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Applicability of Predictive Models of Drought-
Induced Tree Mortality between the Midwest and
Northeast United States
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Regression models developed in the upper Midwest (United States) to predict drought-induced tree mortality from measures of drought (Palmer Drought Severity Index)
were tested in the northeastern United States and found inadequate. The most likely cause of this result is that long drought events were rare in the Northeast during
the period when inventory data were available. Therefore, new predictive models of drought mortality for the Northeast were built using USDA Forest Service inventory
data and national climate data from 1969 to 2007. The Standardized Precipitation Index was better correlated with tree mortality in the Northeast than the Palmer
Drought Severity Index, and new models were estimated. The reliability of the northeast models varied considerably by drought-sensitivity class, with the model for
drought-intolerant species being particularly suspect. I argue that the Midwest models may nevertheless have some value in the Northeast because my tests were unable
to cover the range of drought conditions under which the models were developed, there is no obvious reason why the same species should respond differently in a
very similar ecological province, and some northeast models are very weak.
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An important impact of climate change in temperate forests
will probably be an increase in drought conditions (Allen
and Breshears 1998). Moisture stress can kill trees directly or

make trees more susceptible to pests, pathogens, or other stressors
(Hanson and Weltzin 2000). In some forested ecosystems, such as
those at the northern prairie-forest border of central North America,
an increase in drought conditions may dramatically alter forest com-
position, perhaps resulting in the conversion of forest to savanna
(Frelich and Reich 2010) or prairie (Hogg and Hurdle 1995). Al-
though precipitation in the northeastern United States is expected
to rise during the current century, drought stress is nevertheless
expected to increase because of higher evapotranspirative demand
caused by elevated temperatures (Ollinger et al. 2007).

Gustafson and Sturtevant (2013) developed regression and sim-
ulation models to predict the impact of changes in the drought
regime on tree mortality and forest dynamics in the upper Midwest.
They found that a single measure of drought (mean length of
drought events [annual Palmer Drought Severity Index �[0.5])
could be used to predict the tree biomass lost to mortality of tree

species in the Laurentian Mixed Forest Province (No. 212) (Cleland
et al. 2007) in Minnesota, Wisconsin, and Michigan (Figure 1). The
authors suggested that their models may be applicable in similar
ecological provinces but cautioned that they should be tested
first.

The primary objective of this study was to conduct such a test in
the similar Northeastern Mixed Forest Province (No. 211) in the
northeast states of Pennsylvania, New York, Vermont, New Hamp-
shire, Massachusetts, and Maine. Should the models perform
poorly, the secondary objective was to determine whether reliable
predictive models of drought-induced mortality can be estimated
for forests of the Northeast using different indices of drought or
other model formulations.

Methods
I tested models that were constructed in Province 212 for their

validity in the portion of Province 211 that is located in the north-
east United States (Figure 1), including the mountainous subprov-
ince (M211). I explored the possibility that the orographic effects of
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the mountains might obscure the drought mortality signal, but con-
cluded that Province M211 need not be omitted.

Testing the Midwest Models
Following the methods of Gustafson and Sturtevant (2013), I

used USDA Forest Service Forest Inventory and Analysis (FIA) data
to assemble a data set of tree mortality on FIA plots (Woudenberg
et al. 2010) within Province 211 and combined it with climate
records (by climate zone) obtained from the National Climate Data
Center (NCDC). I used the drought-sensitivity classes defined by
Gustafson and Sturtevant (2013), adding American beech to the
somewhat drought-intolerant class (Table 1). Tree mortality was
estimated using FIA data obtained from the FIA Data Mart website
(USDA Forest Service 2012). The observations were inventory plots
within counties falling at least partially within Province 211 (Figure
1) that were classified as timberland for each inventory period. Mea-
surements taken of the trees on each plot included species, dbh,

height, form, and living or dead status, and the volume of each tree
was calculated by FIA using allometric equations (Woudenberg et
al. 2010). The mortality rate for each drought-sensitivity class was
calculated as the biomass lost to mortality on each FIA plot during
the inventory period. The annual proportion of biomass lost to
mortality (pm) was calculated using Equation 7 of Sheil et al.
(1995): pm � 1 � [1 � (N0 � N1) N0]1/t, where, in this study, N0

is the biomass of live trees (of a given drought-sensitivity class) in the
previous inventory, N1 is the biomass of live trees at the end of the
inventory period, and t is the number of years between inventories.
This equation corrects for time bias of mortality rates where instan-
taneous mortality rates are not equivalent to periodic rates. Plots
with fewer than six trees in a given class or those in which �10% of
the trees were harvested since the previous inventory were omitted.
Inventory periods used were 1978–1989 and 1990–2004 for Penn-
sylvania, 1980–1993 and 1994–2007 for New York, 1973–1983,
1984–1997, and 1998–2007 for Vermont, 1973–1983,

Figure 1. Map of US ecological provinces used for the study area (Cleland et al. 2007). State boundaries are thick lines, and National
Climate Data Center (NCDC) climate division boundaries are shown as medium lines.

Table 1. Species assignments to the four drought sensitivity classes (as in Gustafson and Sturtevant 2013).

Drought-sensitivity
class Common name Scientific name

Intolerant Quaking aspen, big-toothed aspen, paper birch, black ash Populus tremuloides (Michx.), Populus grandidentata (Michx.), Betula papyrifera
(Marsh.), Fraxinus nigra (Marsh.)

Somewhat
intolerant

Eastern hemlock, White spruce, Northern white cedar,
yellow birch, balsam fir, American beech

Tsuga canadensis (L.), Picea glauca (Voss), Thuja occidentalis (L.), Betula alleghaniensis
(Britton), Abies balsamea (L.), Fagus grandifolia (Ehrh.)

Somewhat tolerant Red maple, sugar maple, black cherry, white ash,
basswood, American larch, black spruce

Acer rubrum (L.), Acer saccharum (Marsh.), Prunus serotinus (Ehrh.), Fraxinus
americana (L.), Tilia americana (L.), Larix laricina (K Koch), Picea mariana (Mill.)

Tolerant Red pine, white pine, jack pine, red oak, white oak Pinus resinosa (Ait.), Pinus strobus (L.), Pinus banksiana (Lamb.), Quercus rubra (L.),
Quercus alba (L.)
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1984–1997, and 1998-2007 for New Hampshire, 1972–1985,
1986–1998, and 1999–2007 for Massachusetts, and 1982–1995
and 1996–2003 for Maine, with the last inventory in each state
including all “annual plots” measured after 1998. Climate data were
from a national data set of time-bias-corrected monthly divisional
temperature-precipitation-drought index values from the NCDC
(National Oceanic and Atmospheric Administration 2012) for the
years 1969–2010. Additional details about data preparation are
found in Gustafson and Sturtevant (2013).

Using the regression equations of Gustafson and Sturtevant
(2013) for each drought-sensitivity class (Table 2), I calculated the
predicted loss of tree biomass to drought-induced mortality for each
class on each FIA plot and statistically compared observed versus
predicted mortality rates. I regressed observed mortality on FIA
plots against mortality rates predicted using the equations of
Gustafson and Sturtevant (2013) and used the SAS v9.3 (SAS In-
stitute, Inc. 2011) TEST statement in Proc REG to test the joint
hypotheses that the intercept was equal to 0.0 and that the slope was
equal to 1.0 (Dent and Blackie 1979, p. 103) with � � 0.1.

Building New Models
As described in the Results, the Midwest models did not pass

these statistical tests, so I estimated new models. Using the climate
data described above, I linked five monthly drought variables to the
FIA data by climate zone: the Palmer Drought Severity Index
(PDSI) (Palmer 1965), the Palmer Modified Drought Severity
Index (PMDI) (Heddinghause and Sabol 1991), and three estimates
of the Standardized Precipitation Index (SPI) calculated using
precipitation amounts during the prior 3, 12, or 24 months, respec-
tively (McKee et al. 1995). From temperature and precipitation
data, I also calculated a measure of available moisture for plants
(precipitation minus potential evapotranspiration [P-PET])
(Gustafson et al. 2003) from temperature (° C) and precipitation
(cm) records annually and for the growing season (May through
September) using the Thornthwaite (1948) method, correcting for
latitude (Dunne and Leopold 1978, p. 138).

I computed Pearson correlation coefficients between pm on each
FIA plot and each of the six drought indices (Table 3). It should be
noted that the correlations were generally quite weak, and, in some
cases, the sign of the correlation was opposite the biologically ex-
pected sign (i.e., mortality rate decreased as conditions got drier
[drought index value decreased]), suggesting that the correlations
may be spurious. Mean annual SPI-12 had the highest correlation
coefficient (Table 3), so all further analysis was conducted using this
index. I built generalized linear mixed models to predict pm using a
70% random subset of the FIA data set, reserving the remainder of
the data set for model testing purposes. I used the Shapiro-Wilks test
and visual examination of stem and leaf plots (UNIVARIATE pro-
cedure) to determine the distribution of pm and used an exponential
distribution with a log link via Proc GLIMMIX in SAS to estimate

the seven candidate models used by Gustafson and Sturtevant
(2013) (Table 4), choosing the best model using a weight-of-evi-
dence approach (Burnham and Anderson 2002, p. 49–97).
Drought conditions referenced in the candidate models were de-
fined as mean annual SPI-12 values ��0.5. Using the remaining
30% of the observations in the data set, I tested the most plausible
models by regressing observed against predicted mortality rates and
again tested the joint hypotheses that the intercept was equal to 0.0
and the slope was equal to 1.0.

Results
Testing the Midwest Models

None of the models developed in Province 212 passed observed
versus predicted statistical tests of their predictive ability in Province
211 (Table 5). Given these results, I attempted to build new models
using data from the Northeast.

Building New Models
The Akaike weights for the candidate models of each drought

sensitivity class (Table 4) indicated a high relative plausibility for
several models that had a sign of the slope coefficient that was

Table 2. Prediction equations developed for the Midwest by Gustafson and Sturtevant (2013).

Drought-sensitivity class Intercept (y) SE (y) Slope (�) SE (�) Predictor variable (x)

Intolerant �5.499 0.028 0.576 0.015 Mean drought length1

Somewhat intolerant �4.426 0.037 0.235 0.019 Mean drought length1

Somewhat tolerant �5.668 0.031 0.258 0.016 Mean drought length1

Tolerant2 NA NA NA NA NA

Predicted annual proportion of biomass lost to mortality (pm) is calculated (back-transformed) using pm � exp(y � �x). NA, not applicable.
1 Mean length (years) of drought events (successive years where mean annual PDSI � �0.5).
2 No valid predictive model for drought-tolerant species was found. No relationship was assumed.

Table 3. Pearson correlation coefficients between proportion of
biomass lost to mortality (pm) and various indices of drought in the
Northeast.

Drought index1 N r Pr � �r �

Mean annual PDSI 10,065 �0.008 0.4103
Mean annual PMDI 10,065 �0.009 0.3639
Mean annual SPI-03 10,065 �0.103 �0.001
Mean annual SPI-12 10,065 �0.127 �0.001
Mean annual SPI-24 10,065 �0.124 �0.001
Mean annual P-PET 10,065 0.0642 �0.001
Mean growing season P-PET 10,065 0.0182 0.075
Drainage class3 9,545 0.0922 �0.001

1 See text for full variable names.
2 The sign of the correlation coefficient (r) was counter to biological expectation.
3 Integer values range from 1 to 3, xeric to hydric.

Table 4. Candidate prediction models, in which drought stress
predictor variables predict tree mortality rate (as in Gustafson and
Sturtevant 2013).

Model no. Drought stress predictor variables

1 Mean annual drought index value
2 Most severe annual drought index value
3 Cumulative length of all drought events (normalized per decade)
4 Mean severity of drought events
5 Mean length of drought events
6 Length of longest drought event (years)
7 Mean severity of drought events, mean length of drought events

(years)

The drought index value used here was SPI-12, and drought was defined as mean
annual SPI-12 ��0.5.
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counter to biological expectation (i.e., mortality went down as con-
ditions got drier; shown by footnote 1 in Table 6). These models
may be spurious. For each drought-sensitivity class, I tested the most
plausible model, but when the sign of the coefficient was counter to
biological expectation, I also tested other models having the ex-
pected sign. A single valid model was found for each class with
the exception of the drought-tolerant class (Table 7), similar to the
results for the Midwest. However, the valid model was never the
same as the most plausible model except for the somewhat drought-
tolerant class. Model 7 for the somewhat tolerant class was deemed
a valid model despite the statistical test. In this case, the error of the
test regression intercept term was so low that an intercept estimate of
virtually zero was nevertheless not statistically equal to zero. Coeffi-
cients for the best model for each drought-sensitivity class in the
Northeast are given in Table 8.

The predictor variable in the Midwest was always the mean
length of drought events, whereas in the Northeast the predictor

variable was usually a measure of drought severity. However, when
the northeast models are compared with the models estimated for
the Midwest (Figure 3), suspicions about to their reliability arise.
In the Midwest, the mortality probability curves progressively flat-
ten from the most drought-intolerant class to the most tolerant class
(the relationship is flat, not shown), as one would expect. However,
the curves estimated for the Northeast do not fully exhibit such a
pattern. Given that the curve for the tolerant class is also flat (no
relationship found, not shown), the pattern mostly holds except that
the curve for the intolerant class (Figure 3B) is dramatically flatter
than that expected both on theoretical grounds and on a comparison
with the Midwest curves. Furthermore, the fact that the most plau-
sible models did not test well supports the idea that the models may

be somewhat spurious in the Northeast.

Discussion
I used the same assumptions for this study that were made by

Gustafson and Sturtevant (2013). I assumed that a drought-induced
mortality signal might be weak and difficult to detect amid the noise
of many other proximate and ultimate mortality factors but that it
could nevertheless be detected by using a large number of observa-
tions. It should be noted that there were far fewer FIA plots suitable
for this analysis in the northeast (N � 10,065) than in the Midwest
(N � 43,665). In the Midwest, the models for all drought-suscep-
tibility groups were consistent in terms of the best predictor variable,
and they predicted that drought-induced mortality decreased
steadily from the least drought-tolerant class to the most drought-
tolerant class as one would expect, suggesting that this assumption
was valid (Gustafson and Sturtevant 2013). However, in the North-
east, the models were less consistent. This could occur because the

Table 5. Model test results showing the regression of predicted
mortality rate against observed rate (expected slope � 1.0).

Drought-sensitivity class N
Intercept

(SE) Slope (SE) Pr � F

Intolerant 1,939 0.02 (0.001) �1.12 (0.12) �0.001
Somewhat intolerant 1,195 0.06 (0.010) �2.60 (0.63) �0.001
Somewhat tolerant 2,414 0.01 (0.003) �1.46 (0.52) �0.001
Tolerant1 1,020 NA NA

Models were estimated using data from Lakes States forests (Gustafson and Stur-
tevant 2013), and predictions were generated for the Northeast. N indicates the
number of FIA plots used to test the models. P � 0.1 suggests that the joint
hypotheses that the intercept � 0.0 and the slope � 1.0 could not be rejected. NA,
not applicable.
1 No valid predictive model was found for this class in the Midwest (Gustafson and
Sturtevant 2013).

Table 6. Akaike weights for candidate models of each drought-sensitivity class.

Drought-sensitivity class N

Akaike weights for model

1 2 3 4 5 6 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intolerant 1,447 0.01 0.01 0.01 0.02 0.01 100.01,2 0.01

Somewhat intolerant 898 0.02 0.01 0.0 0.02 0.01 0.01 100.01,2

Somewhat tolerant 1,915 0.02 0.01 0.0 0.02 0.01 0.01 100.01,2

Tolerant 770 91.02 0.0 9.02 0.0 0.0 0.0 0.0

Higher weight indicates greater plausibility for a model. N indicates the number of FIA plots used to fit the models.
1 Models in which at least one sign of a slope coefficient was counter to expectation.
2 Models actually used to generate and test predictions.

Table 7. Model test results showing the regression of predicted biomass lost to drought-induced mortality against observed biomass lost.

Drought-sensitivity class N Model no. Intercept (SE) Slope (SE) Pr � F R2

Intolerant 645 4 �0.00 (0.01) 1.06 (0.45) 0.602 0.008
Intolerant 645 62 0.01 (0.00) 0.46 (0.07) �0.001 0.068
Somewhat intolerant 409 1 �0.00 (0.01) 0.91 (0.45) 0.463 0.010
Somewhat intolerant 409 4 0.01 (0.02) 0.36 (1.18) 0.3931 0.000
Somewhat intolerant 409 72 0.01 (0.00) 0.12 (0.25) 0.001 0.000
Somewhat tolerant 837 1 �0.00 (0.00) 1.69 (0.73) 0.036 0.006
Somewhat tolerant 837 4 �0.01 (0.00) 2.82 (0.81) 0.005 0.014
Somewhat tolerant 837 72 �0.00 (0.00) 1.06 (0.21) 0.0613 0.028
Tolerant 354 1 0.00 (0.00) 0.44 (0.21) 0.002 0.012
Tolerant 354 3 0.00 (0.00) 0.36 (0.20) 0.000 0.010

Models were fit using a subset of FIA data from the Northeast and tested using the remaining data. N indicates the number of FIA plots used to test the models. P � 0.1
suggests that the joint hypotheses that the intercept � 0.0 and the slope � 1.0 could not be rejected.
1 True significance is unlikely; statistical significance is the result of high variability.
2 The sign of at least one predictive model coefficient is counter to biological expectation.
3 True significance is actually likely; the SE of the intercept term was slightly larger than that for the parameter estimate, resulting in an insignificant test statistic score.
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sample size was inadequate, or the drought-induced mortality signal
was too weak during the time period analyzed, or both. I also did not
use a zero-inflation model to build the predictive models (following
Gustafson and Sturtevant 2013) because there is no a priori expec-
tation that observations of zero mortality reflect a different process
than observations where mortality occurred. Zero mortality is a
reasonable outcome when drought conditions do not occur or are
mild.

The Province 212 models did not reliably predict drought-in-
duced mortality in Province 211. Consequently, new models were
estimated for Province 211, although their generality and reliability
for making predictions is perhaps questionable. There are three
potential explanations for the poor performance of the Midwest
models in the Northeast. First, the measure of drought used in the
Midwest study (PDSI) for some reason is not a good indicator of
drought conditions in the Northeast, whereas another measure is
better suited to northeast forests. Second, drought events were un-
common or weak in the Northeast during the period tested, and
drought-induced mortality was therefore relatively rare. Third,
there are stressors in the Northeast that are not found in the upper
Midwest (e.g., hemlock woolly adelgid and balsam woolly adelgid)
or are more pronounced (e.g., sugar maple decline and acidic depo-
sition). These explanations will be discussed in turn.

At first glance, it does appear that the problem with the Midwest
models in the Northeast was either the drought index used or the
predictor variable (length of drought events) because I was able to
build statistically viable models for the Northeast using a different
drought index and different predictor variables. However, I have
already enumerated concerns about the generality and reliability of
these new models. Furthermore, it is not clear why the SPI-12 index
should be fundamentally superior to the PDSI in the Northeast.
The difficulty in building consistent predictive models for the
Northeast suggests that the drought signal is extremely weak in this
data set and/or the sample size is inadequate, and the new models
may therefore be spurious.

Although the ecological provinces are similar and most of the tree
species are the same, Province 211 may experience fewer and less
severe drought events because of the closer proximity of a major
moisture source (Atlantic Ocean). The distribution of mean annual
PDSI values shows that the Northeast does, in fact, have fewer of the
lowest (driest) values compared with the Midwest (Figure 2). Han-
son and Weltzin (2000) delineated drought regimes in the United
States and showed that droughts in the upper Midwest are fairly
common, whereas droughts are limited in duration and spatial ex-
tent in the Northeast. The SPI drought index is not a useful index to
compare absolute wetness between locations because it is calculated
relative to median conditions at a location. I therefore used P-PET
to compare the moisture regimes between the Northeast and the

upper Midwest and found that the decadal mean number (n) and
intensity of droughts in the Northeast during the time period stud-
ied (1969–2007) were less than those that occurred in the Midwest
during the time period studied by Gustafson and Sturtevant (2013)
(1963–2009) (n � 0.13, mean P-PET � �11.5 and n � 0.21,
mean P-PET � �14.1, respectively). To determine whether the
incidence of drought in the Northeast during the study period may
have been lower than normal by chance, I compared the mean
P-PET values between the study period and the period of the
NCDC record (1895–2010). The mean P-PET in the Northeast
over the last century was 45.94 � 19.3 inches (minimum �
�18.78), whereas during the study period it was 52.46 � 19.3
inches (minimum � 0.74), suggesting that the study period was
somewhat wetter than usual, although the difference was not statis-
tically significant because of high variability (t � �0.18, P � 0.86).
Furthermore, long-term conditions in the Northeast were signifi-
cantly wetter (t � 1.98, P � 0.05) than those in the Midwest (mean

Table 8. Prediction equations developed for the Northeast.

Drought-sensitivity class Intercept (y) SE (y) Slope (b1) SE (b1) Predictor variable (x1) Slope (b2) SE (b2) Predictor variable (x2)

Intolerant �4.526 0.096 �0.351 0.114 Avg drought severity1 NA NA NA
Somewhat intolerant �3.955 0.033 �0.629 0.110 Mean SPI-122 NA NA NA
Somewhat tolerant �5.270 0.044 �1.476 0.093 Avg drought severity1 �1.011 0.052 Avg. drought length3

Tolerant4 NA NA NA NA NA NA NA NA

Predicted annual proportion of biomass lost to mortality (pm) is calculated (back-transformed) using pm � exp(y � b1x1 � b2x2). Avg, average; NA, not applicable.
1 Mean severity of drought events (successive years where mean annual SPI-12 � �0.5).
2 Mean annual SPI-12 index value between tree inventories.
3 Mean length of drought events (successive years where mean annual SPI-12 � �0.5).
4 No valid predictive model for drought-tolerant species was found. No relationship was assumed.
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Figure 2. Frequency distribution of mean annual PDSI in the
Northeast (1970–2007) and Midwest (1963–2009). The unit of
analysis is FIA inventory periods in each NCDC climate division
within each study area.
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P-PET [1895–2010] � 45.94 � 19.3 inches (minimum �
�18.78) and 10.61 � 13.9 inches (minimum � �45.4), respec-
tively). Thus, it appears that my study period was somewhat wetter
than usual in the Northeast and that the Northeast is on average
considerably wetter than the Midwest.

It is well known that drought can stress trees and make them
more susceptible to being killed by other stressors (Dale et al. 2001).
Although there are many such stressors in the Midwest, there are
others in the Northeast that are not found in the Midwest. For
example, there are adelgids in the Northeast that attack hemlock and
balsam fir, potentially making those somewhat drought-intolerant
species even more vulnerable to drought in the Northeast. Sugar
maple is susceptible to decline in the Northeast, and drought is one
of several factors listed as possible contributors (Hendershot and
Jones 1989, Horsley et al. 2002). Drought may also exacerbate the
effects of other stressors such as acidic deposition (Johnson et al.
1986). In addition, trees experience different types of selection pres-
sures when water is and is not limiting. For example, populations of
some pathogens can be higher when it is wet (Frankel et al. 2012),
and it is possible that the counterintuitive sign in some of the models
is related to such effects.

Although I was able to estimate predictive models for the North-

east (Table 8), I am nevertheless hesitant to advocate for their use
because of concerns about their reliability, particularly the model for
drought-intolerant species (Figure 3B). Based on my observations
above, I submit that perhaps the Midwest prediction equations
should work in the Northeast when long droughts occur, but be-
cause long droughts happened to be relatively rare in the Northeast
during the test period (when FIA inventories were available), the
predictions of drought-induced mortality by the models were not
numerically high enough to be distinguished from similar levels of
random background mortality. The median length of drought (de-
fined by PDSI) in the Northeast during the study period (when FIA
inventories were available) was only 1.0 years and the 90% quantile
was 2.0, whereas in the Midwest study the median was 1.5 years and
the 90% quantile was 3.0.

It is unfortunate that FIA inventories do not include the major
northeast drought of the 1960s. It is possible that the 1960s drought
did generate enough drought-induced mortality to be detectable.
To evaluate this idea, I searched for data sets in which tree mortality
was tallied on plots from the 1950s to the present to see whether
there was any indication that mortality was higher during the
drought of the 1960s. I identified two candidate data sets, but the
only one that reliably recorded mortality was from the Penobscot

A Drought intolerant
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Figure 3. Comparison of the best prediction equations between the Midwest (A, C, and E) (Gustafson and Sturtevant 2013) and the
Northeast (B, D, and F). Dashed lines represent 1 SE. Panel F represents a two-factor model and the graph depicts the response when mean
length of drought events was fixed at 3 years. There was no relationship between measures of drought and mortality for drought-tolerant
species in the Midwest or the Northeast.
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Experimental Forest in central Maine, where plots were established
to study tree response to harvesting treatments (Sendak et al. 2003).
I used plots from uncut reference areas (N � 20) and from a treat-
ment that involved very light cutting (N � 33), calculating mortal-
ity and climate using the same methods as for FIA plots. Inventories
were conducted on each plot approximately every 5 years. Cumula-
tive mortality on each plot was tabulated for climatic periods chosen
to reflect distinct wet and dry periods: 1955–1968, 1969–1982,
1983–1996, and 1997–2010. There were insufficient observations
by drought-sensitivity classes to definitively test the Midwest mod-
els, but I plotted annual mortality (all species combined) against the
most significantly related drought variable (most severe annual
drought index value) to see whether the 1960s drought produced a
higher mortality rate than other periods (Figure 4). Unfortunately,
the 1960s drought in central Maine did not produce longer or more
severe droughts than those found in the FIA data set, but it does
provide an independent observation of another relatively dry period.
As expected, the data are noisy because of multiple causes of mor-
tality, and the wettest periods occurred as the trees aged and became
more prone to other mortality factors. Nevertheless, the regression
line represents a putative drought signal. The slope is significantly
different from zero despite a relatively small sample size. The second
most significant variable was length of drought (not shown), and it
too was significantly different from zero. These results provide some
additional support for the notion that the Midwest models tested
poorly because the length of droughts in the Northeast was limited
during the time period studied. It is interesting to note that in this
particular data set the length of drought events was more related to
mortality than the severity of those drought events, which is consis-
tent with the results from the Midwest (Gustafson and Sturtevant
2013).

There is not a large body of literature on the effect of drought on
trees in the Northeast. This may be another indicator that drought
has not been a large factor for forest dynamics there. In the North-
east, most forest ecosystems have probably been structured by dis-
turbances other than drought. Outbreaks of spruce budworms can
kill certain coniferous species across large areas (Williams and Lieb-
hold 2000) and repeated outbreaks of gypsy moths can similarly
cause mortality of certain deciduous species (Gansner et al. 1993).

Wind events such as hurricanes can cause forest damage, but the
extent of severe damage declines with distance from the coast (Boose
et al. 2001). On the other hand, large stand-replacing wildfires are
extremely rare compared with those of other regions (National In-
teragency Fire Center 2008).

Drought has the potential to kill many trees relatively quickly
over a very large area (Breshears et al. 2005), so drought has the
potential to dramatically alter normal forest dynamics if the drought
regime is altered by climate change. Based on results from the Mid-
west, longer drought periods would increase mortality of drought-
sensitive trees in the Northeast and alter normal forest dynamics as
suggested for other regions (Allen et al. 2010). There are similar
potential changes in carbon budgets and pools if drought were to
become more common (Breshears and Allen 2002). Exploring the
future role of drought in structuring forests in the Northeast is an
important arena for future research.

Conclusions
Despite presenting considerable evidence against using the Mid-

west models of Gustafson and Sturtevant (2013) in the Northeast,
they may nevertheless have some value to predict mortality response
to droughts in the Northeast, especially for species for which the
Northeast models do not inspire confidence (i.e., drought-intoler-
ant species; Figure 3B). My tests did not cover the range of drought
conditions under which the models were developed because it hap-
pens that lengthy drought events were rare in the Northeast during
the period of FIA record (Figure 2), and given the noisiness of the
drought mortality signal, it should not be surprising that the tests
were equivocal under such conditions. There is no obvious ecolog-
ical or mechanistic reason why species should respond differently in
an adjacent, very similar, ecological province. For applications in the
Northeast, it may be prudent to use a combination of Northeast and
Midwest models, for example, substituting the Midwest drought-
intolerant model for the Northeast one. Accepting the Midwest
models for the Northeast presumes that the failure of the Midwest
models in the Northeast (Table 5) was caused primarily by low rates
of drought-induced mortality because drought events were rare,
short, and weak. Nevertheless, given that this presumption is uncer-
tain, I concede that they should be used only with caution and
transparency.
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