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Abstract. The perceived threat of climate change is often evaluated from species
distribution models that are fitted to many species independently and then added together.
This approach ignores the fact that species are jointly distributed and limit one another.
Species respond to the same underlying climatic variables, and the abundance of any one
species can be constrained by competition; a large increase in one is inevitably linked to
declines of others. Omitting this basic relationship explains why responses modeled
independently do not agree with the species richness or basal areas of actual forests.

We introduce a joint species distribution modeling approach (JSDM), which is unique in
three ways, and apply it to forests of eastern North America. First, it accommodates the joint
distribution of species. Second, this joint distribution includes both abundance and presence–
absence data. We solve the common issue of large numbers of zeros in abundance data by
accommodating zeros in both stem counts and basal area data, i.e., a new approach to zero
inflation. Finally, inverse prediction can be applied to the joint distribution of predictions to
integrate the role of climate risks across all species and identify geographic areas where
communities will change most (in terms of changes in abundance) with climate change.
Application to forests in the eastern United States shows that climate can have greatest impact
in the Northeast, due to temperature, and in the Upper Midwest, due to temperature and
precipitation. Thus, these are the regions experiencing the fastest warming and are also
identified as most responsive at this scale.

Key words: biodiversity; climate change; species abundance; species distributions; species occurrence;
species presence/absence; zero inflation.

INTRODUCTION

Where is biodiversity most vulnerable to contempo-

rary climate change? Biodiversity risk is often evaluated

as the loss of species predicted to occur under a future

climate scenario (Rodrı́guez-Castañeda et al. 2012).

Species distribution models (SDMs) calibrate the

distribution of each species to contemporary climate

independent of other species (Iverson et al. 2008, Guisan

and Thuiller 2005, Gelfand et al. 2006, Botkin et al.

2007, Fischlin et al. 2007, McMahon et al. 2011, Thuiller

et al. 2011). Sometimes one species is included as a

predictor of another (Araújo and Luoto 2007, Barbet-

Massin and Jiguet 2011). In other cases, ordinations are

applied to multiple species to identify environmental

gradients that are combinations of input variables, such

as climate. However, even where more than one species

is included in a model, their combined responses are not

treated as a joint distribution (Yee 2004; but see

Ovaskainen et al. 2010 for presence–absence data). This

is problematic, because loss of biodiversity is estimated

as the sum of losses predicted by independent models for

each species, and estimates are inaccurate (Baselga and

Araújo 2010). We identify how problems arise and

present an approach to resolve this problem, providing

uncertainty on predictions for current and future climate

using a single model for the joint distribution of all

species simultaneously.

Evaluating the effects of climate on biodiversity

typically begins with fitting a model for a species’

occurrence or abundance to climate and other environ-

mental variables (Guisan and Zimmermann 2000,

Thuiller 2003, Latimer et al. 2006, Elith and Leathwick

2009, Marmion et al. 2009, Chakraborty et al. 2010,

Benito et al. 2013). Models might be fitted to each of S

species. A variable-selection criterion is often used to

evaluate the importance of each input, or explanatory

variable, for the species under consideration. The result

is a collection of S models, each with different

combinations of inputs. This collection of models

cannot represent how the response is damped by

competition when species tend to benefit from similar

conditions, yet compete for limited space/resources.

Baselga and Araújo (2010) found that different ways of

clustering species in models did not correct inaccuracies

in predictions made from independently fitted models.
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For example, independent models for clusters of species

predict as many as five different forest types in a given

location, where, by definition, there can be only one.

Guisan and Rahbek (2011) found that independent

models collectively imply too many species per location.

A growing number of models that include multiple

species (e.g., Ferrier et al. 2002, Elith et al. 2006,

Mokany and Ferrier 2011, Mokany et al. 2011, 2012) do

not model the joint distribution itself, but rather, rely on

ad hoc methods to combine results from independent

models. Ordination based regressions that include

multiple species, but not their joint distribution (e.g.,

canonical Gaussian ordination [CGO]), did not perform

better than independent models for each species (Yee

2004). In CGO, multiple species are used to identify a

reduced set of predictor variables, rather than to

estimate a joint distribution of species abundances.

Yee (2004) suggests that species dependence might

possibly be handled through generalized estimating

equations, but we are unaware of implementations.

We describe an alternative approach that recognizes a

joint distribution of the occurrence and the abundances

of species competing for space. When species compete,

an increase in the abundance of one species is attended

by decreases in others. This fundamental property of

communities results from competition, but is missing in

SDMs. This space constraint is almost certainly violated

when modeling is done on a species-by-species basis. In

addition, independent models cannot exploit informa-

tion contained in the joint relationships, such as the

tendency for species to occupy similar sites for reasons

other than those taken up by predictor variables (Clark

et al. 2011, Ovaskainen and Soininen 2011). To

appreciate how important the joint distribution is,

consider that most ecologists could more accurately

predict abundance of a species based on knowledge of

the other species present at a site than they could based

on, say, mean temperature or precipitation. We exploit

the information inherent in the joint distribution of

species with a joint model.

Problems that result from modeling species indepen-

dently are easy to illustrate. For example, independently

fitting 96 tree species in the USDA Forest Service’s

Forest Inventory and Analysis (FIA) database (Wou-

denberg et al. 2010) against climate variables (Fig. 1B)

predicts basal area more than twice as high as observed

(Fig. 1A). Published results that appear inconsistent

with one another could result, in part, from the missing

joint distribution. For example, one analysis of FIA

data does not show climate sensitivity of species

abundance across wide gradients in temperature and

precipitation (Canham and Thomas 2010), while others

suggests substantial response (Iverson and Prasad 2008,

Zhu et al. 2014).

Given that species distribution modeling is usually

concerned with impacts on multiple species (e.g., species

richness, the number species at risk of extinction, the

number migrating north or south, changes in total

FIG. 1. Cumulative basal area by species (one color per species) for (A) the raw FIA data, (B) as predicted by models calibrated
independently for each species, and (C) predicted by a joint model for all species. The latter predicts the data well, whereas the sum
of independent models (panel B) is unrealistically high.
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NPP), current approaches could benefit from a joint

modeling approach. Such a model would be more

challenging to implement than individual models for

each species, but it could ultimately be simpler than the

collection of independent models.

Here we describe joint species distribution modeling

(JSDM), demonstrate some of the challenges, and

provide ways to address them. JSDM can be used to

identify the important climatic variables that influence

the species distributions across a full range of species in

communities. It begins with a joint distribution of

species (both occurrence and abundance) and builds on

inverse prediction (Clark et al. 2012, 2013) to help

identify which inputs (e.g., climatic variables) are most

important in driving a high dimensional response (e.g.,

the distribution and abundance of co-occurring and

competing species). The presence–absence component of

our model is treated similar to that of Ovaskainen et al.

(2010) and Ovaskainen and Soininen (2011). It is

combined with abundance data in a single coherent

model. The approach yields predictions of vulnerability

for the full community of species, showing greatest

potential for impacts of changing moisture in the Upper

Midwest and temperature in the Upper Midwest and

Northeast. We begin by summarizing five challenges for

species distribution modeling in general that motivate

our approach. We then describe the model and

application.

MOTIVATING CHALLENGES

Much has been written about the challenges with

species distribution modeling (Pearson and Dawson

2003, Ibañez et al. 2006, Latimer et al. 2009, Meier et al.

2011, Schurr et al. 2012) that guide the approach that

follows. We do not repeat previous reviews (e.g., lack of

dispersal dynamics or missing predictors, such as CO2,

fire, or soils), but focus instead on specific issues

especially relevant for the multivariate setting.

The missing joint distribution.—A SDM for one

species quantifies its relationship with climate variables.

That relationship is complicated by other species. If

there are 100 species, there can be 100 different models,

each (implicitly) conditional on the abundances of the

other 99. Our model for the joint distribution allows for

dependence between species not accounted for by

climate variables, and it yields uncertainty estimates

that accommodate the joint response. We do not claim

to quantify species interactions, only that the model

allows for the fact that species abundances do covary.

Our approach also differs from ordination, in which

multiple species define gradients, but are not modeled as

a joint distribution (e.g., Yee 2004).

We emphasize that the joint distribution does not

quantify or predict ‘‘species interactions’’; rather it

accommodates the patterns that result from them.

Although there are a growing number of species

distribution models that are believed to quantify species

interactions, observational data do not allow us to

isolate effects of climate from competition. First is a

scale mismatch. Individuals interact, plot- or region-

scale abundances do not. Relationships at the plot and

region scale result from interactions at the individual

scale, but the aggregation of competing individuals into

plot or region abundances introduces Simpson’s para-

dox, including loss of information and distortion of

relationships (Clark et al. 2011). A tendency for two

species to occur together (positive correlation) can

suggest mutualism (they benefit one another) or just

the opposite, strong competition (high niche overlap).

Likewise, negative correlations in species abundance can

result from strong competition (competitive exclusion)

or no competition (absence of niche overlap). Second,

the incorporation of ‘‘species interactions’’ in SDMs also

causes confusion when one species is assumed to predict

another. Abundance of the predictor is fixed in the

model, whereas the response is treated as stochastic

(uncertain). We are unaware of biological or modeling

justification for deciding which is which, unless one is

observed without error, and it is uninfluenced by the

other. JSDM discussed here assumes all species respond

to climate and to one another, without prescribing some

as predictors of others.

The important predictors.—Because species distribu-

tion modeling yields a different model and, thus, a

different set of predictors for each species, there are as

many sets of predictors as there are species. Some

approaches use the same predictors for all species (e.g.,

Huntley et al. 2008). Alternatively, model selection is

employed to pare down the number of predictors of

specific species in the interest of parsimony and when

overfitting is deemed undesirable. On the basis of a

model-selection criterion, temperature might be selected

for one species, precipitation for another, quadratic and

interaction terms for others, and so forth. Given that the

species are not responding independently, the approach

appears both unnecessarily complex and potentially

misleading. For example, a predictor may be significant

for one species but not for its competitors. If species are

modeled jointly, we can evaluate the role of inputs in the

context of the full response. We apply inverse prediction,

an adaptation of dynamic inverse prediction (Clark et al.

2011, 2013; J. Brynjarsdottir and A. E. Gelfand,

unpublished manuscript), to reduce the dimensionality

of sensitivity analysis. There is one model, and it can be

inverted to determine the importance of predictors for

species jointly.

The problem with an overabundance of absences.—

Beyond the problems posed by presence-only data (e.g.,

Elith et al. 2006), there are problems with high-zero

incidence in presence–absence and abundance data that

are not widely appreciated. Zero-inflated models (ZIMs)

assume that abundance is conditional on presence. A

Bernoulli model for zeros is combined with a second

model for abundance, which also admits zero values.

The zero model ‘‘inflates’’ the zero class of the

abundance model, in recognition of the fact that absence
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might occur in at least two ways: (1) the sample is

outside the species range or (2) the sample is within the

range, but sample plots do not include it for other

reasons. ZIMs are distinct from two-component models

that do not have zero inflation, such as a Bernoulli-

gamma mixture of Canham and Thomas ([2010]; the

gamma distribution does not have point mass at zero).

However, severe identifiability issues arise with ZIMs

when both the presence and the abundance of a species

depend on the same predictor variables (Fig. 2B; Ghosh

et al. 2012); sparse occurrence means that zeros are

compatible with both components. Resolving the

identifiability problem would appear to require that

the same predictors not be included in both model

components (Fig. 2A). The problem with this solution to

non-identifiability is that it precludes use of the model

for prediction. For example, if a model assumes that

temperature affects abundance, then it could not also be

included in the model for presence. Such a model could

not predict how the species distribution is influenced by

temperature. It could only predict abundance given

temperature. Alternatively, if the climate variable is

included in the zero model, but not the abundance

model, then climate is assumed to have no effect on

abundance throughout the species range. We resolve the

identifiability problem by jointly modeling two types of

abundance data that both admit zeros, basal area and

stem counts, to anchor the two components of our ZIM

(Fig. 2C). Basal area is modeled as a multivariate probit

model, with an explicit zero class. Stem counts also have

an explicit zero class that is the basis for presence–

absence and, thus, the distribution of the species. This

differs from a standard ZIP model, where zero inflation

would come from a binomial distribution. In other

words, both components admit zeros, but neither is

binomial. This is a zero-inflated JSDM (ziJSDM).

Evaluating climate vulnerability from multiple spe-

cies.—Climate vulnerability cannot be considered in

isolation from interactions within a forest stand.

Responses to drought and warming winters interact

with light availability and local moisture (Clark et al.

2012). When models are fitted to species separately

results cannot be objectively combined to yield a joint

prediction of climate impacts. Joint modeling makes this

prediction possible. We show how inverse prediction

(Clark et al. 2011, 2013) can be applied to a joint

distribution of species, thus providing a coherent

prediction from the full species information. We

emphasize again that we are not specifically modeling

competition, but rather the species dependence that

results from species interactions but that are not taken

up by the mean structure of the model (see The missing

joint distribution).

After summarizing the data set, we describe our

approach that addresses each of these considerations.

MATERIAL AND METHODS

Data

FIA data were extracted for 43 396 inventory plots

from annual inventories (2003–2009) in 31 states in the

eastern US from the FIA database (FIADB version 4.0;

Woudenberg et al. 2010). As FIA is authorized by the

U.S. Congress to conduct a systematic and consistent

inventory of all US forests (USDA Forest Service 2012),

inventory methods are documented (Bechtold and

Patterson 2005) with all relevant data available online

and summarized in national resource reports (Smith et

al. 2009). For this analysis, we use stem counts and basal

areas from all plots aggregated into the 427 FIA

ecoregions (McNab et al. 2007). Use of ecoregions,

rather than individual plots, helps bring the response

variables (stem counts and basal areas) into alignment

with available climate data, which are highly smoothed.

Plots are not instrumented; there is no plot-scale climate

data. Analyses of responses at the plot scale and climate

at the region scale cannot predict species abundance

(Zhu et al. 2014). We analyzed the 96 most abundant

species, which included 1 651 958 trees. Basal area is

used here as the index of abundance. Stem counts from

seedling and tree plots are the basis for modeling

presence–absence.

Climate data are the parameter-elevation regressions

on independent slopes model (PRISM) data set (avail-

able online).5 Data are averages for 1990–2000. Data are

provided at 800-m resolution, but observations are

much coarser than this. The interpolated grid incorpo-

rates some information on landscape features. The data

set is highly spatially smoothed relative to actual

landscape climate variation. To maximize transparency,

FIG. 2. Graphs for zero-inflated models
(ZIM) with climate xi influencing basal area yi,
allowing for zeros in a latent variable wi and from
a Bernoulli variable for absence having probabil-
ity q. Climate may enter the model (A) for basal
area alone or (B) for both basal area and absence.
(C) The absence model can be informed by count
data zi, where a is the parameter matrix, A is the
species covariance matrix, b is the parameter
matrix for basal area, and R is a covariance
matrix.

5 http://www.prism.oregonstate.edu/
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we focus on two climate variables of known importance,

winter temperature (January, February, March) and

annual precipitation, although they do not emerge as

important in all studies. We select these variables as

basis for this demonstration of the joint modeling
approach because they have been widely used in the

past. Standard model-selection techniques are available

for our approach and could be used to examine any

available variables.

Model development

We develop a model for joint distributions of both
presence/absence and abundance, both in response to

climate, for all species, as outlined in Fig. 2C. Our goals

here are to model both distribution and abundance, the

latter represented by basal area, and to use count data to

anchor the zero class. Together this is a zero-inflated

JSDM (ziJSDM) model (Appendix). It applies a latent
variable approach to basal area modeling.

There is a pair of length-S vectors of species at
location i, one for counts (zi ) and another for abundance

(basal area; yi ). Both have mean vectors that are

multivariate normal at the first stage, predicted by

temperature and precipitation, with coefficient vectors a
and b, and residual covariance matrices A and R,
respectively. Both models (presence–absence and abun-

dance) contain the same linear, quadratic, and interac-
tion terms for these two climate variables. This

redundancy is responsible for overfitting in standard

ZIMs (Ghosh et al. 2012). Specifically, the model

components compete to explain the zeros. This is

recognized when a predictor that occurs in both model

components tends to have positive coefficients in one

and negative coefficients in the other.

Our approach departs from a standard ZIM in key
ways. First, is the treatment of zeros. Rather than a

mixture for two types of zeros in a single response

variable (e.g., one interpreted as absence from the

ecoregion and another as presence in the ecoregion,

but absence from the sample), we model ecoregion

absence conditionally from the stem count zis ;

Poisson(Aicis), where Ai is the sample area for ecoregion
i, and cis is the density of species s in i. The absence

model is the zero class of the Poisson distribution

Prðzis ¼ 0Þ ¼ e�Aicis

where zis ¼ 0, yis ¼ 0 (basal area requires stems).

However, zis and yis contain different information about
zeros, because, unlike a standard ZIM, where P(yis¼ 0)

is a binary event, zis is not binary. The joint distribution

for log density is a multivariate GLM ln ci ; NS(xia, A),
where ci¼ (ci1, . . . , ciS) is the vector of species’ densities
in ecoregion i, a is the p 3 S parameter matrix, and A is

the species covariance matrix.

Second, zero inflation enters as a multivariate probit

model for a latent variable wis, equal to basal area yis
when yis is non-zero (positive), but taking negative
values otherwise. The joint distribution of basal area wi

; TNS(xib, R, hi ) is a truncated normal distribution

with mean, variance, and truncation vector hi that

depends on predictor, Pi (Fig. 2c, Appendix), b is the p3

S parameter matrix for basal area, and R is a covariance

matrix. The zero class from the abundance model is

multivariate probit.

In summary, the model allows for joint distributions

of basal area Y and density Z, both of which depend on

climate. We have two sources of zeros (zero-inflation),

but neither relies solely on presence–absence data. Zero

inflation modeled in this way allows us to quantify

climate effects on both distribution and abundance

without overfitting. Prior distributions and posterior

simulation are described in the Appendix. To summarize

the Appendix, prior distributions are non-informative

for a and b and informative for R and A.

Inverse prediction

Climate vulnerability is both a sensitivity problem and

a prediction problem: how much will the distribution,

abundance, or both change with climate? The answer is

different for each species, but we cannot simply add

together sensitivity coefficients from models fitted to

each species separately. First, there are simply too many

sensitivity coefficients. If there are S species and p

predictors, there are as many as p 3 S sensitivity

coefficients. Second, they are not independent, and we

have no objective way of combining them. One species

can benefit from ameliorating climate only at the

expense of others. A species insensitive to climate will

nonetheless respond if competitors respond. The joint

model described above captures these relationships

among species, but, by itself, does not provide an

answer to the question ‘‘Where is the greater vulnera-

bility of the joint distribution?’’ The answer to this

question is buried in .102 coefficients, p3S coefficients

in a and p 3 S coefficients in b. We require a sensitivity

analysis that combines the information from all

coefficients in the context of the full fitted model.

Inverse prediction combines information in a multi-

variate response vector (e.g., species abundance or

presence) and the full fitted model to predict the climate

variables having most impact (Clark et al. 2011, 2013; J.

Brynjarsdottir and A. E. Gelfand, unpublished manu-

script). Inverse prediction comes from inverting the

fitted model to predict the inputs (climate) from the

outputs (distribution and abundance). Accurate and

precise predictions of a climate variable are possible

where that variable exerts strong controls on the

multivariate response vector: in this case, the joint

distribution of species. Conversely, poor predictions

obtain where a climate variable has no impact on the

response. The advantage of inverse prediction over

standard sensitivity analysis comes from the fact that it

combines all responses into a single sensitivity value

weighted by the fitted model itself (Clark et al. 2011,

2013). There is a predictive distribution for the input q in

region i ranked by the proper scoring rule of Gneiting

JAMES S. CLARK ET AL.994 Ecological Applications
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and Raftery (2007). High scores result from accurate

predictions (predicted inputs close to observed inputs),

and confident (but not overconfident) predictions.

RESULTS

Our first concern was to establish that data have

updated prior distributions of parameters. Because there

are a large number of parameter estimates ( p 3 S in

both b and a), not all might learn from data. In fact, we

obtained concentrated posteriors for both b and a for

most of the 96 species in our analysis. Posterior

summaries are provided in the Appendix.

We found that the sum of independent SDMs does

not produce sensible predictions for total basal area

(Fig. 1B), and we wanted to know if the ziJSDM model

is an improvement. We found that predictions for total

basal area for our model (Fig. 1C) are comparable to

observed values (Fig. 1A). This contrasts with the

predictions of unrealistically high values from indepen-

dently fitted SDMs (Fig. 1B). A mapped comparison

based on all 96 species (Fig. 3A, B) shows that a

tendency to overpredict basal area occurs in northern

New England and northern Minnesota (Fig. 3C), but

the qualitative patterns are in agreement (Fig. 3A, B).

Predictions are most confident in the Midwest (Fig. 3D).

Like total basal area, species richness predictions (Fig.

4B) are quite close to observed (Fig. 4A). These are

shown at a value of 0.6 probability of presence. Note

that 0.5 is the midway point, but it also represents

maximum uncertainty. We display values for 0.6 in Fig.

4B to reflect ‘‘more certain than not’’ that the species is

present.

The tendency for lower prediction errors for basal

area in the ziJSDM than for independently fitted models

for each species (Appendix) supports the use of count

data to allow for geographic variation in presence/

absence estimates. The ziJSDM model does not suffer

from overfitting problems. Ghosh et al. (2012) found

that redundant predictors in the two components tended

to offset one another, with high values in one

component of the mixture offset by low values in the

other. In our example, this would be recognized as a

negative parameter estimate for temperature in b paired

with a positive estimate in a. This offsetting relationship

apparently results from the fact that zeros can be

assigned to either component of the model, when the

same predictors are included in both. Instead, we find a

tendency for a positive relationship between the two in

this analysis (Appendix), which is consistent with

biological expectations and not with overfitting: a

species is likely to be abundant where it is likely to be

present, and not vice versa.

Inverse prediction from the joint model provides a

synthesis of regions where temperature and precipitation

have most impact on the full community of species.

Scores for temperature are higher than those for

precipitation (Fig. 5, right panels). Temperature scores

high in regions with the lowest and highest temperatures

(Fig. 5, upper left). Precipitation scores high in regions

with the lowest precipitation. Results suggest that

FIG. 3. Current and prediction (A, B) mean basal area (BA), (C, D) prediction bias and precision, and (E) predicted change in
basal area for the A2 scenario.
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FIG. 4. (A) Observed and (B) zero-inflated joint species distribution modeling (ziJSDM) prediction of species richness at 60%
confidence (those present with probability . 0.6) for current climate. (C) Species losses predicted for the A2 scenario and (D)
turnover (gains plus losses) at 60% confidence .

FIG. 5. Temperature and precipitation on horizontal axes compared with predictive distributions (95% as shaded gray bars at
left) and prediction scores (points and bars for 68% and 95% at right). Also shown with predictive scores are distributions of data
(black histograms) and distributions of non-zero values (orange histograms). Both variables are centered on the mean value.
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temperature is more important than precipitation

(overall higher scores), temperature is most important

at extremes, and precipitation is least important where it

is highest. The latter trend could result if precipitation is

less often limiting in the wettest regions. A mapping of

prediction scores shows largest temperature effects in the

north and south (Fig. 6, top). Precipitation effects are

greatest in the upper Midwest (Fig. 6, bottom). Unlike

temperature, sensitivity to precipitation is especially low

where precipitation is highest, i.e., the Gulf Coast. The

eastern central region emerges as least sensitive to both

variables.

Applying the fitted model to the A2 scenario

(Nakicenovic and Swart 2000, Solomon et al. 2007) we

find that the difference between predicted basal area for

current conditions (Fig. 3B) and for the A2 scenario

show gains in basal area in the South and Midwest, the

largest in the southwestern portion of the map (Fig. 3E).

Despite the gains in basal area, species losses are largest

in the South and Midwest (Fig. 4C). Total turnover

(sum of losses and gains) is greatest in the northern and

southwestern portions of the map (Fig. 4D).

DISCUSSION

Despite continuing debate over SDMs, climate

envelopes, and niche modeling generally, these methods

remain one of the few ways to evaluate potential change

in species’ distribution and abundance at the sub-

continental scale. Our approach addresses some of these

concerns, by synthesizing presence–absence and abun-

dance jointly across species, by resolving the over-fitting

problem of zero-inflated models, and offering prediction

of communities as opposed to individual species. The

advantages of a single model for all species, rather than

independent models for each, extend beyond conve-

nience. Because the model learns from the joint

relationships in data, it can provide accurate predictions

(Figs. 1, 3, 4). Both distribution and abundance are

contained in the same model, and the fitted model

predicts both (Figs. 3B, 4B).

Inverse prediction reduces the high-dimensional dis-

tribution down to one dimension per predictor, identi-

fying where sensitivity is high based on all species (Fig.

6). In contrast to models that seek to identify vulnerable

regions by summing the results from independently

fitted models, our approach does not rely on ad hoc

rules for putting independent models together. It applies

only accepted distribution theory and a coherent

treatment of the joint distribution, grounded on the

constraint that species do not respond independently.

Abundance of one species increases at the expense of

another.

Joint species distribution modeling (JSDM) exploits

information in the joint distribution to synthesize and

improve prediction. In many situations, including most

applications involving SDMs, there is limited explana-

tory information in input variables. Regional climate

variables are not nearly sufficient to predict the rich

variation in diversity across landscapes. The fact that

species abundances are among the best predictors of one

another stimulated a tradition of ordination and

classification of plant communities (Bray and Curtis

1957, Whittaker 1967, ter Braak and Prentice 1988).

Exploiting this information in a JSDM makes the

difference between useful and non-useful predictions

(e.g., Fig. 1).

Should joint species distribution modeling (JSDM) be

the sole approach for species distribution modeling, or is

there still a place for independent modeling of species?

JSDM provides no advantage for species that provide

no information on one another and when there is no

interaction between them. Independent models of

species can be as effective as JSDM when considering

species that bear no relationship to one another.

Whenever SDMs involve species that interact or that

respond to similar inputs, JSDM is expected to provide

large improvements.

By itself JSDM does not solve the problem of

quantifying fine-scale processes, such as species interac-

tions. As discussed above, the JSDM accommodates

outcomes of fine-scale processes as they control patterns

FIG. 6. Inverse prediction scores for (A) temperature and
(B) precipitation. Mean values are shown as white lines.
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in the aggregate scale. Although the improvement in

predictions is substantial, we cannot misinterpret this as

the ‘‘effect’’ of one species on another. We do not

parameterize competition, but rather allow for the fact

that the responses of species are interrelated beyond

what can be explained by predictor variables. The

advantages of joint approach for predicting change in

distribution and abundance does not mean that all

sources of uncertainty can be quantified. An important

benefit of this joint specification within a hierarchical

framework is the capacity to include error from

parameters, the limited capacity of climate to predict

distribution and abundance, and the correlation struc-

ture of density and basal area. Prediction bias and

precision in abundance (Fig. 3) is available directly from

the model, as is uncertainty in presences (0.6 is used in

Fig. 4). These sources of uncertainty are coherently

integrated with inverse prediction.

Inverse prediction highlights the upper Midwest and

Northeast as regions most closely controlled by temper-

ature and precipitation (Fig. 6): the coldest and driest

regions. Application to climate change scenarios identi-

fies the same areas as places of high species turnover

(Fig. 4D). In the case of these northern regions, they

also coincide with the region where climate change is

most rapid (Zhu et al. 2012). The capacity to evaluate

climate relationships across subcontinental scale regions

can complement efforts to evaluate biodiversity threats

of climate change.
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SUPPLEMENTAL MATERIAL

Appendix

Detailed description of the model, prior distributions, diagnostics, and inverse prediction (Ecological Archives A024-058-A1).
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