed without any local calibration; our
intent was to evaluate the quality of projections that would result
from users utilizing the FIA2FVS tool in an automated fashion
using only the data that would be imported directly from the FIA
database, not to evaluate the full potential for FVS to produce ac-
curate short-term projections when calibrated thoughtfully using
additional site- or project-specific auxiliary data.

Results
Overall, 4,341 remeasured, nonharvested FIA plots were avail-

able for analysis within the geographic scope of the FVS Northeast
variant. Results of the comparison of total aboveground live tree
carbon stocks are shown in Figure 1. There is an overall pattern of
the Jenkins method providing the highest estimates, while the FIA
approach gives the lowest, but there is also a great deal of variability
at the individual plot level.

This overall pattern is confirmed by the equivalence tests for both
means and medians of ratios (Table 1). None of the methods
showed tight equivalence to any other (defined here as being within
5% of each other on average or on a typical basis, i.e., using the
median). The FFE method did show rough equivalence (within
20% on an average or typical basis) to both the Jenkins and FIA
methods, but those two methods were not equivalent to each other.
The spread in plot-level ratios as depicted in Figure 1 indicates that
no single conversion factor will provide a consistent and reliable
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translation between methods across the region. For example, con-
sidering the ratio of FFE to FIA, which was closest to one on average
among all the pairs (Table 1), 25% of the individual plots had values
less than 0.969, while 25% had values in excess of 1.222; only 50%
of individual plots were contained within this interval. To capture
90% of plots would require an interval from 0.879 to 1.793. The
spread for the other ratios was similarly broad.

Maps of the mean ratios at the county level are shown in Figure
2. A strong geographic trend in all three sets of ratios is readily
apparent. For example, while plot-level estimates calculated using
the default FFE method average 13.7% higher than those calculated
using the new FIA procedures, FFE estimates can be nearly 30%
higher for counties in northern ME, and can actually be lower than
FIA estimates in OH and PA. Similar trends can be seen for the
relationship between Jenkins and FIA estimates. These results fur-
ther highlight the challenge of developing a conversion factor, as
using a single conversion factor to translate between methods would
lead to underestimates in part of the region and overestimates in
another. The geographic patterns for maps of the median ratios, or
for ratios-of-means, are similar (though the exact numerical values
differ) and are not shown.

Random Forest analysis showed that while ratios between esti-
mates could be predicted at the plot level, both stand-level variables
and geographic location contributed to prediction accuracy. More-
over, predictions were associated with considerable residual variabil-
ity. The Random Forest model predicting the ratio of FFE to FIA
estimates explained 71.6% of the variance, with a root mean squared
residual of 0.171. Similarly, the model predicting the ratio of Jen-
kins to FIA estimates explained 71.7% of the variance, with a root
mean squared residual of 0.154. The model predicting the ratio of

Jenkins to FFE explained a smaller fraction of the variance, at
48.2%, but because that ratio was less variable in the data the root
mean squared residual was also smaller at 0.077. Variable impor-
tance scores for the Random Forest modeling of the ratios are shown
in Table 2. Although interpretation of variable importance scores in
Random Forest can be problematic (Strobl et al. 2007), the results
highlight the influence of stand structure (especially top height) on
the ratio of either FFE or Jenkins to the FIA estimates of carbon
stocks. In some ways, this is not surprising since the Jenkins method
uses single-entry allometric equations, while the FIA method em-
ploys volume equations that also use measured height information,
therefore, it is natural to expect that the ratio of Jenkins:FIA would
be lower in areas where measured heights are taller than average and
higher where measured heights are shorter. However, the same gen-
eral pattern is observed for the FFE estimates, which also use mea-
sured heights in a volume conversion factor framework.

Comparison of observed and predicted net carbon growth rates,
when FFE-FVS is used without local calibration, reveal performance
that is not encouraging (Figure 3). Using the FFE approach to
calculate carbon for the observed and modeled tree lists, mean ob-
served net carbon accumulation in aboveground live trees for plots
in the study region is 0.978 � 0.045 t/ha/year (mean plus or minus
one standard error). Without calibration, FFE-FVS tended to un-
derpredict net carbon accumulation, with a mean of 0.806 � 0.008
t/ha/yr. Moreover, while correlation between observed and modeled
net carbon accumulation was statistically significant, it was also poor
(Spearman’s � � 0.18, P � 0.0001). As a result of the combination
of bias and variability, the uncalibrated FVS projections had a large
root mean square error (RMSE) of 2.961 t/ha/yr, nearly identical to
that which would be obtained by simply using the mean regional

Table 1. Results of the equivalence tests comparing estimates of the total aboveground live tree carbon stocks using three different methods.

Comparison

Mean of ratios
(95% confidence

limits) Equivalence1

Median of ratios
(95% confidence

limits) Equivalence

FFE:FIA 1.137 (1.128–1.146) Rough 1.053 (1.047–1.060) Rough
Jenkins:FIA 1.281 (1.274–1.289) None 1.214 (1.208–1.219) None
Jenkins:FFE 1.140 (1.137–1.143) Rough 1.137 (1.133–1.140) Rough

1Tight equivalence: mean or median ratio of estimates between two methods was within a tolerance interval from 0.95 to 1.05. Rough equivalence: mean or median ratio
within a tolerance interval from 0.80 to 1.20.
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Figure 1. Comparison of aboveground live tree carbon stock estimates obtained using (A) FFE and FIA, (B) Jenkins and FIA, and (C) FFE
and Jenkins. Solid line indicates 1:1 relationship.
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growth rate, or 2.972 t/ha/yr. An examination of the raw data sug-
gested, however, that there were numerous plots showing large,
unexplained declines in observed live tree carbon. Because plots with
a history of harvest had been screened from the data, we supposed
that these declines might be due to disturbance that is not possible
for FVS to predict. Moreover, some plots showed substantial carbon
increases due to ingrowth, and the Northeast variant of FVS does
not model regeneration (except from postharvest sprouting, and
harvested plots were excluded in this study); many of these plots had
no modeled net carbon accumulation. Therefore, we reanalyzed the
data, retaining only those plots (n � 3,278) that had positive ob-

served and modeled net carbon accumulation, expecting that this
would improve metrics of model performance. The actual results
were worse. Observed carbon accumulation within the restricted set
of plots was 1.974 � 0.022 t/ha/yr, while modeled carbon accumu-
lation remained low at 0.0878 � 0.009 t/ha/yr. Correlation be-
tween observed and modeled carbon accumulation was barely af-
fected (Spearman’s � � 0.18, P � 0.0001). The elimination of plots
with unusual carbon trajectories did improve model performance as
measured using RMSE, but because of the increase in bias, the
RMSE of modeled carbon accumulation was actually greater than
that which would be obtained by simply using the regional mean

Figure 2. County-level means of the ratios between aboveground live tree carbon stock estimates obtained using (A) FFE and FIA, (B)
Jenkins and FIA, and (C) FFE and Jenkins.
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(1.658 versus 1.253 t/ha/yr). We conducted identical analyses using
the carbon estimates produced by the Jenkins method and while the
results were not numerically identical, the general outcomes and
practical implications were.

Discussion and Conclusions
Carbon stocks calculated using the FFE, Jenkins, and FIA meth-

ods in the northeast United States are not equivalent (unless one is
willing to tolerate mean differences approaching or exceeding 20%),
and not simply convertible. This has implications for carbon mar-
kets, comparability of scientific studies, and policy analyses. Re-
searchers and managers conducting forest carbon stock assessments
need to be aware of the differences between the methods when
selecting an approach, should clearly state which method is in use,
and must either use that method consistently through time or recal-
culate prior estimates if a change in approach occurs and document
the changes.

The same base data result in considerable variation in carbon
stock estimates at the plot and regional scales, with strong spatial
patterning of the differences. These results are not unusual; several
investigators have found substantial differences in carbon stock es-
timates produced by various methods. Guo et al. (2010) compared
carbon stock estimates for Chinese forests by three approaches:
mean biomass, mean ratio (using a constant biomass expansion
factor), and continuous biomass (biomass expansion factors based
on volume), and found that the mean biomass approach produced
carbon stock estimates for young stands that were 300% higher than
those from the continuous biomass approach, while stocks in older
stands were underestimated. The reverse was true for the mean ratio
method relative to the continuous biomass method, though the
difference were smaller. Net increment was similar for all three
approaches. Petersson et al. (2012) compared carbon stock estimates
calculated using individual tree biomass equations and volume to
carbon conversions (the biomass expansion factor approach) for
Swedish forests and found that estimates from the volume approach
were about 30% higher than those calculated using biomass equa-
tions, the opposite result from this study. Westfall (2012) con-
ducted a comparison for trees in the northeast United States, com-
paring dry biomass estimates for 15 common tree species using the
“old” Northeast FIA biomass equations, the Jenkins et al. (2003)
equations, the FIA CRM method, and the Canadian national bio-

mass equations. While tree component results differed, above-
ground biomass estimates for the Jenkins and Northeast FIA meth-
ods were not significantly different from each other and were higher
than estimates from the FIA CRM and Canadian approaches, which
were also not significantly different from each other. The differences
between estimates varied with DBH. In Sweden, Jalkanen et al.
(2005) compared biomass estimates developed from equations ap-
plied to tree-level national inventory data to those from age-depen-
dent biomass expansion factors applied to aggregated stand-level
volumes. At the national level, estimates from the expansion factor
approach were about 7% lower than those developed using biomass
equations; although differences varied by species and region. In
general, relative differences in biomass estimates were greatest in the
intermediate age classes, with better agreement between methods in
the younger and older classes. Finally, Domke et al. (2012) investi-
gated the effects of the change in estimation approach from Jenkins
to FIA on United States forest carbon stock estimates using 20
common species and report a result similar to ours: for nearly all of
the species studied, estimates produced using the FIA method were
lower than those from the Jenkins equations. For the northeast
United States, carbon stocks of the most common species decreased
by 11% when using the FIA method. Domke et al. (2012) also
report that at the tree level, the differences in carbon stocks de-
creased as DBH increased.

Regional scale or project scale carbon analyses with FVS using
either the FFE or Jenkins calculation method will not provide FIA
equivalents for the Northeast variant because the available methods
in FVS are not readily convertible to FIA equivalents. The lack of
consistent differences between estimates produced by the different
methods suggests that multiple variables may affect the outcomes of
each calculation approach, which is reflected in the differences re-
ported by other investigators. Guo et al. (2010) found that age class
influenced results strongly in their analysis of biomass estimation in
China, while Westfall (2012) and Domke et al. (2012) report that
differences in estimates at the individual tree level varied with DBH.
Our examination using Random Forest regression indicates that top
height had the largest impact on the ratio of the estimates. This
suggests that if comparability to FIA is important for national forest
managers, and for other users of the FVS tool, additional work is
needed to discern the mathematical relationship between the esti-
mates, and to ascertain whether a sufficiently reliable conversion

Table 2. Importance measures for Random Forest prediction of the ratios between aboveground live tree carbon stock estimates obtained
using three different methods. Variables are listed in order of importance.

FFE:FIA Jenkins:FIA FFE:Jenkins

Variable
Increase
MSE1

Increase
purity Variable

Increase
MSE

Increase
purity Variable

Increase
MSE

Increase
purity

Top ht (m) 36.1 95.8 Top ht (m) 37.4 63.7 CCF 84.8 8.1
Latitude 25.9 42.6 Latitude 28.1 51.8 Top ht (m) 71.7 7.7
Longitude 24.6 46.5 Longitude 23.4 43.2 Latitude 42.0 4.2
CCF2 24.1 38.1 Trees/ha 17.5 26.0 Age 41.3 5.1
QMD2 18.8 57.9 QMD 17.1 42.5 SDI 39.5 4.1
Trees/ha 18.6 30.9 Basal area 14.5 33.7 Longitude 38.8 4.0
Elevation 15.8 16.2 CCF 13.5 26.0 Basal area 37.3 4.7
Basal area 15.5 36.6 SDI 12.2 25.2 QMD 29.3 3.5
Age 13.0 42.5 Elevation 10.8 13.2 Trees/ha 27.9 2.8
SDI2 12.7 25.4 Age 7.6 23.6 Elevation 26.3 3.1

1Increase MSE � increase in mean squared error following permutation of the variable; Increase Purity � averaged change in residual sum of squares due to splitting on the
variable.
2CCF � crown competition factor; QMD � quadratic mean diameter (cm); SDI � Reineke’s Stand Density Index.
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equation can be developed. Alternatively, it may be necessary to
incorporate the FIA CRM approach directly within FVS.

Efforts have begun to develop a set of national biomass equations
from destructive harvesting, and when completed, these equations
will be the standard by which FIA computes biomass; however, this
is a long-term project and results will not be available for some time.
Until then, there remains a need to understand the factors that
influence each of the calculation approaches, to provide a context in
which to interpret results and a basis for developing a method to
harmonize the estimates. There are multiple considerations when
selecting a calculation approach, and users should not simply select
the method that will provide the largest number but should weigh
the strengths and weaknesses of each for the region, spatial scale, and
forest type of interest. Zhou and Hemstrom (2009) present a com-
parison of the regional volume, Jenkins, and FIA methods for the
Pacific Northwest and include a thoughtful discussion of the
tradeoffs between methods, particularly with regard to spatial scale.
It is important to note that regardless of the differences between
biomass estimates produced by the difference calculation methods,
values for net changes will not be affected as long as the same method
is consistently applied.

Our results should also serve as a cautionary note against the
naive use of FVS for forest growth projection without appropriate
attention to calibration. The need for calibration has long been
understood by the FVS community (Hamilton 1994, Vandendri-
esche and Haugen 2008, Ray et al. 2009). In this study, we delib-
erately avoided local calibration to evaluate model performance
when plot data were imported directly using the new FIA2FVS tool.
The resulting predictions of net carbon accumulation were no better
than, and in some ways worse than, simple use of a regional average.
Some of the poor performance may be due to difficulties in model-
ing gross productivity, some due to the inherent challenge in mod-
eling mortality, and some due to disturbance. Partitioning these
effects would be of substantial interest for understanding what cal-
ibration factors are most important for improving regional scale
prediction, but such analysis is outside the scope of this study. In our
view, the biased and weak relationship between observed and pre-
dicted net change in C stocks in the absence of calibration is of
potential concern. The growing interest in carbon accounting and

the emergence of carbon markets has led to new and wider uses of
FVS (Hoover and Rebain 2011). While we laud the straightforward
access to data provided by tools such as FIA2FVS, ease of access can
also facilitate use by those who lack adequate background, training,
and familiarity with the modeling tools. Specifically, our results
provide a stark warning against the potential practice of download-
ing local or regional FIA data and then using FVS for forward
simulation without calibration to set baselines and expectations for
management or for carbon projects. Without local calibration, the
projections will be unreliable at plot, project, and regional scales and
are no more informative than regional averages.

Endnotes
1. The FIA database is available online at apps.fs.fed.us/fiadb-downloads/

datamart.html.
2. The FIA2FVS program is available online at www.fs.fed.us/fmsc/fvs/

software/data.shtml.
3. FIA does not make exact plot coordinates publicly available to protect the pri-

vacy of the landowner. Publicly available plot coordinates are “fuzzed” by
0.8–1.6 km.
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