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    Abstract     Climate is the primary force that controls forest composition and the 
broad-scale distribution of forests. The climate has always been changing, but the 
changes now underway are different—they are faster and they are intermingled with 
other disturbances promoted by increasing human pressures. The projected climate 
change during the twenty-fi rst century will alter forest habitats—dramatically for 
some species. These pressures will simultaneously affect the survival, growth, and 
regeneration of a species. Here, we present an approach to visualizing the risk to 
individual tree species created by climate change by plotting the likelihood of habi-
tat change and the adaptability of trees to those changes. How will the forests actu-
ally respond? Many factors play into the fi nal outcomes, including the vital attributes 
and abundance of a species, its migration potential, the fragmented nature of the 
habitats in the landscape into which the species must move, and other factors. Our 
research is attempting to address each of these factors to inform a more realistic 
picture of the possible outcomes by the end of the century. We describe three pro-
grams that have been developed to support this analysis: DISTRIB, which empiri-
cally models the distribution of suitable future habitats under various climate-change 
scenarios; SHIFT, which is a cell-based spatial model that simulates species migra-
tion across fragmented landscapes; and ModFacs, which accounts for the impacts of 
9 biological traits and 12 disturbance factors on fi nal species fates. We conclude 
with a discussion of research needs and how humans can potentially assist forests in 
their adaptation to climate change.  
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2.1         Climate change 

 The climate has always been changing. However, our increased use of fossil fuels 
has made the anthropogenic component more prominent than ever before, and 
unusually rapid change is projected to occur by the end of the twenty-fi rst century 
(IPCC  2007 ). Globally, temperatures (and especially nighttime minimums) have 
risen, while many places are getting wetter, albeit as a result of more frequent 
extreme events (Alexander et al.  2006 ). A recent study by the Berkeley Earth 
Surface Temperature Project (  http://www.berkeleyearth.org    ; Fig.  2.1 ) has provided 
reliable evidence of a rise in the average global land temperature by approximately 
1 °C since the mid-1950s (Rohde et al.  2012 ).

   IPCC ( 2007 ) has determined that climate change is accelerating and that changes 
will continue. Many institutions have been modeling future climates, and all 
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  Figure 2.1    Changes in land-surface temperatures since 1800. Reprinted with permission from the 
Berkeley Earth Surface Temperature Project (2012,   http://berkeleyearth.org/analysis/    ). The graph 
shows the global mean annual land-surface temperature using a 10-year moving average. 
Anomalies are expressed relative to the mean from January 1950 to December 1979; positive val-
ues represent a temperature increase. The  grey band  indicates the 95 % confi dence interval. GISS, 
Goddard Institute for Space Studies; NOAA, National Oceanic and Atmospheric Administration; 
HadCRU, Hadley Centre of the U.K. Meteorological Offi ce; Berkeley, Berkeley Earth Surface 
Temperature Study       
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scenarios predict a warmer world in the coming decades, particularly in the latter 
part of this century (IPCC  2007 ). Future precipitation patterns are less consistent, 
with some parts of the globe showing net increases and others showing net decreases. 
What is consistently projected, though, is a more vigorous hydrologic cycle because 
of the greater heat energy in the atmosphere. Thus, it is projected that heavy precipi-
tation events (storms) will increasingly provide a larger proportion of the total 
annual precipitation, resulting in more runoff and fl oods (Lenderink and van 
Meijgaard  2008 , Milly et al.  2002 ), but also more and longer periods without rain 
and droughts (Burke et al.  2006 , IPCC  2007 , Seidel et al.  2008 ). Indeed, a recent 
study showed strong evidence linking the extraordinary number and impact of 
disastrous heat and precipitation events that occurred between 2000 and 2011 to the 
human infl uence on climate (Coumou and Rahmstorf  2012 ). Another study pointed 
to the amplifi ed heating of the Arctic as a key factor responsible for the elevated 
number of extreme events in the northern hemisphere (Seminov  2012 ). Coumou and 
Rahmstorf ( 2012 ) clearly describe how we might think about this pattern: 

 “Many climate scientists (including ourselves) routinely answer media calls after 
extreme events with the phrase that a particular event cannot be directly attributed 
to global warming. This is often misunderstood by the public to mean that the event 
is not linked to global warming, even though that may be the case—we just can’t be 
certain. If a loaded dice [sic] rolls a six, we cannot say that this particular outcome 
was due to the manipulation—the question is ill-posed. What we can say is that the 
number of sixes rolled is greater with the loaded dice (perhaps even much greater). 
Likewise, the odds for certain types of weather extremes increase in a warming 
climate (perhaps very much so). Attribution is not a ‘yes or no’ issue as the media 
might prefer, it is an issue of probability.”  

2.2     Forests and a changing climate 

 At a coarse scale, climate is the primary driving force for the location, composition, 
and productivity of forests (Shugart and Urban  1989 , Woodward and Williams 
 1987 ). Therefore, changes in climate will yield changes in forests. These changes 
have also always occurred in response to climate change (e.g., Davis and Zabinski 
 1992 , Delcourt and Delcourt  1987 ), and the combination of species that comprise a 
forest also changes through time (Webb  1992 ). A mounting number of studies 
provide evidence that such changes continue to occur (Bolte et al.  2010 , Woodall 
et al.  2009 ). Although there is empirical evidence of tree species moving to higher 
altitudes (Beckage et al.  2008 , Holzinger et al.  2008 , Lenoir et al.  2008 ), there is 
minimal evidence documenting a progression of tree species in a poleward direction 
in this century (Zhu et al.  2012 ). However, some case studies have shown changes 
in species composition over time, with more recently arrived species arriving from 
lower latitudes (Schuster et al.  2008 , Treyger and Nowak  2011 ). In addition, meta- 
analyses have provided increasing evidence of species movements from a large 
suite of taxa (Chen et al.  2011 , Parmesan and Yohe  2003 ). The mean extinction risk 
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across all taxa and regions has been estimated at 10 to 14 % by about 2100 (Maclean 
and Wilson  2011 ) despite the “Quaternary conundrum”, which relates to a lower-
than- expected rate of extinction during the Quaternary ice ages (Botkin et al.  2007 ). 

 The paleoecological record shows a remarkable change in tree distributions. 
In eastern North America, for example, the pollen record shows massive migrations 
since the last glaciation (ca. 18 000 years before the present). These migrations have 
been matched to concomitant changes in temperature (Davis  1981 ). Spruce ( Picea  
spp.) and fi r ( Abies  spp.) in the northeastern United States have shown particularly 
great changes in their distribution during the last 6000 years and appear to be 
destined to retreat northwards back into Canada as the climate warms (DeHays 
et al.  2000 ). The same phenomenon has been observed in Europe, where the glacial 
history and climate have acted as key controls on tree distribution and species rich-
ness (Svenning and Skov  2005 ,  2007 ). 

 Thus, suitable habitats for tree species appear to be changing, but many models 
predict that these changes are likely to accelerate throughout this century. The 
models of several groups show these potential trends (Crookston et al.  2010 ; 
Delbarrio et al.  2006 ; Dobrowski et al.  2011 ; Iverson et al.  2008b ; Keith et al.  2008 ; 
McKenney et al.  2007 ,  2011 ; Morin et al.  2008 ; Ravenscroft et al.  2010 ; Scheller 
and Mladenoff  2008 ), and a recent report suggests these studies may be underesti-
mating the actual change (Wolkovich et al.  2012 ). Uncertainty and extraordinary 
challenges will continue to confront species modeling (Araújo and Guisan  2006 , 
Pearson et al.  2006 , Thuiller et al.  2008 , Xu et al.  2009 ), although multiple 
approaches are being developed in attempts to improve projections (Araújo and 
Luoto  2007 , Elith et al.  2010 , Franklin  2010 , Iverson et al.  2011 , Matthews et al.  2011 , 
Morin and Thuiller  2009 ).  

2.3     Climate-related drivers for forests and forest changes 

 Climate constraints interact with the physiological and ecological attributes of trees 
to produce the broad-scale characteristics of forest composition and productivity. 
These forces, along with broad-scale land-use and management manipulations, are 
the primary determinants of the forests we see today. At a fi ner scale, topography, 
local climate, and soil conditions play a primary role in determining forest charac-
teristics, and many features such as species composition, productivity, and regen-
eration success are strongly determined by slope position and aspect along with the 
soil’s water-holding capacity (Iverson et al.  1997 , Kabrick et al.  2008 , McNab 
 1996 ). Thus, scale is important, especially in climate and climate impact models. 
The spatial resolution of the original general circulation models was coarse, with 
cells spanning 1° to 4° (Tabor and Williams  2010 ). Thus, downscaling of these data 
is required, and though such efforts will be very helpful, they will by their nature be 
imprecise at a fi ne scale (Tabor and Williams  2010 ). 

 Many drivers of forest change are also related to climate, either directly or indi-
rectly. Obviously, land-use change, management or mismanagement, herbivory, 
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pest outbreaks, and other impacts are critically important forces of change at certain 
times and places, but climate provides the overall conditions that create constraints 
on a forest’s characteristics. Climate change creates two primary, and interrelated, 
categories of impacts for trees:  maladaptation  and  disturbance  (Johnston  2009 ). 
Maladaptation refers to a situation in which the local conditions to which a species 
is adapted begin to change faster than the species can move or adapt. Examples 
include a reduction of moisture availability, the CO 2  fertilization effect, permafrost 
melting, drying or creation of wetlands, and changes in snow depth. Disturbance 
refers to the suite of biotic and abiotic onslaughts that occur as a result of climate 
change or that are in some way encouraged by climate change. Many disturbance 
regimes that directly alter forests are expected to increase in frequency, intensity, or 
both as a result of climate change (Dale et al.  2001 ). Evidence is mounting that such 
climate-linked disturbances are increasing, including an increase in fi re frequency 
in the western United States and elsewhere (Littell et al.  2009 , Liu et al.  2010 , 
Westerling  2006 ), an increased northward prevalence of mountain pine beetle 
( Dendroctonus ponderosae ) outbreaks in western North America (Bentz et al.  2010 , 
Hicke et al.  2006 , Kurz et al.  2008 , Sambaraju et al.  2012 ), an increasing risk from 
invasive species (Dale et al.  2009 , Dukes et al.  2009 , Hellmann et al.  2008 , Jarnevich 
and Stohlgren  2009 , Mainka and Howard  2010 ), and an increasing evidence of 
drought-induced mortality (Adams et al.  2012 , Allen et al.  2010 , Hanson and 
Weltzin  2000 , Peng et al.  2011 ). 

 Although some of the disturbance characteristics may be subtle, they may 
eventually reach a “tipping point” at which the change is enough to shift the com-
petitive balance between species or to overwhelm a forest’s compensatory mecha-
nisms, leading to a change in the forest’s composition. For example, an insect 
species may be able to overwinter just enough that its population levels gradually 
increase until they become suffi cient to kill trees that were not previously at risk. 
This phenomenon has been shown for the mountain pine beetle in whitebark pine 
( Pinus albicaulis ) forests in the Greater Yellowstone Ecosystem (Logan et al.  2010 ), 
the southern pine beetle ( Dendroctonus frontalis ) in the New Jersey pine barrens 
(Tran et al.  2007 ), and the hemlock woolly adelgid ( Adelges tsugae ) on hemlocks 
( Tsuga  spp.) of the eastern United States (Fitzpatrick et al.  2012 , Paradis et al.  2008 ). 
Some of these climate-induced or climate-enhanced factors have been shown to 
quickly alter forest characteristics, but even when the impact is more gradual, these 
factors can still greatly alter the biodiversity of an area. Though few or no single 
events can be attributed to climate change, the overall trend tends to support the 
hypothesis that the impacts of climate change are increasing.  

2.4     Forest adaptation to climate change 

 Uncertainties abound in forest management, even in the absence of climate change 
(Bolte et al.  2009 , Long  2009 , Seidl et al.  2011 ). Most of the large uncertainties 
associated with climate change will remain, regardless of research progress, owing 
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to the impossibility of predicting the impact of the next major pest, of the next 
hurricane, or of the series of climatic events needed to create a “perfect storm” for 
fi re or drought mortality at a location where such events had rarely occurred or had 
not previously occurred. It is known, though, that one of the primary outcomes of 
climate change is a more vigorous hydrologic cycle and that extreme events with 
direct and indirect impacts on forests will therefore become more likely (Solomon 
et al.  2007 ). This increase in extreme events is already occurring, and their 
frequency is expected to increase substantially in the future (Coumou and Rahmstorf 
 2012 , Huber and Gulledge  2011 ). Therefore, the direct and indirect risks to forests 
are expected to increase throughout the century. We therefore need methods to eval-
uate changes in the risk for a given species over time and to evaluate and implement 
policies and procedures that would allow or promote adaptation to the new climate 
and disturbance regimes. Essentially, any tree species whose microclimate changes 
enough for it to be growing outside its preferred niche has three options: move, 
adapt, or be extirpated (Aitken et al.  2008 ). In the rest of this chapter, we address the 
fi rst two options after evaluating the concept of risk. 

2.4.1     Strategic assessment of species adaptation requirements 
through risk matrices 

 To help forest species adapt to changing conditions, where this is appropriate, it is 
fi rst necessary to evaluate the risk and develop appropriate strategies that respond to 
that risk (Millar and Stephenson  2007 , Yohe and Leichenko  2010 ). Increasing a for-
est’s resistance to climate change and its resilience is a key elements of adaptation, 
but triage may be necessary if a species cannot be protected in situ without incurring 
a cost that society is unwilling to bear. 

 We developed a visual tool called a  risk matrix  to assess risk and compare risks 
among species and among locations to “organize thoughts” around risk and forest 
adaptability for a particular region (Iverson et al.  2012 ). The tool was developed for 
the United States National Climate Assessment and is intended to provide an easily 
understood visual tool for focusing the conversation on management strategies at all 
levels. The intention is to use the tool for areas small enough that they do not have 
major disjoint habitats or species that gain and lose from climate change simultane-
ously within the same region, but not so small that they have too few cells for analy-
sis. First, we defi ned “risk” as the product of the likelihood of an event happening 
and the consequences if it happens. We then categorized the matrix into three zones: 
(1)  watch , which involves a relatively low risk but the need to remain vigilant; (2) 
 evaluate further and perhaps develop strategies , which involves an intermediate 
level of risk; and (3)  develop strategies to cope with the risk , which involves the 
highest level of risk (Yohe and Leichenko  2010 ). For forest trees, we interpret this 
risk (likelihood) as a potential for change based on the adaptability or resistance of 
the species to the impacts of climate change (consequences), and in this chapter, 
we will demonstrate this form of analysis for a species whose habitat is likely to 
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decrease, black spruce ( Picea mariana ), and for a species whose habitat is likely to 
increase, silver maple ( Acer saccharinum ). We conducted the analysis for northern 
Wisconsin (United States) between now and 2100 (Fig.  2.2 ).

   In the context of changes in the amount of suitable habitat in response to climate 
change, we modeled the potential for an area to have suitable habitat for the selected 
species in the future relative to its current amount of suitable habitat. The  x -axis is 
thus based on the difference in suitable habitat (i.e., the sum of importance values 
for all 20 × 20 km cells within the region of interest) between the current date and 
three future time intervals, which end around 2040, 2070, and 2100. In addition to 
these three dates, we also include predictions based on two widely differing scenarios 
for modeled climate change, PCM B1 and Hadley A1fi , to extract a range of poten-
tial risks associated with the IPCC projections of future climates (IPCC  2007 , 
Nakicenovic et al.  2000 ). We view the ratio of future habitat to current habitat as 
being related to the likelihood of an impact on the amount of suitable habitat—the 
greater the potential change in habitat, the greater the likelihood of an impact. 
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  Figure 2.2    A risk matrix for a species whose habitat is likely to decrease (black spruce,  Picea mari-
ana ) and a species whose habitat is likely to increase (silver maple,  Acer saccharinum ). The analy-
sis is conducted for northern Wisconsin (United States). The trend lines are hand-drawn to 
approximate the trends modeled throughout the twenty-fi rst century. PCMlo represents the PCM 
B1 scenario and Hadhi represents the Hadley A1fi  scenario (IPCC  2007 ). Relative likelihood rep-
resents the ratio of future habitat in a given year to the current habitat       
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For species that show a loss of habitat, the  x -axis ranges from +1 (no change in habitat 
with time) to 0 (complete loss of habitat over time). In this analysis, black spruce 
shows a substantial future habitat loss by 2100, especially under the more severe 
Hadley A1fi  scenario, and the species thus has a large likelihood of change on 
the “loser” side of the risk matrix (Fig.  2.2 ). On the other hand, silver maple shows 
a positive ratio of future to current habitat and is therefore in the “gainer” section of 
the risk matrix. 

 The  y -axis is related to the adaptability of the species under climate change, based 
on a literature review to assess the biological traits of the species and its capacity to 
respond to various disturbances that may increase in frequency or severity in the 
coming century, compounded (or not) by climate change. We thus scored the adapt-
ability of the species to cope with climate change; the lower the capacity to cope, the 
greater the risk of habitat loss and the greater the consequences of this loss. The data 
for this species-level analysis comes from an evaluation of the literature for 12 
disturbance factors and 9 biological factors (Matthews et al.  2011 ). Relative scores 
were averaged for the biological and disturbance factors, then plotted to yield a 
composite modifi cation factor score that was also modifi ed for plotting on the  y -axis 
in 2070 and 2100 based on the disturbance factors that were estimated to increase 
throughout the century. Further details are provided by Iverson et al. ( 2012 ). 

 In summary, we quantifi ed the estimated risk for each species using the bounds 
of a harsh (Hadley A1fi ) and a mild (PCM B1) scenario for the future climate and 
extrapolated the trends to 2040, 2070, and 2100 (Fig.  2.2 ). The matrix shows 
contrasting trends for the two species, but in both cases, managers will increasingly 
be required to develop strategies to cope with the risks created by the climate change 
that is currently underway—one set of strategies for silver maple, a species that may 
or may not need to be encouraged to become established, and one for black spruce, 
for which it may be necessary to establish protected refugia, enhance or maintain 
corridors that will permit poleward migration, or possibly even assist in this 
migration.  

2.4.2     The need for species migration 

 Migration of species will be necessary over the long term as species reshuffl e their 
distribution to adapt to their new climatic niches. Most species-distribution models 
show that the habitats for many species will often move large distances by 2100 
(Iverson et al.  2008b , McKenney et al.  2011 ). Based on studies of pollen distribu-
tions during the Pleistocene, when forest cover was nearly complete across eastern 
North America, migration rates per century appear to range from 10 km (McLachlan 
et al.  2005 ) to 50 km (Davis  1981 , Huntley  1991 ). With the modern fragmentation 
of forested land, estimates of migration rates are generally much lower (Schwartz 
 1993 ). Thus, there is little evidence to support the belief that migration by 
natural means will be able to keep up with the expected rate of change in habitats. 
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In one study, less than 15 % of new suitable habitat would have even a remote 
chance of being colonized by 2100 (Iverson et al.  2004b ). 

 Various aspects of forest management will therefore become important to assist 
migration or encourage an increased rate of migration. Two primary modes include 
increasing the connectivity of forested land (i.e., to provide migration corridors) and 
assisting in the migration (e.g., by artifi cial distribution of seeds and other propa-
gules). In addition to facilitating species movements, forest management can also 
play a large role in adaptation through techniques that increase the resistance of the 
current forest stands to environmental and other stresses, thereby increasing their 
resilience.  

2.4.3     Enhancing adaptation through stand and landscape 
manipulation 

 On their own, the extent to which tree populations will be able to adapt to a chang-
ing climate depends upon the amount of phenotypic and genotypic variation, the 
natural selection intensity, fecundity, degree of interspecifi c competition, and a 
range of biotic interactions (Aitken et al.  2008 ). We may be able to intervene in the 
latter three via silvicultural management. There have been several publications that 
thoroughly describe the suite of possibilities to enhance adaptation through stand- 
and landscape-level management (e.g., FAO  2012 , Johnston  2009 , Spies et al.  2010 ). 
For example, Spies et al. ( 2010 ), working in the Pacifi c Northwest of the United 
States, provided the following ideas to enhance adaptation at the stand and 
landscape levels:

    1.    To promote resilience and vigor and to promote diversity of species and stand 
structures, use variable-density thinning in dense young stands to provide more 
resources to the surviving individuals.   

   2.    Maintain mature stands where possible, because older, well-established individ-
uals (at least before senescence begins) are usually more resistant and resilient to 
disturbances and climate change.   

   3.    Increase the proportion of the landscape devoted to providing critical habitats 
and resilient ecosystem types, so that any single disturbance event has a decreased 
probability of destroying the habitat.   

   4.    Manage wildfi re to protect habitats or species that are at risk by suppressing fi re 
where critical habitats exist, treating stands to reduce fuel loads, increasing 
spatial heterogeneity to create more resilience against fi re or pests, or imple-
menting tactical treatments that create fi re breaks. (However, these interventions 
will have trade-offs with the requirements of some species. For example, some 
boreal species such as jack pine ( Pinus banksiana ) require periodic high-inten-
sity fi res to ensure their persistence within a landscape; Rohde et al.  2012 .)   
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   5.    Alter the landscape structure to facilitate migration of species, to impede the 
spread of fi re and pathogens, or a combination of the two. (Again, this may lead 
to mutually exclusive outcomes for some species.) Here, it is helpful to identify 
“pinch points” where species movement is constrained by the landscape, so that 
managers can alter the landscape structure accordingly and most effi ciently. 
Tools to assist in this landscape analysis include Conefor Sensinode (Saura and 
Rubio  2010 ) and Circuitscape (McRae and Shah  2011 ).    

2.4.4       Enhancing adaptation through managed relocation 

 Spies et al. ( 2010 ) proposed an additional idea to encourage adaptation to climate 
change: “Establish new genotypes and species to create communities that are 
adapted to current and future climates”—in other words, to assist species migration, 
which is also referred to as “managed relocation” or “assisted colonization”. Here, 
we will use the defi nition presented by Hoegh-Guldberg et al. ( 2008 ):  intentionally 
moving species to sites where they do not occur or have not been known to occur in 
recent history . The use of assisted migration has elicited controversy within conser-
vation circles and must be used with caution because of potentially serious trade- 
offs (Hoegh-Guldberg et al.  2008 , Richardson et al.  2009 ). Opponents cite many 
cases in which intentional relocations resulted in myriad environmental issues 
(Davidson and Simkanin  2008 , Ricciardi and Simberloff  2009 , Seddon et al.  2009 ) 
because of unanticipated risks, such as runaway invasions, that surface only after it 
is too late to turn back. Proponents point out that assisted migration is a key option 
that must remain available in the face of unprecedented global change (Minteer and 
Collins  2010 , Sax et al.  2009 , Schwartz et al.  2009 , Vitt et al.  2010 ). Several groups 
have developed frameworks to evaluate the risks and benefi ts of assisted migration 
so that decisionmakers have solid approaches they can use (Hoegh-Guldberg et al. 
 2008 , Lawler and Olden  2011 , Richardson et al.  2009 , Seddon  2010 ). 

 When the discussion shifts to common trees, rather than endangered species such 
as  Torreya taxifolia  (Schwartz  2005 ), the discussion changes. Trees have been 
planted in places where they previously did not occur for centuries. In the context of 
commercial forestry operations, managed relocation has been proposed as a means 
to maintain forest productivity, health, and ecosystem services under a rapidly 
changing climate (Gray et al.  2011 , Kreyling et al.  2011 ). Pedlar et al. ( 2012 ) thus 
distinguish forestry-assisted migration from rescue-assisted migration (the latter 
being the context of much of the debate) based on the intended outcomes, target 
species, movement logistics, potential risks, science-based feasibility, scope, cost, 
and practice. We believe that if practiced cautiously and with the focus on moving 
species within their current broadly defi ned range to encourage “fi lling in” at the 
margins where a species is less common, forestry-assisted migration holds promise 
as a relatively low-risk tool for adaptation to climate change.   
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2.5     Putting it all together: a case study of potential forest 
responses to climate change in the eastern United States 

 In this section, we present a case study that attempts to capture the key aspects of 
the discussion thus far in this chapter—specifi cally, we describe the results of our 
last 17 years of research, which has been devoted to understanding and modeling 
potential changes in forests of the eastern United States in the face of a changing 
climate. Though details on these efforts have been published, we will present a brief 
synopsis accompanied by links to representative papers for readers who want to 
learn more. Figure  2.3  provides a fl ow chart of the overall process.

   We have used a series of species-distribution models to assess habitat suitability 
for 134 tree species across the eastern United States, under both current environmen-
tal conditions and predicted future conditions. The methods used in these models, 
which were created with DISTRIB, have been published (e.g., Iverson et al.  2008a , 
 2008b ,  2011 ; Prasad et al.  2007 ,  2009 ). In summary, the procedure is as follows: 
(1) collect data on the forests using more than 100 000 forest inventory and analysis 
plots (Miles et al.  2001 ) and data on 38 predictors, including soil, climate, and land-
scape variables; (2) aggregate all data to a 20 × 20 km grid across the eastern United 
States, including estimates of the importance of a species based on the numbers and 
sizes of individuals of the 134 tree species; (3) use a decision-tree ensemble method 
of statistical modeling (including regression-tree analysis, bagging, and random 
forests) to establish contemporary relationships between the 38 predictor variables 
and the importance values determined in step (2), and then use the model to create 
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a wall-to-wall map of importance values that resembles the  current situation 
(Prasad et al.  2006 ); (4) use a series of future climate scenarios, varying according 
to greenhouse-gas emission scenarios and general circulation models, to replace 
current values of the seven key climate variables used by the models with their 
potential values at each of the three future time steps; and (5) map, chart, and tabulate 
the outputs. The outputs, consisting of more than 20 maps, 11 charts, and 4 tables 
for each of 134 tree species, are available in our Climate Change Tree Atlas 
(  http://www.nrs.fs.fed.us/atlas/tree/tree_atlas.html    ). The atlas provides a suite of 
landscape-scale ecological information for each species under both current and 
future conditions, including details on the current species–environment relation-
ships, maps of species abundance, life-history information, relative importance of 
the 38 predictors, potential habitat changes according to three general circulation 
models and two emission scenarios, and tables of potential changes by ecoregion, 
state, national park, or national forest (Prasad et al.  2009 ). 

 One feature of advanced data mining and modeling procedures such as those 
used in this analysis is that some distinction of scale can be made for key drivers of 
the model through the model outputs. For example, in our model for white ash 
( Fraxinus americana ), we used a regression-tree tool, “random forest” (Prasad et al. 
 2006 ), to show that at the distribution level (i.e., the range of the species), climate 
variables such as the January temperature were most relevant for this species, 
whereas soil permeability was the single most important variable for identifying the 
most suitable habitat within white ash’s distribution. For most species, though 
importantly, not for all species, we can discern the scale of infl uence for each driver 
and distinguish differences among drivers by means of the regression-tree analyses. 
For example, we often see a distinction between climate-level versus landscape- 
level drivers, such that initial, broad-scale variables (often climate) fall out at the top 
of the regression tree, whereas fi ne-scale (often edaphic) variables fall out farther 
down in the tree’s structure (Iverson et al.  2011 ). Thus, these tools provide addi-
tional detail about the workings of the models and insights into why species occur 
where they do. 

 We then used the SHIFT model (Fig.  2.3 ) in conjunction with the outputs of 
DISTRIB to model the possible colonization of new suitable habitats within the 
next 100 years (Iverson et al.  1999 ,  2004a ,  2004b ; Prasad et al.  2013 ; Schwartz et al. 
 2001 ). SHIFT is a spatially explicit simulation model based on 1 × 1 km cells that 
simulates the dispersal of individual species propagules as a function of the current 
abundance of suitable habitats in surrounding cells, the proportion of the land 
covered by forest in the region to which the species is migrating, and the probability 
of long-distance dispersal using an inverse-power function of distance (so that 
long- distance dispersal also occurs occasionally). The rate of dispersal was calibrated 
to approximately 50 km per century through unfragmented areas of forest, which 
is towards the high end of the Holocene migration rates. Even so, the “advancing 
front” of the migrating species is likely to be concentrated near the boundary of the 
current distribution of the species and is not likely to keep pace with projected 
rates of warming and changes in habitat availability (Iverson et al.  2004a ). 
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Another important interpretation of these SHIFT outputs is that the source strength 
(i.e., the abundance of a species near the boundary of its distribution) appears to 
be more important for migration than the sink strength (the proportion of forest 
cover in the destination cells). The combination of SHIFT with DISTRIB there-
fore predicts how much of the newly suitable habitat may be colonized over a 
100-year period (in the absence of human-assisted migration); typically, this is only 
a small fraction of the available habitat. 

 Because of scale issues, it is diffi cult to translate the potential climate effects on 
the model into specifi c management activities for forest stands. With DISTRIB at a 
cell size of 20 × 20 km, we believe that multiples of at least 20 cells should be used 
for interpretation of regional trends, such as developing lists of species that are 
likely to increase or decrease their distribution. At a local management scale, 
managers must consider potential species shifts as only one of several inputs when 
they plan and implement management actions (Swanston et al.  2011 ). SHIFT, 
despite its fi ner 1 × 1 km cell size, presents a probability map in which general 
patterns (not specifi c single-cell probabilities) emerge within the larger landscape. 
The local factors of soils, topography, past silvicultural treatments, and the current 
species composition and forest structure remain the primary factors to consider in 
management, but overlaid on that picture is the potential for the distribution of 
certain species to decrease and that of certain other species to increase over time. 
Therefore, management can potentially provide refugia for declining species and 
new habitat for expanding species or even new migrant species through assisted 
migration in the forestry context (Pedlar et al.  2012 ). 

 Modeling the responses of a comprehensive suite of biological and disturbance 
characteristics that interact in myriad ways is extremely diffi cult—irrespective of 
whether statistical or process-based mechanistic models are used. We therefore 
developed a way to use modifi cation factors to improve predictions. The ModFacs 
system (Fig.  2.3 ), a nonspatial scoring system, uses life-history traits obtained from 
a literature review (12 disturbance factors and 9 biological factors) and three 
post- modeling assessments as a method to increase the usefulness and practicality 
of the model for managers and researchers (Matthews et al.  2011 ). The biological 
characteristics attempt to assess the capacity of a species to adapt to predicted future 
conditions, such as a higher capacity to regenerate after a fi re, to regenerate vegeta-
tively, or to disperse; these are all positively associated with the adaptability of a 
species in response to expected climate change. Similarly, the disturbance charac-
teristics assess the resilience of a species in terms of its capacity to withstand distur-
bances (e.g., drought, fi re, fl oods), many of which are likely to increase in frequency 
or severity. To score each characteristic for each species, we reviewed the key literature 
to arrive at a modifi cation factor score ranging from −3 to +3 (respectively, very 
negative to very positive infl uences in the context of expected climate change and 
the associated disturbance impacts). We also scored each of the characteristics in 
terms of their relevance in the context of the future climate (i.e., whether the changing 
climate will potentially increase the risk of this disturbance), with scores ranging 
from 1 to 4 in order of increasing relevance, and in terms of their uncertainty 
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(e.g., our confi dence in the data supporting our scoring), with scores ranging from 
0.5 to 1.0 in order of increasing certainty. ModFacs also provides a means to assess 
each species in terms of its adaptability to the impacts of climate change. We have 
summarized, synthesized, and validated these modifi cation factors as best we can 
based on the available information, and the overall information is then passed through 
management fi lters that adjust the results for local conditions, if necessary. 

 The goal is to fi nally arrive at appropriate information and potential tactics to 
support the management of a species (Fig.  2.3 ). Our intention is to provide the 
best information possible, under the uncertainty limitations imposed by the state 
of our knowledge, for decisionmakers to consider in their efforts to account for 
climate change.  

2.6     Research needs 

 There is still plenty of research needed to better understand the relationship between 
climate and forests, and especially how the changing climate will affect forests. 

 Modeling studies have progressed a great deal in the last decade. The advent of 
advanced nonparametric statistical methods has greatly benefi ted the modeling of 
species distributions (Elith et al.  2006 , Franklin  2009 ). Mechanistic modeling has 
also come a long way (Ravenscroft et al.  2010 , Tague and Band  2004 ). Each 
approach brings its own advantages and drawbacks, and when both approaches 
arrive at similar answers, confi dence in the predictions increases; where the 
approaches predict different outcomes, focused research may uncover the reasons 
for the discrepancy and allow improvement of the models (Morin and Thuiller  2009 , 
Swanston et al.  2011 ). In addition, models that incorporate both approaches are now 
attempting to achieve the best of both worlds (Iverson et al.  2011 ). Nonetheless, 
there will always be trade-offs between using complex mechanistic models versus 
simpler empirical models to assess possible changes in species habitats (Thuiller 
et al.  2008 ). Myriad tough questions still remain to be answered (Iverson and 
McKenzie  2013 , McMahon et al.  2011 ). 

 To improve our understanding of climate–forest relationships, much basic 
research must be done to understand the biological, ecological, and physiological 
attributes of individual species and to predict how multiple species will interact 
under various environmental situations. 

 Historically, provenance studies have assessed seed sources and genotypes. 
These data are being mined even now, decades later, to provide clues about the 
adaptability of a species under future climate change (Carter  1996 ). However, there 
is a need for competition experiments to see how seedlings will fare, for example, if 
their propagules travel northwards into an established forest community. 

 Tests of assisted migration will also be necessary to begin the process of under-
standing how we can help forests adapt to the new conditions created by climate 
change.  
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2.7     Conclusions 

 Climate change may be a more insidious agent of change than fi re or anthropogenic 
land-use change, but it affects all forests in certain ways. Climate change will also 
interact with various factors and modify outcomes in unique ways, such as by 
increasing the frequency and severity of extreme climatic events or disturbance 
events, whether directly or indirectly. 

 Humans are largely responsible for modern climate change and must therefore 
decide whether and how to reduce carbon emissions to mitigate the coming changes. 
Humans must also decide to improve our understanding of forests and other ecosys-
tems, including human-dominated ecosystems, and, where practical and scientifi -
cally prudent, help them adapt to the changing conditions. Part of this effort can be 
to simply promote healthy ecosystems via sound management. Artifi cially moving 
species also may become more and more part of the equation. 

 Climate is an important agent of change for forests. As the climate changes, so 
do the forests. In light of the increased stressors that are currently being observed, it 
is up to us to manage our forests in ways that will best suit the needs of a rising 
human population and the needs of our forests.     
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