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a b s t r a c t

The U.S. state of Maryland needs to monitor land use change in order to address land management
objectives. This paper presents a change detection method that, through automation and standard
geographic information system (GIS) techniques, facilitates the estimation of landscape change via
photointerpretation. Using the protocols developed, we show a net loss of forest land, with losses due
primarily to urban development and most gains in forest land coming from agricultural land conversions.
This study indicates that about 75,000 photo plots would be needed to estimate land use change in
Maryland at the county-level, assuming a uniform sampling intensity and a maximum desired county-
level sampling error of 20 percent, with an estimated time requirement of 125 h. The protocol we
present for designing, planning and conducting a photointerpretation-based land use change procedure
can be used by other regions and is well suited for land use change monitoring, assuming that analysis of
opportunity costs suggests that existing or new remotely sensed imagery classifications do not meet user
needs.

Published by Elsevier Ltd.
Introduction

Several recent studies have predicted that urban expansion will
continue to be a significant factor affecting forests in many areas of
the United States (Stein et al., 2005). For example, Nowak and
Walton (2005) predicted that urban land in the United States
would nearly triple from 2000 to 2050. Stewart, Radeloff, Hammer,
and Hawbaker (2007) documented the current status of forests on
the urban fringe, and highlighted potential impacts that continued
urban expansion might have on them. Ecological impacts of urban
expansion vary, but are generally related to loss of forest or other
vegetative cover and increased edge habitat. Increases in edge
habitat have been shown to affect populations of forest interior-
dwelling species and affect other ecological processes associated
with forest patches (Forman,1995). Loss of forest cover also leads to
loss of soil by both wind (Whicker, Pinder, & Breshears, 2008) and
water (Rice & Lewis, 1991). The loss of topsoil has the potential to
not only lower the productivity of agriculture crops and forest
alister@fs.fed.us (A.J. Lister),
ecosystems, but also to impact aquatic ecosystems through sedi-
mentation, nutrient enrichment, and other factors (Faulkner, 2004).

Data from the U.S. National Resources Inventory (NRI) indicate
that more than 40,000 km2 of forest land in the U.S. state of
Maryland were lost to developed land uses between 1982 and 1997
(U.S. Department of Agriculture, 2000). Nowak and Walton (2005)
predicted that the percent of forest land in urban areas in Maryland
would more than double to 37 percent by 2050. For these reasons,
Maryland resource agencies are interested in assessing and moni-
toring land use change. Of particular concern are the potential
impacts of forest change dynamics on the ecologically-sensitive
Chesapeake Bay, the watershed that occupies a large portion of
the state (Claggett, Jantz, Goetz, & Bisland, 2004; Sprague, Burke,
Claggett, & Todd, 2006). The Maryland legislature has adopted
legislation (Maryland House Bill 706) that requires “no net loss of
forest” by 2020, defined as at least 40% of the state having tree
cover. The state must thus implement an affordable, repeatable,
detailed assessment of “tree cover” on a periodic basis.

Estimation of forest loss with remotely-sensed data is generally
done in three ways: direct observation of the attribute of interest
with design-based estimation (e.g., Nowak & Greenfield, 2012),
model-assisted estimation (also a design-based approach, e.g.,
McRoberts, 2010), or model-based estimation (e.g., Stahl et al.,
2011). Gregoire (1998) describes the theory behind the use of
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remote sensing images in either a design-based or model-based
approach. Generating estimates by creating summaries of pixels
most closely resembles a model-based approach to estimation; this
is what is typically done when products based on remote sensing
are summarized in a geographic information system (GIS).

Olofsson, Foody, Stehman, and Woodcock (2013) point out that
traditional remote sensing accuracy assessment methods are often
flawed. Furthermore, a significant challenge with the pixel-
summary approach to error reporting is that estimators are not
necessarily unbiased (Thompson, 2012) and it can be complicated
computationally to generate estimates of their variance (e.g.,
McRoberts, 2010). Probabilistic or design-based sampling, on the
other hand, can be used with or without remotely-sensed infor-
mation, and relies on traditional sampling theory from which to
derive inferences (Thompson, 2012). One primary advantage of the
direct observation approach with traditional probabilistic sampling
is that the estimators can easily be calculated in a spreadsheet using
well-understood, common procedures. Furthermore, practitioners
and policy makers are very familiar with error indices that are
commonly reported like confidence intervals and margins of error.
Map-based estimates, on the other hand, require more complicated
approaches like Bayesian inference (e.g., Finley, Banerjee, Ek, &
McRoberts, 2008) and a reliance on either user-generated or pre-
existing land cover products.

The National Land Cover Data (NLCD) (Fry et al., 2011) is a good
example of a pre-existing land cover product that is commonly
used for resource assessments. The NLCD is a 30�30-m pixel-based
dataset created by automated classification of Landsat imagery. It is
comprised of per-pixel estimates of percent canopy cover, land
cover class for 2006, and change in land cover class between 2001
and 2006. Pre-existing image products like NLCD are not suitable
for all applications, however. For example remote sensing-based
products do not always provide information that meets user
needs. In the case of the USDA Forest Service’s Forest Inventory and
Analysis Unit (FIA), which is responsible for generating national
estimates of forest area dynamics, the definition of “forest” includes
areas with ten percent tree cover that are at least 0.4 ha in size and
greater than 37 m at their narrowest point (U.S. Department of
Agriculture, Forest Service, 2012). Since Landsat pixels are 30-m
squares, there is no combination of Landsat pixels that corre-
sponds precisely with this definition. Raciti, Hutyra, Rao, and Finzi
(2012) similarly found that differing definitions of “urban” can lead
to very different estimates of carbon sequestrationwhen calculated
with remotely sensed data.

There are also contextual variables that are included in land
cover or use definitions e the FIA forest land use definition, for
example, is modified by the presence or absence of structures and
roads. Along the same lines, most image classification processes
can’t incorporate landscape context into decisions e for example, a
human observer’s identification of cows in a grassland can help
identify it as pasture, whereas this information is not available on a
satellite image.

Another problem associated with using remote sensing prod-
ucts for resource assessments is simple classification inaccuracy e

the model used to generate estimates does not consistently
perform well across the landscape. For example, Nowak and
Greenfield (2010) found that there were large discrepancies be-
tween known tree cover classifications and those contained in the
NLCD, due mainly to poor performance of classifiers in heteroge-
neous areas and definitional differences. They thus chose to
perform their own nation-wide photointerpretation-based esti-
mation of tree and impervious cover using their own definitions
and in a way that met their accuracy criteria (Nowak & Greenfield,
2012). Hansen et al. (2013) found that accuracy of a global 30-m
land cover change product varied by climate zone and vegetation
type, leading to both over- and underestimation of some change
categories in certain ecosystems. Zheng, Heath, and Ducey (2012)
also came to the conclusion that the inappropriate use of remote
sensing for carbon quantification can lead to overestimates if fine-
scale forest loss that is not detectable in the remote sensing product
is not considered. Claggett, Irani, and Thompson (2013) determined
that estimates of anthropogenic land cover classes from Landsat
classifications were approximately 50% lower than those frommore
authoritative sources, probably due to some of the same resolution
and radiometric limitations identified in Jones and Jarnagin (2009).

While many of these problems can be mitigated by creating new
classifications with multitemporal, high resolution imagery, LiDAR
and object-based image analysis procedures, creation of thesemore
advanced products can require high levels of skill, specialized
software, and significant hardware investments e something many
resource agencies can’t afford to maintain. These agencies thus
often rely on pre-existing imagery products for resource moni-
toring, and would benefit from an alternative.

An example of the direct observation approach is field-based
monitoring of land use change. FIA conducts a field-based,
continuous, national forest inventory of the U.S. using standard-
ized methods. FIA is national in scope, and uses standardized var-
iable definitions and a standard timetable. However, by design, the
plot and sample designs and variable definitions are not easy to
change, making it difficult to adapt to novel monitoring re-
quirements or new classification systems. Furthermore, the in-
tensity of the FIA sample may not be sufficient to provide precise
estimates of the area of forest conversion to other land use classes if
it is a rare occurrence.

Another example of direct observation is photointerpretation
(PI) from high resolution aerial imagery. Modern methods for
conducting PI (e.g., computer-aided PI (Pithon, Jubelin, Guitet, &
Gond, 2013)) exist, but suffer from some of the aforementioned
problems. Ocular PI, on the other hand, has been found to be cost-
effective and accurate when conducting large area resource as-
sessments (e.g., Mena, Ormazabal, Morales, Santelices, & Gajardo,
2011; Nowak & Greenfield, 2012). Recent examples include Riva-
Murray, Riemann, Murdoch, Fischer, and Brightbill (2010) and
Ecke, Magnusson, and Hornfeldt (2013), both of whom conducted a
large area PI to assess landscape fragmentation patterns. Canada
uses PI as one of the foundations of its national forest inventory
(Magnussen & Russo, 2012). The US Forest Service’s FIA program
has used and currently uses PI in different ways at the local,
regional, and national scales (Bechtold & Patterson, 2005, 85 pp.).
The primary advantages of ocular PI are that the technology is
generally accessible to resource agencies that use GIS, it is easily
teachable, land use or cover classes can be chosen to meet detailed
user needs, and imagery is often served freely over the Internet and
updated frequently, at least in the United States.

To address the challenges associated with using model-based or
ground plot-based estimation of landscape change, we created a
flexible, inexpensive procedure to supplement FIA land use change
estimates using ocular observations on high resolution aerial
photography. The objective of the study was to conduct an
assessment of land use change in Maryland using methods that
could serve to meet Maryland’s needs for a repeatable, detailed,
probabilistic sampling-based protocol for assessment of forest
cover. A goal was to develop a method that could be implemented
by resource agencies that might not have a large budget, nor
possess the institutional knowledge to perform advanced satellite
remote sensing analyses, nor be willing to accept some of the
aforementioned challenges of satellite image classification. Addi-
tionally, wewanted to obtain information that was compatiblewith
the FIA data and useful to federal and state resource agencies in
Maryland.
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Methods

Plot design

To estimate land use change using a sample-based approach, we
first had to develop a plot design. We decided the plot would
consist of at least one subplot made up of a single point at which a
PI-based land use category would be assigned. From past experi-
ence, we determined that this type of plot is most amenable to
rapid PI using FIA land use definitions (USDA Forest Service, 2012).
The NLCD land cover change product (Homer et al., 2007) was used
as a guide to help determine the optimal subplot count and
configuration and to assess various subplot arrangements. The
NLCD change product is a pixel-based geographic information
system (GIS) dataset inwhich each 30-m� 30-m pixel is assigned a
land cover change category based on comparisons of satellite im-
agery from circa 1990 and circa 2000. Although not PI-based, the
NLCD data were used because they are the only spatially explicit
and consistent land change data source that we could use to cali-
brate our PI study. Focusing on forest loss, we first recoded the
NLCD change product such that each pixel was labeled forest loss
(1) or other (0). We then randomly generated 100 plots for each
county in Maryland, with each plot consisting of an array of 25
subplots arranged in a square grid with 100-m spacing between
subplots (Fig. 1).

These plots were used to repeatedly sample the NLCD change
product-derived forest loss data using different numbers of sub-
plots per plot. The state-level sampling errors for estimates of forest
loss were determined for 10 randomly-selected configurations of
subplots for each subplot count category up to 10 subplots. With
results for each combination of subplot count and configuration, we
calculated the total cost to achieve an acceptable level of precision,
Fig. 1. The 25-subplot plot used to sample the NLCD change product. When subplots
(small, yellow dots) intersected the NLCD change category labeled forest loss (red,
shaded area), they were counted, and the proportion of subplots counted in this
manner was assigned to the plot for purposes of estimating mean proportion of forest
loss. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
whichwe defined to be a sampling error of 20 percent of the county
estimate of mean proportion forest loss. We calculated the sample
size and cost using the following equations:

nrequired ¼ ��
ta;n�1*CV

��
E
�2 (1)

and

Cost ¼ a
�
nrequired

�
þ i*b

�
nrequired

�
(2)

where nrequired ¼ the count of plots (sample size) required to reach
the desired precision, ta, n�1 ¼ the critical value of the t distribution
associated with a sample size of n at the 1�a confidence interval,
CV ¼ the coefficient of variation, E ¼ the desired precision
expressed as the desired proportion of the mean that the confi-
dence interval will represent e in this case, 0.2, i ¼ the number of
subplots in the design, a ¼ the cost in time required for the
photointerpreter to switch between plots e in this case, 1 s, and
b¼ the time required to complete a single subplote in this case, 6 s.

Using the results of the NLCD-based plot design experiment as a
guide, we chose the plot design for the PI study. Subplots were
arranged on the corners of a 500-m � 500-m square. This was the
greatest practical separation distance given the constraints of the
photo image resolution and size of the image on the interpreter’s
screen.
Sample design and PI methods

As a first step in determining the sample design, we defined the
population as the land area of the state of Maryland, which is
located on the east coast in the mid-Atlantic region of the United
States. Since one of our goals was to conduct an assessment that is
complementary to the FIA inventory, we chose a spatially balanced
sample design that we treat like a random sample using the same
principles as those employed by the FIA program and described in
Bechtold and Patterson (2005, 85 pp.). Generally, for a given
number of plots, a spatially balanced sample provides a more
efficient, spatially uniform characterization of an area than a
random sample (Cochran, 1977), due to the potential of plot
clumping from strictly random designs. FIA assumes that spatial
periodicity does not exist in the attributes it measures, making
analyses using simple random sampling or post stratified estima-
tors feasible.

To choose the sample, we established a spatially balanced plot
network consisting of 5000 randomly selected plots across Mary-
land using a fractal-based tessellation approach described by Lister
and Scott (2009). This method is analogous to that used by FIA to
spatially balance the sample using a hexagonal tessellation, but is
superior because it does not require decision rules that could
potentially over- or under sample edges where partial hexagons
occur (Lister & Scott, 2009). These data were then used to reeval-
uate the number of plots needed for acceptably-precise county-
level estimates of land use change in Maryland, using Eqs. (1) and
(2), only with the PI data instead of the NLCD change product data.

Land use category was assessed at two points in time (1998 and
2007) on each subplot by interpreting digital aerial imagery. The
1998 imagery consisted of panchromatic, leaf-on, 2-m-pixel reso-
lution, digital orthophoto quadrangles (DOQs) from a state-level
imagery dataset stored locally in an ArcGIS raster catalogue. The
later date imagery consisted of color infrared, leaf-on, 1-m-pixel
resolution, digital imagery from the National Agriculture Imagery
Program (NAIP) collected for Maryland in 2007 and served over the
Internet using a Web-mapping service (WMS). We assumed that
the difference in grain size (pixel resolution) was irrelevant because



Fig. 2. The relationship between subplot count (various configurations) and sampling
error of forest area loss from sampling the NLCD change product.

Fig. 3. The relationship between cost and count of subplots. The optimal count was the
point at which the cost was minimized.
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both 1- and 2-m-pixels yield nearly identical information at the
scale at which the aerial imagery we used was displayed. Further-
more, human interpreters are able to use context and logic while
toggling between the two dates of imagery tomake up for any grain
size-related difficulties in classification.

Land use categories used were based on an aggregation of more
detailed FIA definitions (USDA Forest Service, 2012), and included
Forest, Agriculture, Developed, and Other Nonforest. A single
interpreter was trained and conducted all PI for this study. As a
quality assurance procedure, the interpreter flagged plots that were
difficult to interpret or where she lacked confidence in her land use
change decision. Each of these plots was checked by a more
experienced interpreter and in some cases with auxiliary spatial
data. Because wewere primarily interested in studying forest cover
change, each of the 322 subplots that were labeled as forest change
was reclassified by a more experienced photointerpreter. A subset
of 100 points was also randomly selected and blind checked
(reinterpreted) to determine the repeatability of the PI methods.

To increase PI efficiency, an automation method was developed
whereby an ArcGIS tool was used to extract a subset of imagery from
the raster catalogue and theWMSto areas encompassing and slightly
beyond the extent of the footprint of each plot. In other words,
“snapshots”of imageryata scaleof1:4000weregenerated,witheach
image centered on the plot and containing sufficient detail for the
interpreter to assess landusechange. The two sets (1998and2007)of
5000 images were stored locally, and displayed using a Microsoft
Access form. The form was designed to minimize the number of
mouse clicks, wait time for images to load, and data entry time.

Data from the 5000 plots were used to estimate the area of land
within each land use change class and its associated precision using
a simple random sample estimator (Zar, 1999). Using the same
points, the NLCD forest change imagery was sampled to assess its
accuracy. In addition, Eqn. (1) was used to calculate the number of
plots (and subplots) required to achieve acceptable precision for
estimates of forest cover loss, given a more realistic, optimized PI
procedure and plot and sample design. Similar calculations could
be performed if other landscape attributes were of interest.

Results and discussion

Plot design results

Fig. 2 presents results of our evaluation of how various combi-
nations of subplot counts and configurations affect sampling error,
based on estimates of forest loss from the NLCD change product. As
subplot count increased, large improvements in precision were
observed until the subplot count reached 5 and then the rate of
improvement was less pronounced. In other words, the change in
the precision level after 5 subplots was not large enough towarrant
the additional cost and time to add additional subplots into the final
design. For plots with 3 and 4 subplots, we also graphed the average
sampling error for those plots where the distance between subplots
was maximized. In the best arrangements, subplots were located at
the extremes of the subplot grid, where the intersubplot distances
were maximized. One would expect this to be the case e subplots
located farther apart are more likely to acquire different informa-
tion about the landscape, making plot level summaries closer to the
sample mean and thus lowering the variance of the overall
estimate.

We conducted our cost analysis based on these results, using
costs associated with between 1 and 5 subplots. With the cost
function we chose (Eqn. (2)), we determined that 3 subplots would
be the optimal subplot count (Fig. 3). However, for our PI pilot
study, we decided to use a 4-subplot design so as not to limit
analysis opportunities.
Quality assurance and control

Quality assurance and control were addressed using a combi-
nation of standard methods and project-specific techniques. We
were primarily interested in presenting reliable information on
forest change and therefore employed methods to limit errors of
commission (indicating forest change where there was none) and
omission (indicating no change where there was forest change).
Classification discrepancies often occur as a result of attempts to
classify ambiguous areas, which would be difficult to classify either
on the ground or with photos (suggesting that a redefinition of
classes should be considered). To mitigate this concern, we used a
concept similar to the NLCD 2001 accuracy assessment’s reference
data confidence rating (Wickham, Stehman, Fry, Smith, & Homer,
2010), where the interpreter flagged certain plots as difficult to
classify and in need of closer examination.

Errors of commission and omissionwere minimized by having a
second interpreter re-assess all flagged plots where the original
land use class determination was challenging or ambiguous. Errors
of commission were further evaluated by having a second inter-
preter re-assess each of the points that the first interpreter classi-
fied as forest gain or loss. Of the 322 subplots that exhibited forest
change, 302 were classified the same by both interpreters. Of the
100 random points chosen for the blind check, 96 were classified
the same by both interpreters. The combination of the blind check
and the reinterpretation of subplots with forest change served as a
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project-specific quality assurance protocol that would be reason-
able for resource managers using this technique to implement.

We chose not to conduct a ground plot-based accuracy assess-
ment because we assumed that photo classifications served as an
adequate representation of ground truth. Wickham et al. (2010)
state that the NLCD 2001 accuracy assessment procedure also
used only photo reference samples. We agree with their assertion
that using ground reference data would increase costs, but that
future research should explore using a double sampling approach
using photos and plots to estimate accuracy.

Land use change results

We analyzed our land use change data assuming a simple
random sample design, because, like the FIA program, we assumed
that there was no spatial periodicity in land cover change in
Maryland (Cochran, 1977) and were interested in an efficient,
convenient sample selection procedure. We thus chose to ignore
any effects that the spatially balanced, quasi systematic sample
might have on sampling errors.

Land use change results from the PI pilot study show an esti-
mated net loss of 113 km2 of forest land in Maryland from 1998 to
2007, which averages to be more than 12 km2 per year (Fig. 4). The
gross forest loss (267 km2) was primarily due to conversion to
development, accounting for 91 percent of the total forest loss.
Most forest gains were from agriculture (91 percent). The loss of
forest land to development is an expected result, as Maryland
experienced increases in population and housing densities during
this period.

The comparison of the NLCD cover change product with the PI
indicates a low producer’s accuracy: of the 210 subplots that were
labeled as forest loss by the PI, only 13 showed the corresponding
tree cover loss category on the NLCD product. Of the 123 subplots
that showed forest gain from the PI, only one showed NLCD forest
gain. For consumer’s accuracy, results were similar: of the 231 PI
points that showed tree cover loss from NLCD, only 13 showed
forest loss from the PI, and of the 74 that showed NLCD gain, only
one showed gain from the PI. Visual inspection of misclassified
areas indicates that discrepancies arise from either the lack of
correspondence between the dates of the NLCD and the PI imagery,
definitional differences (tree cover vs. forest), or classification error
in the NLCD. Although there was a poor agreement between the
NLCD change product and our definition of forest change, we feel
that the approach we used to calibrate our plot design is valid not
only because our finding of the optimality of large subplot sepa-
ration distances agrees with those of other studies (e.g., Kleinn,
Morales, & Ramírez, 2001), but also, the average patch size of tree
cover loss on the NLCD product in Maryland is 0.6 ha, which is
Fig. 4. Estimates of total areas of different land use change categories. Sampling errors
are as follows: a: 8%; b: 35%; c: 32%; d: 33%; e: 10%; f: 45%.
plausible based on visual inspection of the imagery. Our conclusion
on this matter is that the PI specialists in our study were able to
more accurately and with more discriminatory power identify the
cover change classes of interest than would have been achieved by
naively using the NLCD tree cover change product to assess forest
change.

Fig. 5 shows the distribution of forest loss in Maryland between
1998 and 2007. There is a high proportion of forest loss plots in the
growing suburbs of Baltimore andWashington D.C., areas that have
experienced the greatest pressure from urban expansion. For
example, the highest proportion of forest loss plots is found in
Prince George’s County, which borders Washington D.C. From 2000
through 2007 more than 22,000 new housing units were approved
for construction, making this one of the fastest growing counties in
the state (Maryland Department of Planning, 2007).

The estimates of proportion of land in each land use change class
from this study are similar to those from the FIA data (Fig. 6). These
FIA data are based on land use calls made in the field from 954 plots
visited in 1999 and revisited from 2004 to 2008. Since we are
adopting a similar (spatially balanced) sample design and as-
sumptions similar to those adopted by the FIA program (equal
probability of selection of each plot), we interpret the greater
precision of the pilot study estimate as an improvement over that
from the FIA sample. Although every effort was made to stan-
dardize the class definitions and classification accuracy of the PI
with those of the FIA ground sample, there may be differences in
classification accuracy between the two methods. The added
advantage of easily, inexpensively adding more PI plots to the
sample and thus gaining precision for estimates of rare events may
offset negative effects of small decreases in accuracy from using PI.
It should be noted that if analysts are not confident in their ability
to accurately characterize the land cover classes of interest from PI,
they should collect information on ground plots in order to assess
PI accuracy and bias.

Our pilot study’s approach also offers the additional benefit of
flexibilitydit provides a framework with which to efficiently
conduct multi-scale assessments. For example, based on results
from the pilot study, a second project was conducted inwhich 3465
additional plots were located in Prince George’s county, Maryland
where finer-scale land use dynamics were assessed (Lister & Lister,
2006). Finally, the efficient methodology we developed will allow
for not only spatial intensification, but also temporal intensifica-
tion. Each time new NAIP or other resource imagery comes
Fig. 5. Distribution of land use plots highlighting plots showing forest loss, 1998e
2007, Maryland.



Fig. 6. Comparison of FIA (1999e2008) and pilot study (1998e2007) mean land use
change categories, Maryland. Error bars represent 95 percent confidence intervals.
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available, a new change assessment can be conducted using the
same plots and exact same classification rules. FIA data, on the
other hand, is tied to a 5-year remeasurement cycle, and the sample
is unlikely to be temporally intensified in the future.

Reevaluation of study design using study results

During this study, we made improvements in PI methodology
that substantially lowered the cost (in terms of time) involved in
switching between photos and entering data. As our initial estimate
of one second spent switching between photos neared zero (using
our rapid PI tool), the time associated with doing a single plot of 4
subplots was not substantially different from doing 4 single-
subplot plots. We therefore determined that the optimal plot
design for future work would be a single subplot design.

Using results from the pilot study, we reevaluated the number of
plots that would be necessary to estimate land use change at the
county level in Maryland with our definition of acceptable preci-
sion e having a sampling error no more than 20 percent of the
county-level estimate at a 95 percent confidence level. Due to dif-
ferences in the amount of land cover change we observed in each
county, the plot density needed (calculated from Eqn. (1)) for
acceptably precise county-level estimates ranged from one plot per
11 ha in counties where change was rare to one per 135 ha in
counties where change was more common. The counties where we
would expect the greatest amount of forest land change based on
housing starts data (Maryland Department of Planning, 2007)
would be sufficiently sampled with a plot intensity of one plot per
37 ha. If we used this as a starting point onwhich to base a uniform
sample of the entire state, we estimated that 75,000 plots would be
needed in Maryland for acceptably precise county-level estimates
of land use change in the counties of most interest to planners.
Results from the study show that, on average, 10 points can be
photointerpreted per minute, thus to complete the PI work for the
whole state, this translates to approximately 125 h of work using
our PI protocols. Future work should involve investigation of the
use of bootstrap variance estimators, which have the potential to
offer significant cost savings by requiring fewer plots in some sit-
uations (Efron, 1982). Similarly, different stratification approaches
could target areas having higher risk for deforestation or more
ecological importance with more plots.

Conclusions

Land managers must decide how the combination of their in-
formation requirements, budget, available remote sensing and GIS
skills, and presence of existing data will affect design choices in
landscape assessment projects. Opportunity costs should be
considered e new or existing satellite imagery classifications have
some advantages over ground- or PI-based approaches, but they
might not meet user needs in a cost-effective way, especially if
needs include complex classification systems that require knowl-
edge of land cover context to apply. PI-based approaches can offer
several advantages, including low interpreter skill and technology
requirements, more flexibility and feasibility in meeting class
definition requirements using ocular classification, the ability to
use sampling theory to both design the inventory (determine
required sample sizes for a given precision requirement) and
interpret results (calculate sampling errors and other related
indices), and the repeatability of methods and definitions through
time as new aerial imagery acquisitions occur. One concern with
the approach is that when large numbers of points are interpreted,
quality could suffer. We highly recommend a rigorous focus on
quality assurance and training of interpreters to mitigate this po-
tential problem. The state of Maryland should consider a PI-based
monitoring approach like that presented here to meet their land
use monitoring needs.
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