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Abstract Recent physiological analysis of Arabidopsis

stomatal density (SD) mutants indicated that SD was not the

major factor controlling aboveground biomass accumulation.

Despite the general theory that plants with fewer stomata

have limited biomass acquisition capabilities, epf1 and several

other Arabidopsis mutants varied significantly in leaf fresh

weight despite having similar stomatal numbers. The in-

depth mechanisms controlling increased or decreased leaf

area biomass remain undetermined. This work used calculations

of SD, overnight water-loss, and LI6400XT measurements

to reject the premise that SD is a primary factor controlling

leaf biomass accumulation in Arabidopsis. With respect to

our data, SD is not the primary factor influencing biomass

accumulation in Arabidopsis epf1 mutants as it did not

positively correlate to any of the physiological parameters

examined. Further observation of morphological differences

between the mutants hinted that additional pathways were

interrupted when these mutants were generated. Each mutant

examined showed a variation in physiological measurements

despite SD. Many SD mutants also showed morphological

abnormalities in addition to altered stomatal numbers. These

phenotypes may indicate epistatic effects related to the

mutation of SD genes in the studied mutants.

Keywords: Morphology, Stomatal conductance, Stomatal

density, Transpiration

Introduction

Stomatal density (SD) is known to vary with respect to a

number of physiological and environmental factors. This

study of Arabidopsis mutants included positive and negative

SD regulators. The EPIDERMAL PATTERNING FACTOR

(EPF)-LIKE (EPFL) family of secreted cysteine-rich peptides

is composed of three homologous negative SD regulators,

where overexpression leads to reduced stomatal number and

increased pavement cell formation [EPF1/2 and EPFL6 or

CHALLAH (CHAL)], and one positive regulator [(EPFL9

or STOMAGEN (STOM)] (Sugano et al. 2010). Mutations

in TOO MANY MOUTHS (TMM) or EPF1 result in increased

SD and a stomatal bunching phenotype (Hoover 1986; Hara

et al. 2009) rather than adequate one-cell spacing (Yang and

Sack 1995). Overexpression of EPF1 (extremely high levels

led to total ablation of stomata and infertility) resulted in

a decreased stomatal index (SI), and overexpression of

TMM led to increased stomatal numbers. Dependent upon

TMM, overexpression of the STOMATAL DENSITY

AND DISTRIBUTION1 (SDD1) gene also led to decreased

stomatal numbers and formation of arrested stomata (von

Groll et al. 2002; Yoo et al. 2010). Since sdd1 mutants

cannot alleviate EPFL6 overexpression phenotypes, SDD1

seemed to be divergent from the ER and TMM pathways.

However, mutations in sdd1, epf1, and tmm led to increased

SI and occasional bunching (Lampard et al. 2008; Hara et al.

2009; Abrash and Bergmann 2010). Mutations in ER family

members er, erl1, and erl2, and yda (YODA) resulted in

almost exclusive production of guard cells and few pavement

cells (Bergmann et al. 2004; Shpak et al. 2004). Required for

stomatal pore formation, CYCLIN-DEPENDENT KINASE

B1;1 (CDKB1;1), a cyclin dependent kinase responsible for

arresting cell cycle proliferation (Porter 2008; Boudolf et al.
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2009), is involved in symmetric cell division. This last cellular

division leads to guard cell formation and is required for the

proper functioning of FOUR LIPS (FLP), a developmental

regulator that targets CDKB1;1 and coordinates cell cycle

exit before and after asymmetric division (Xie et al. 2010a).

The FLP (MYB124) gene and its paralog MYB88, two

proteins which share an amino acid substitution specific to

members of the MYB family involved in development of

stomata, were not required for stomatal fate (Lai et al. 2005).

These proteins functioned to limit GMCs to one symmetric

division, and thus prevented additional “daughter-cell” divisions

as well as coerced guard cell formation. 

During periods of water stress it was expected that

stomatal numbers and pore apertures would be decreased,

a common occurrence in Arabidopsis and grass species

(Nawazish et al. 2006; Liu et al. 2009) however in some

plant species research data showed that decreased water

availability resulted in increased SD (Fraser et al. 2009).

It was suggested that fluctuations in temperature also

influenced SD (Xu and Zhou 2008). In Arabidopsis, a

general decrease in SD has been shown in response to

elevated temperatures, light, and CO2 levels (Berger and

Altmann 2000; Pospisilova 2003). Arabidopsis SD varies

with genotype and species. However, analysis of the

variations in three primary physiological factors such as

E, A, and gs between a subset of mutants involved in

stomatal development has not been conducted. Stomata

are found on nearly all aerial plant parts, but this study

focused only on the leaf. Pore aperture controls the

amount of water leaving the leaf during E. In response to

environmental influences, stomatal densities have been

known to increase or decrease over long periods of time (Chen

et al. 2001) however genetic mutations can also influence

density and distribution of stomata (Alonso et al. 2003).

Evidence is presented here to indicate relative differences in A,

E, and gs between a subset of Arabidopsis SD mutants.

Stomatal development and density in Arabidopsis has been

described and characterized and the reference data concerning

the various mutant phenotypes has increased. By examining

the developmental cues for stomatal patterning, a greater

degree of comprehension can be achieved when evaluating

developmental signaling pathways. Studies that address

stomatal size, density, and aperture have been described and

a number of physiological variations as a result of changes in

water availability have been recorded amongst various

species including Arabidopsis (Serna 2009; Peterson et al.

2010). A number of SD mutants have been characterized,

however this study incorporated some of those most widely

described in the literature and provided background and

expression data for several others (see Supplemental Table 1).

It is hypothesized that analysis of SD in addition to several

physiological parameters would result in significant

correlations between CO2 assimilation rate (A) and SD.

Decreased SD could be presumed to coincide with

decreased leaf transpiration (E) or provide data to support

assumptions that increased SD does not greatly influence

growth and development. Despite our knowledge that a

variety of endogenous signals could be at work to override

SD effects, we are using these data to demonstrate variation in

physiological parameters of mutants with varied SD. The

objective was to examine the density of leaf stomata in a

selection of Arabidopsis SD mutants and examine the

Table 1. Gene identification information, stomatal density, and water loss data over a 36 h period for a selection of Arabidopsis mutants

Arabidopsis Full Name
GenBank

 ID
 TAIR
 ID 

 SD1

 (mm−2) 
 WL2*
(g) 36h

cdc6 Cell Division Control6 NM_179806 AT2G29680 210.6 ± 18.3  2.33 

cdkb1;1 Cyclin-Dependent KinaseB1;1 NM_115278 AT3G54180 544.3 ± 27.8  2.36

edt1 Enhanced Drought Tolerance1 NP_177479 AT1G73360 626.8 ± 22.9  1.13

epf1 Epidermal Patterning Factor1 NM_127657 AT1G34245 441.5 ± 24.1  9.43

er Erecta NM_128190 AT2G26330 253.1 ± 12.4  2.12

erl1 Erecta-like1 NM_125617 AT5G62230 211.4 ± 41.3  1.26

flp Four Lips NM_001084065 AT1G14350 252.6 ± 15.7  5.60

mkk4 Map Kinase Kinase4 NM_104044 AT1G51660 189.2 ± 26.9  1.07

mkk5 Map Kinase Kinase5 NM_113017 AT3G21220 204.7 ± 14.5  5.61

mpk3 Mitogen-Activated Protein Kinase3 NM_114433 AT3G45640 192.3 ± 31.9  6.27

mpk6 Mitogen-Activated Protein Kinase6 NM_129941 AT2G43790 224.9 ± 7.70  6.79

sdd1 Stomatal Density and Distribution1 NM_100292 AT1G04110 462.7 ± 36.0  2.99

tmm Too Many Mouths NM_106657 AT1G80080 428.3 ± 20.7  1.75

yda Yoda NM_105047 AT1G63700 290.4 ± 25.3  1.11

Col-0 Columbia-0 - - 168.8 ± 17.6  3.86

1SD, Stomatal density; 2WL, water loss; *Total WL data were obtained from a total of three mutant Arabidopsis plants and was not an average. 
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physiological parameters involved in growth under identical

experimental conditions. 

Results

Arabidopsis SD Mutants Varied in Water Loss

Stomatal pore apertures decreased as guard cell lengths

increased in Arabidopsis control plants exposed to water-

stress (Fig. 1). Stomatal apertures of well-watered plants were

2.55±0.29 µm however, apertures of mildly water-stressed

and severely water-stressed plants were significantly decreased

(1.75±0.16 µm) and (1.23±0.21 µm) respectively (Fig. 1A).

The observed increase in guard cell length was also

statistically significant (Fig. 1B). These data indicated that

care needed to be taken when examining SD results to

ensure that the mutant Arabidopsis plants being used for

analysis had not suffered from water stress. Measurements of

water loss in Arabidopsis SD mutants indicated that mutants

with the greatest SD were not necessarily associated with the

greatest water loss. The data collected were the result of a

Fig. 1. Changes in stomatal pore aperture and guard cell length in water-stressed Arabidopsis. (A) Bar graph of differences in guard cell
length clearly indicated a decreased stomatal aperture in response to water stress. (B) Bar graph of stomatal apertures indicated the
expected corresponding variation in pore width. (C) Illustration of a mildly-stressed plant stoma with demarcations as to where
measurements were taken. Well-watered (WW), Mildly-stressed (MS) and severely stressed (SS) plants were indicated. Means
superscripted with the same letter were not significantly different at p < 0.05. Bar = 2.5 µm Error bars (±SEM)

Fig. 2. Arabidopsis mutant gravimetric water loss data. (A) Transpiration data of mutants randomly selected for additional physiological
analysis and (B) those mutants not further analyzed. (C) Compilation of data from all mutants in the study indicated epf1 displayed the
greatest water loss. Dark and light periods were clearly marked.
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single measurement of three plants with no replication (Table

1). Gravimetric analysis of individual mutants over the

course of 36 h showed that SD mutants varied widely in

degree of water loss under continued water-withdrawal

conditions (Fig. 2, Table 1). The epf1 mutant line, over the

course of 36 h, showed the greatest degree of water loss.

Excessive water loss from these lines was initially attributed

to the increased stomatal numbers found in the mutant

plants. The SD variation between the mutants in this study

ranged from 168.8 mm−2 to 626.8 mm−2 (Table 1). An in-

depth analysis of published Arabidopsis SD mutant data was

used to help formulate theories to explain this phenomenon.

Suppositions to explain this occurrence were: incomplete

stomatal closure at night, premature stomatal opening, or

abscisic acid (ABA) insensitivity. Theories of incomplete

stomatal closure were illustrated by examination of overnight

gravimetric water loss for each mutant when compared to

wild-type plants while ABA insensitivity was not tested in

this study. Although Arabidopsis plants typically exhibit a

small degree of nighttime respiration, epf1 mutants represented

the greatest volume of overall water loss over 36 h when

compared to controls and the other mutant lines (Fig. 2).

Closer inspection of the gravimetric water loss data showed

that the mutant lines with the highest water loss over 36 h

were epf1, mpk3, and mpk6 while the tmm, mkk4, and yoda

mutants had lower amounts of overnight water loss (Fig. 2).

Transpiration analysis data also indicated epf1 mutant stomata

did not open or close prematurely to bolster water loss rates.

Fig. 3. Comparison of stomatal density and physiological parameters. (A) Net CO2 assimilation (A) data from the Arabidopsis mutants
indicated no correlation existed, with the square of the correlation coefficient (R2) value of 0.0117. (B) Stomatal conductance (gs) data
with a value of 0.0067, (C) transpiration (E) data with a value of 0.0006, and (d) instantaneous water-use efficiency (WUEi) data with a
value of 0.0014 all showed no correlation. Control plants were indicated by the dashed black line while the trendline was represented by
the dashed grey line. Error bars (±SEM)

Table 2. Stomatal density and physiological parameters for a selection of Arabidopsis mutants

Mutant
 A 

(µmol m−2 s−1)
gs

(mol m−2 s−1) 
 E

(mmol m−2 s−1)
 SD

(mm−2)
WUEi 

 (µmol mmol−1)

cdc6 12.40 ± 0.23e 0.50 ± 0.16d 7.07 ± 1.69f 210.6 ± 18.3e 1.75 ± 0.11e

epf1 19.95 ± 0.26c 0.49 ± 0.10d 7.08 ± 0.92f 441.5 ± 24.1b 2.82 ± 0.18b,c,d

erl1 22.70 ± 1.99b 0.61 ± 0.14c,d 8.66 ± 1.75c,d,e 211.4 ± 41.3e 2.62 ± 0.14b

flp 23.36 ± 3.46b 0.77 ± 0.07b 9.77 ± 0.16b,c 252.6 ± 15.7d 2.39 ± 0.29b,c,d

mkk4 22.79 ± 0.20b 0.85 ± 0.08b 9.96 ± 0.21b 189.2 ± 26.9f 2.29 ± 0.64c,d

mkk5 25.91 ± 1.32a 0.59 ± 0 .08b 7.67 ± 0.78e,f 204.7 ± 14.5e,f 3.38 ± 0.91a

sdd1 21.95 ± 0.52b 0.65 ± 0.05c 8.30 ± 0.75d,e 462.7 ± 36.0a 2.65 ± 0.62b,c

Col-0 17.46 ± 1.91d 0.26 ± 0.03e 4.56 ± 0.13g 168.8 ± 17.6g 3.83 ± 0.46a

A, Net CO2 assimilation; gs, Stomatal conductance; E, Transpiration; SD, Stomatal density; WUEi, Instantaneous water-use efficiency. All statisti-
cal data were obtained from comparisons within each physiological parameter. Means superscripted with the same letter were not significantly dif-
ferent at p < 0.05.
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Arabidopsis Mutant SD and Physiological Parameters

Individual Arabidopsis SD mutant lines grown under identical

conditions demonstrated varied rates of gs, net A, and E

(Table 2). Graphical analysis of A and average SD indicated

that a number of mutant lines demonstrated greater rates of

A than Col-0 plants (Fig. 3A, Table 2). These data indicated

that previous findings where decreased SD led to decreased

A were likely true in one situation, but not another. The

variation in water loss among lines led to the theory that

stomatal aperture and not density may be a contributing

factor to irregularities in assimilation. The mkk5, flp, mkk4,

and erl1 mutant lines displayed the higher A and the lower

assimilation rates were recorded for cdc6 and the wild-type

Col-0 (Fig. 3A, Table 2). These high and low assimilation rates

varied across a wide range (from 12.4 to 25.9 µmol m−2 s−1)

and could have contributed to the slower initial growth for

those mutants with lower assimilation rates when observed

in the greenhouse (Table 2, data not shown). Although cdc6

plants generated the lowest assimilation values, total leaf

fresh weight data indicated that this line did not have the

lowest fresh weight recorded (Table 3). Upon bolting, these

mutants were indistinguishable from the other lines with the

exception of yda. Several mutants with lower stomatal

densities had greater A rates than those Arabidopsis mutants

with higher SD. No observable patterns were found for A

among the selected mutants and SD in this study.

It has been speculated that reduced SD leads to reduced gs,

because with fewer available stomata a more limited amount

of CO2 would be obtained and in response, less water can be

transpired. There was no correlation observed between gs

data and SD for the mutant lines examined in this study (R2=

0.0028) (Fig. 3B). A common pattern emerged between gs

and A in cdc6 and several other mutant lines. In addition to

having the lowest overall A rates (12.40±0.23 µmol m−2 s−1),

cdc6 lines also displayed one of the lower gs rates (0.50±

0.16 mol m−2 s−1) and E rates (7.07±1.69 mmol m−2 s−1) (Fig.

3A, B). The greatest conductance rates were seen in mkk4

(0.85±0.08 mol m−2 s−1) and flp (0.77±0.07 mol m−2 s−1) mutant

plants. Lines that displayed the lower conductance readings

were Col-0, epf1, and cdc6. With the exception of Col-0, gs

data from the remaining mutants were all within 0.36 mol m−2

s−1 from highest to the lowest. 

Analysis of the Arabidopsis SD mutant transpiration rates

indicated that E varied independently of SD (Fig. 3C). Yoo

et al. (2010) reported that decreased SD led to decreased E

in gtl1, a SD mutant with a close association with the sdd1

mutant examined in this study, and increased WUEi. No

correlation existed (R2=0.0045) among mutants in this study

despite SD levels for some mutants being greater than control

plants. Those lines with greater SD than wild-type did not

also exhibit higher rates of E (Fig. 3C). The greater transpiration

rates were seen in mkk4 plants (9.96±0.21 mmol m−2 s−1) and

flp (9.77±0.16 mmol m−2 s−1) while the lower transpiration

rates were seen in wild-type (9.96±0.21 mmol m−2 s−1), cdc6

(7.07±0.69 mmol m−2 s−1), and epf1 (7.08±0.92 mmol m−2 s−1)

lines (Table 2). The WUEi data from the individual mutant

lines demonstrated no correlation (R2=0.0014) to SD in the

Arabidopsis mutant lines examined (Fig. 3D). Calculation of

WUEi among all of the mutants showed a two-fold difference

between the lowest and highest efficiency lines (Fig. 3D).

The lowest WUEi was observed in cdc6 (1.75±0.11 µmol

mmol−1) while the highest efficiencies were recorded, as

expected, in Col-0 (Table 2). The Arabidopsis mkk5 mutants

had a WUEi that was closer to Col-0 than any of the other

mutant lines. When all physiological data were compared to

SD, no clear patterns emerged (Fig. 3A-E, 4, Table 2). There

existed a number of differences between SD, gs, A, and E

between each mutant line (Table 3). None of the mutants

studied were similar to Col-0 based on any observed

physiological parameter with the exception of A and WUEi.

Col-0 and mkk5 had similar WUE values, however the majority

Fig. 4. Comparisons of stomatal conductance (gs) and transpiration (E) and E with assimilation (A). The gs and E as well as E and A data
from the Arabidopsis mutant lines were graphed to determine if a correlations existed between the two parameters. (A) The square of the
correlation coefficient (R2) indicated a strong positive correlation with a value of 0.9078 existed between the Arabidopsis mutants when
gs versus E were evaluated while (B) E versus A data showed no correlation with a (R

2) value of 0.0062. The control plants were
indicated by the dashed black line while the trendline was represented by the dashed grey line. Error bars (±SEM)
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all other parameters for the two lines were significantly

different (Table 2). Comparisons of SD with the physiological

parameters resulted in no correlations being seen between

SD and A (R2=0.0059), gs (R
2=0.0028), E (R2=0.0045), or

WUEi (R
2=0.0014). A strong positive correlation (R2=0.9689)

was seen between gs and E as expected (Fig. 4A). There was

a slight correlation between E and A (R2=0.31) (Fig. 4B). 

Arabidopsis Leaf Fresh Weight (LFW) and Physiological

Parameters

Visual observation of above-ground biomass at the start of

the study indicated no difference in the size of these mutant

plants with the exception of the yda mutants, however

statistical analysis of leaf fresh weight (LFW) indicated

significant differences that may help to explain why more

correlations were not seen within the generated data (Fig. 5,

Table 3). Measurements of LFW were necessary to verify

that undulations in water loss were not attributed to differences

in initial plant size. A mutant that displays a dwarf phenotype,

it was not a surprise to note the resultant diminutive growth

of plants in the yda line. Attempts to find relationships

Fig. 5. Arabidopsis mutant average leaf fresh weight. All leaves
from three plants of each mutant line were removed and immediately
weighed to obtain fresh weight. Numerical data and statistical
analysis for these lines can be found in Table 3. Error bars (±SEM)

Table 3. Summary of Arabidopsis mutant leaf fresh weights1

Arabidopsis Mutant Line
Arabidopsis Leaf Fresh Weight

 (mg) 

cdc6  138.6 ± 15.8a,b,c

cdkb1;1  129.0 ± 9.2b,c,d

epf1  140.9 ± 8.0a,b,c

er  186.6 ± 9.1a

erl1  159.2 ± 30.9a,b

flp  162.1 ± 27.8a,b

mkk4  131.8 ± 6.7b,c,d

mkk5  129.3 ± 25.5b,c,d

mpk3 0 84.0 ± 4.4d,e

mpk6  145.7 ± 28.2a,b

sdd1 0 86.8 ± 13.2d,e

tmm 0 73.8 ± 4.7e

yda 0 14.4 ± 0.87f

Col-0  180.0 ± 11.2a,b

1Weights represent the average of all Arabidopsis leaves from three
mutant plants. Means (±SEM) superscripted with the same letter were
not significantly different at p < 0.05.

Fig. 6. Arabidopsis mutant physiological parameters compared with average leaf fresh weight (LFWavg). Negative correlations existed
between LFWavg and (A) Net CO2 assimilation (A) (R2=0.0444), (B) stomatal conductance (gs) (R

2=0.5026), and (C) transpiration (E)
(R2=0.516), and both gs and E showed greater negative correlations than A. (D) A weak positive correlation (R

2=0.2227) was seen
between LFWavg and WUEi. The control plants were indicated by the dashed black line while the trendline was represented by the dashed
grey line. Error bars (±SEM)
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between LFW and physiological parameters resulted in

negative correlation being drawn between gs, net A, and E.

No correlation was observed between leaf area and WUEi.

Associations between fresh weight and WUEi were the

poorest (R2=0.0197) followed by E (R2=0.3334), net A (R2=

0.3528), and gs (R
2=0.3918) (Fig. 6).

Abnormal Mutant Arabidopsis Phenotypes

In addition to the bunching phenotype often found in some

of these SD mutants, a number of other morphological

alterations were observed in these plants. Exceedingly long

pavement cells in two of the mutated protein kinase lines

mpk3 and mpk6 were observed (Fig. 7A, B). These significantly

lengthened pavement cells were found on both leaf surfaces

and clearly indicated a break-down in cell division signaling

when compared to WT (Fig. 7C). Statistical analysis indicated

that pavement cells of mpk3 plants were longer while those

of mpk6 were wider than pavement cells in WT plants (Fig.

7C-E). The characteristic abnormalities observed were joined

and clustered stomata. Many lines demonstrated clustered

stomata, but consistent pairing phenotypes were observed in

epf1, erl1, mpk3, mkk5, and sdd1 (Fig. 8). All of the SD

mutants have different mechanisms of action, yet many of

these displayed the same or similar paired phenotypes. This

pairing tendency found in a number of the studied mutants

emphasized the ablation of the one-cell spacing rule that

EPF1 and other genes control.

An unusual phenotype discovered that has not previously

been described was variation in trichome morphology between

mutant lines (Fig. 9A-D). Although abnormal trichomes

were not highly prevalent, these were present in noticeable

numbers. Rather than the typical trident-shaped trichomes,

flp, mpk3, mpk6, and sdd1 lines displayed abnormal formations

of trichomes in addition to the described stomatal mutations

and morphologies (Fig. 9A-D). When trichomes were removed,

the supportive pavement cells surrounding the base were

revealed (Fig. 9E). 

Examination of these cells led to the hypothesis that these

particular pavement cells provided a foundation for the

Fig. 7. Abnormally shaped pavement cells. (A) The pavement cells in mpk3 were greater than four times longer than adjacent cells while
the pavement cells in mpk6 (B) were elongated both lengthwise and widthwise when compared to (C) wild-type. Statistical analysis
confirmed observations for (D) length and (E) width. Means superscripted with the same letter were not significantly different at p < 0.05.
Bar = 200 µm Error bars (±SEM)

Fig. 8. Paired stomata were found in a number of mutant lines. A
number of joining morphologies were observed from (A) barely
touching parallel joins in epf1 to (B) barely touching perpendicular
joining in mkk5. (C) A greater degree of parallel joining was seen
in erl1, (D) mpk3, and (E) sdd1. (A) Bar = 5 µm, (B–E) Bar = 10 µm
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trichome, and a boundary against the formation of adjacent

stomata in addition to preventing the establishment of

stomata in close proximity to the trichome. None of the

mutant lines examined displayed phenotypes that were an

exception to this rule. As trichomes can serve as an additional

water reservoir, examination of their presence, absence, or

abnormal morphology could explain the increased transpiration

of particular mutant lines.

Despite all of the leaf samples being harvested when the

plants were fully mature, the presence of immature guard

cells was a frequent occurrence in several mutant lines

including epf1 (Fig. 9F). These immature cells indicated an

ablation of the signal required for proliferation and differentiation

into mature guard cells. 

Conclusions

Stomata are well known for their plasticity in response to

varied abiotic conditions. Data presented here show that

Fig. 9. Unusual trichome phenotypes. Rather than (A, inset) three equilateral branches found per trichome in wild-type (WT), (A) flp
mutants were often found with an additional branch point when compared to WT. (B) Instead of the formation of an additional branch
point sdd1 mutants exhibited a single main fork with an additional branch point at the tip of one side of the fork. (C) Additional branch
points were found on both tips of a single fork in mpk3. (D) A small subset of trichomes in mpk6 showed a distinctive lack of branching
phenotype in a number of leaves examined. (E) In this Arabidopsis flp leaf, removal of a trichome emphasized the number of supportive
pavement cells associated with each individual trichome. These pavement cells also seem to act to ensure stomata were not formed in
close proximity to trichomes. (F) Although only one mutant line is pictured, several mutant lines (epf1, fama, scream1, and sdd1) also
exhibited an arrested guard cell phenotype such as the one seen in epf1 (Table 1). (A–E) Bar = 100 µm (F) Bar = 5 µm
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decreased leaf SD does not prevent uptake of additional

CO2 or hinder leaf biomass accumulation. Measurements

of total leaf area indicated that mutants with higher

stomatal densities than Col-0 plants did not exhibit the

expected increase in leaf area. Therefore, additional studies

with SD mutants or studies that involve the highest

biomass producing Arabidopsis mutant plants are needed to

more convincingly state whether or not leaf area would be

significantly affected in plants with decreased stomatal

densities. Destructive sampling of each mutant line

indicated significant differences in fresh weights for many

of the examined mutant lines with the greatest difference

being seen in yda, a mutant with a dwarf phenotype and

delayed growth. Further studies that characterize mutants

with progressively fewer stomata may uncover a threshold

where normal growth and development begins to decrease,

however this study did not reach that physiological limit.

The results obtained here indicated that present levels of

CO2 were sufficient to satisfy growth requirements for

these Arabidopsis mutants even in the absence of uniform

stomatal numbers. The fact that the majority of the plants

measured in this study were mutant lines could be a factor

that contributed to the variations in physiological parameters.

It was also possible that additional epistatic or downstream

effects may have influenced resultant observations. The

effect that each mutation has on growth has not been

overlooked. Thorough examination of previously published

research indicated an absence of data regarding large

numbers of Arabidopsis SD mutants examined for these

parameters. Future studies should focus either on two or

three mutant lines that are closely related in SD to observe

growth and biomass variation as well as morphological

abnormalities throughout the lifetime of the plant, or a

single mutant line and its growth in response to a host of

environmental conditions. These milieus may be responsible

for variation seen both here and in the literature regarding

correlations between A, gs, E, and WUEi. It was not the

objective of this work to thoroughly exhaust all possible

causes for biomass variation in these mutants. These data

uncover and highlight variation in SD mutant biomass,

morphology, and physiological characteristics and provide

plausible justifications worthy of further study.

Materials and Methods

Plant Materials and Growth Conditions

Arabidopsis plants were grown in the greenhouse under controlled
conditions. Average greenhouse temperatures ranged between 23.2°−
23.7°C each day with the highest and lowest recorded temperatures
being 18.4° and 30.7°C on one day of the growth period. Relative
humidity remained steady at 60% under a long-day photoperiod (16/8-h)
and light levels ranged from 200−400 µmol m−2s−1 based on natural

light. All plants were grown in individual 10 cm pots. Pots were placed
in watering trays (28 cm × 43 cm) that were filled to the brim with water
every 3 d. All pots were removed from the trays after 1.5 h and placed on
greenhouse benches. The water regime was only altered at the beginning
of the water withdrawal experiment. No additional water was provided
once the experiment started. The soil mix was a 3:1 mixture of
superfine germinating mix (Farfand) composed of 55% Canadian
sphagnum peat, perlite and vermiculite to turface (MVP).

Arabidopsis Seed Disinfestation

Seeds of Arabidopsis (Col-0) were rinsed with distilled water and
surface-disinfested with 15% commercial bleach solution (5.25%
sodium hypochlorite) and 0.1% sodium dodecyl sulfate (SDS) for 10
min. Seeds were then rinsed three times with sterile, distilled water.
Aseptic seeds were stratified at 4°C in a 0.1% agar solution for 4 days
before being germinated on half-strength Murashige and Skoog (MS;
[Sigma M519]) medium (Murashige and Skoog 1962). 

Arabidopsis Mutant Material and Seed Screening

Mutant lines used for this experiment were: cdc6 (SALK_093678),
cdkB1;1 (SALK_073457), epf1 (SALK_137549), er (CS20), erl1
(SALK_019571), flp (SALK_033970C), mkk4 (SALK_058307),
mkk5 (SALK_050700), mpk3 (SALK_100651), mpk6 (SALK_
073907), sdd1 (SALK_035560), tmm (SALK_017816), and yoda
(CS85662; Torii et al. 1996; Till et al. 2003). Lines were grown to the
T3 generation after continuous screening for kanamycin resistance
based on the protocol by Harrison et al. 2006. PCR confirmed the
presence of kanamycin (data not shown). All mutant seeds were
obtained from the Arabidopsis Biological Research Center (ABRC)
found at The Arabidopsis Resource Center (TAIR) website (www.
arabidopsis.org). Each mutant was generated and reported by Alonso
et al. (2003) unless otherwise noted. 

Gravimetric Analysis

Gravimetric transpiration data were obtained from 5-week-old
Arabidopsis mutants grown in inverted 50 ml conical tubes in a
growth chamber. The solid end cap was replaced by a wire mesh
and a punctured end cap during pre-analysis growth to allow for
adequate watering. At the start of the analysis period the mesh and
punctured end caps on the 50 ml conical tubes were replaced with a
solid end cap for all mutants. Soil evaporation was eliminated by
sealing the bottom and top of the tube. No additional water was
provided once the experiment began and only the aerial parts of the
plant protruded. Whole plant transpiration data (mmol H2O

−1) was
obtained by placing a total of three individually grown plants onto a
balance that recorded weight measurements in 5 min intervals over
the course of 36 h. The graph depicts data from every 30 min for
improved clarity. Only one plant was placed on each balance in this
study. Data represent transpirational water loss from each mutant.
Each “icon” represents the average of 3 trials performed within the
growth chamber. Statistical error bars (± SEM) are not visualized
for clarity. 

Leaf Fresh Weight

Arabidopsis mutant average leaf total fresh weight data were obtained
by carefully removing all of the leaves from three plants from each
mutant line. All of the individual leaves were immediately weighed to
obtain fresh weight data. No stems or petioles were included. 

Stomatal Imaging by Microscopy

Three fully-expanded rosette leaves were collected from healthy
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mature Arabidopsis plants several weeks after bolting and silique
growth, cleared with 70% ethanol, and stained with Safranin-O (1 µg
mL−1). Differential Interference Microscopy (DIC) images of the
abaxial surface were captured with a Zeiss LSM710 microscope (Carl
Zeiss, Inc.). Images of four mid-leaf sections (0.5 mm2) from each of
three leaf rosettes were obtained for each mutant. Counts of stomatal
number were performed by outlining an image to include a single 1
mm2 area. Photos were then printed and stomata were counted by
hand and average densities were calculated through the examination
of three photos per rosette leaf per Arabidopsis mutant.

Guard Cell Length and Pore Aperture Measurements

Two fully-expanded rosette leaves were collected from healthy mature
Arabidopsis plants several weeks after bolting and silique growth,
immediately coated with a thin layer of clear nail polish, and placed
on a cover slip. After 30 seconds, polish was peeled from the leaves
and placed on a labeled cover slip. Images of each leaf were captured
using DIC with a Zeiss LSM710 microscope (Carl Zeiss, Inc.). Two
hundred fifty stomata were measured per leaf. This study was
completed in triplicate with 3 blocks of plants (well-watered, mildly
water-stressed, severely water-stressed).

Physiological Measurement Collection

A Li-Cor LI6400XT (LICOR Biosciences) was used to obtain
transpiration, photosynthesis, and stomatal conductance data. All data
were collected from plants distributed in a complete random block
design. Measurements were taken in triplicate on the same day for 3
days in a row. Final calculations were based on three consecutive
days of data collection from three leaves obtained from three
individual plants. Instantaneous water-use efficiency [WUEi; (µmol
mmol−1)] was calculated from A divided by E.

Statistical Analysis

Calculation of standard error of the mean (SEM) and balanced
analysis of variance were performed on SD data. Results of p < 0.001
were deemed significant. Analysis was conducted on data gathered
from abaxial leaf surfaces only. All analyses were performed using
SAS software programs (SAS Institute Inc. 2008).
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