Applied Geography 46 (2014) 2134

Contents lists available at ScienceDirect s

AprLIED
GEOGRAPHY

Applied Geography

journal homepage: www.elsevier.com/locate/apgeog

A comparison of techniques for generating forest ownership spatial @CmssMark
products

Brett J. Butler **, Jaketon H. Hewes ", Greg C. Liknes ¢, Mark D. Nelson ¢,
Stephanie A. Snyder ©
2 USDA Forest Service, Northern Research Station, 160 Holdsworth Way, Amherst, MA 01003, USA

P USDA Forest Service/University of Massachusetts Amherst Family Forest Research Center, 160 Holdsworth Way, Amherst, MA 01003, USA
€ USDA Forest Service, Northern Research Station, 1992 Folwell Avenue, St. Paul, MN 55108, USA

ABSTRACT

Keywords: To fully understand forest resources, it is imperative to understand the social context in which the forests
Thie;sen polygop exist. A pivotal part of that context is the forest ownership. It is the owners, operating within biophysical
Mult{nom}al logit and social constraints, who ultimately decide if the land will remain forested, how the resources will be
Classification tree 8 . . .
United States used, and by whom. Forest ownership patterns vary substantially across the United States. These dis-
Forest inventory and analysis tributions are traditionally represented with tabular statistics that fail to capture the spatial patterns of
Protected areas database ownership. Existing spatial products are not sufficient for many strategic-level planning needs because
they are not electronically available for large areas (e.g., parcels maps) or do not provide detailed
ownership categories (e.g., only depict private versus public ownership). Thiessen polygon, multinomial
logit, and classification tree methods were tested for producing a forest ownership spatial dataset across
four states with divergent ownership patterns: Alabama, Arizona, Michigan, and Oregon. Over 17,000
sample points with classified forest ownership, collected as part of the USDA Forest Service, Forest In-
ventory and Analysis (FIA) program, were divided into two datasets, one used as the dependent variable
across all of the models and 10 percent of the points were retained for validation across the models.
Additional model inputs included a polygon coverage of public lands from the Conservation Biology
Institute’s Protected Areas Database (PAD) and data representing human population pressures, road
densities, forest characteristics, land cover, and other attributes. The Thiessen polygon approach pre-
dicted ownership patterns based on proximity to the sample points in the model dataset and subsequent
combining with the PAD ownership data layer. The multinomial logit and classification tree approaches
predicted the ownership at the validation points based on the PAD ownership information and data
representing human population, road, forest, land cover, and other attributes. The percentage of vali-
dation points across the four states correctly predicted ranged from 76.3 to 78.9 among the methods with
corresponding weighted kappa values ranging from 0.73 to 0.76. Different methods performed slightly,
but statistically significantly, better in different states Overall, the Thiessen polygon method was deemed
preferable because: it has a lower bias towards dominant ownership categories; requires fewer inputs;
and is simpler to implement.
Published by Elsevier Ltd.

Introduction

The United States is endowed with an estimated 304 million ha
(751 million ac) of forest land covering 33 percent of the nation’s

Abbreviations: FIA, Forest inventory and analysis program of the United States land area (Smith, Miles, Perry, & Pugh, 2009). These forests provide

Department of Agriculture Forest Service; NLCD, National Land Cover Database; a plethora of goods and services, including wood products, wildlife

PAD, Protected Areas Database; USDA-FS, United States Department of Agriculture habitat, recreational opportunities, water purification, and carbon

Forest Service. storage (Chopra & Dasgupta, 2008). Ownership has been shown to
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of forest resources is dependent upon those who control it — the
forest owners — operating within the biophysical constraints of the
land and the economic, regulatory, and normative constraints of
society. The forests of the United States are owned by a diversity of
entities including: federal, state, and local governments; private
corporations; families; individuals; Native American tribes; and
other groups. Ownership goals, management practices, and appli-
cable regulations can vary widely among these entities (Bengston,
Asah, & Butler, 2011; U.S. Department of Agriculture Forest
Service, 2011). Many of the private lands are under growing pres-
sure due to parcellation, fragmentation, and development (Jin &
Sader, 2006; White, Alig, & Stein, 2010).

Forest ownership patterns vary substantially across the U.S., at
both coarse and fine scales. For example, at the coarsest spatial and
thematic scales (i.e., broad ownership categories), the forests of the
eastern U.S. are 81 percent privately owned versus the forests of the
western U.S. which are 70 percent publicly owned (Smith et al.,
2009). At finer scales, these patterns can still be highly variable
with intermingling of ownership types and resulting implications
for forest policy, industry, conservation, and society. From a policy
perspective, it is important to understand which tools to use where
and how these tools will interact (Harper et al, 2006) — for
example, different policy tools are used to mitigate wildland fire
depending on the ownership patterns. From a forest industry
perspective, it is important to accurately predict the supply of raw
materials, be it for lumber, biomass, or other end uses, and this
depends, in part, on landowners’ objectives and constraints (Butler,
Ma, Kittredge, & Catanzaro, 2010; Polyakov, Wear, & Huggett, 2010).
From a conservation perspective, it is important to know which
lands are already protected, which are most threatened, and where
the greatest opportunities for land conservation exist (Stein et al.,
2005). For many private citizens, outdoor recreation is important
(Cordell, Betz, & Green, 2008) and the accessibility of lands de-
pends, to a large extent, on who owns it (Snyder & Butler, 2012;
Snyder, Kilgore, Taff, & Schertz, 2008). All of these issues are
strongly tied to forest ownership patterns and therefore, under-
standing and mapping forest ownership patterns can facilitate
more informed decisions to help maintain forests and the social
benefits they provide. Previous studies have focused on mapping of
some social dimensions related to forests (Brown & Raymond,
2007; Sherrouse, Clement, & Semmens, 2011), but not ownership.

Like all land use patterns, land ownership patterns are not
random. The specific use of a given piece of ground is a function of
social, economic, political, historical, and environmental factors
(van Kooten, 1993). It has been posited that land ownership pat-
terns are the results of similar factors and a modified land rent
theory can be applied (Hardie, Parks, Gottleib, & Wear, 2000; Wear,
2011). Land rent theory states that a given piece of land is allotted to
its highest and best use based upon the demands from society (e.g.,
distance from population centers) and the characteristics of the
land (e.g., suitability of the land for development) (van Kooten,
1993). Using analogous logic, forest land ownership patterns can
also be thought of as being a function of the demands of society and
the inherent characteristics of the land (Wear, 2012).

Land rent theory, while a useful construct, is, as with all theories,
a simplification of the underlying processes. There are countless
other factors that also impact the ultimate land use and ownership
patterns, including historical factors. Banner (2011) provides an
overview of the historical ownership patterns of the U.S. and dis-
cusses the country’s adaptation of the British ownership system. As
the Euro-Americans progressed across the U.S., they brought with
them their ownership systems. From the meets and bounds mea-
surements of the eastern U.S., a more systematic land division
system, the Public Land Survey System, was authorized by the Land
Ordinance of 1785 and first implemented in Ohio. This system

resulted in the very ordered, checkerboard patterns of land
ownership that exist across many parts of the country.

Homesteading acts, such as the Homestead Act of 1862, have
played an important role in the legitimization and distribution of
lands across much of the U.S. Individuals meeting certain re-
quirements were able to claim lands, but if they were unable to
“prove their claims” or became delinquent on taxes, the land, by
default, reverted to public ownership. These lands were then sold
or retained by the government, many of which became the basis for
the federal holdings in the western U.S. The government, at federal-
, state-, and local-levels, has also actively procured land. For
example, the Weeks Act of 1911 and the Organic Act of 1916 set out
to place large swaths of undeveloped land into the hands of the
federal government, and as a result, millions of hectares of forest
land were put into federal ownership. Land grants were used as a
way to encourage the western expansion of railroads and funding
for school systems. Many of these allotments were made over 100
years ago, but many still persist and the effects of others, e.g., the
checkerboard ownership pattern, are still very apparent.

Private companies and individuals have acquired forest land
through other mechanisms besides just land grants and home-
steading; namely purchases and, for some individuals, inheritances.
For forest lands, it was initially companies operating sawmills, pulp
mills, and other wood consuming factories that acquired large
acreages. These lands tended to be in more rural areas. In more
recent times, there has been large-scale divestiture of forest lands
by traditional, vertically-integrated forest companies with many of
these acreages now being owned by timber investment manage-
ment organizations and real estate investment trusts (Zhang,
Butler, & Nagubadi, 2012). Although many large parcels of forest
land are owned by these corporations and their investors, private
citizens make up the vast majority of forest land owners in the U.S.
Ownership of land by individuals has long been an American ideal
and millions of Americans now own forest land, predominately for
privacy, esthetic, and family legacy reasons (Butler, 2008).

Currently, forest ownership data is available in aspatial or coarse
spatial formats, with fine-scale spatial data having limited avail-
ability. Tabular data are available from the USDA-FS (e.g., Smith
et al., 2009), but lack spatial detail beyond state- or county-level
summaries. The current spatial datasets are incomplete in extent
and/or thematic detail (i.e., only report broad ownership categories,
such as public versus private). Detailed, parcel-level maps in elec-
tronic formats, while available in some areas of the country, are not
available for many locales. Moreover, the available datasets are
often in different and/or inconsistent formats, are not in a
centralized location, can cost substantial amounts of money to
acquire, and can be difficult to work with. Some commercial sour-
ces have aggregated these data, but these sources can be expensive
and still exclude large swaths of the U.S. The Protected Areas
Database (PAD; Conservation Biology Institute (CBI), 2010) is a
national geospatial database established to document the locations
of protected lands across the U.S. and includes information on
ownership of protected lands. PAD is freely available for public use,
and some elements of PAD are included in this study. Ongoing ef-
forts provide periodic updates to PAD, and references here pertain
to PAD-US (CBI Edition) v1.1. PAD is built by assembling spatial data
from public agencies from across the country; the accuracy of PAD
varies among states depending on the quality of these input data.
Private ownership categories are included only for private pro-
tected areas, which comprise a small minority of all private forest
holdings in the U.S. A national database of conservation easements
(www.conservationeasement.us) has been created, but this source
focuses only on the small segment of the private land that is under
easements and is not useful for mapping broad ownership patterns.
A national database of land ownership parcels is not yet available,
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other data sources, such as PAD, do not provide the requisite res-
olution of ownership categories for private lands, and hence there
is a need for forest ownership spatial data products.

There are at least two previous efforts that generated forest
ownership maps for the conterminous U.S., both of which relied on
PAD for delineating public lands. Butler (2008) used PAD to define
public ownership and NLCD to define forest land to produce a map
depicting two broad ownership categories, private and public. This
product is available only as an image, i.e., no geospatial dataset was
published. Nelson, Liknes, and Butler (2010b) expanded on this
effort by differentiating between federal and other government
forest lands on the public side and, using FIA data, depicting
percent corporate ownership within 648 km? (250 mi®) hexagons.
A geospatial dataset for this products was published (Nelson,
Liknes, & Butler, 2010a). These products could be improved by
providing more detailed ownership categories and increased
spatial resolutions.

This paper presents methods for producing spatial products that
depict forest ownership patterns using FIA, PAD, and other data
sources. FIA collects forest attributes, including ownership class,
from a random set of points across the U.S. (Bechtold & Patterson,
2005). There are examples of techniques that take point-based
estimates, often FIA data, and, combined with other data, create
spatially continuous data layers of biophysical forest attributes.
Ohmann and Gregory (2002) used canonical correspondence
analysis and nearest-neighbor imputation to relate FIA plot attri-
butes with topographic, geologic, climatic, satellite, and location
variables and interpolate plot attributes across the landscape.
Wilson, Lister, and Riemann (2012) used a similar approach.
Blackard et al. (2008) used a regression tree approach to model

biomass across the U.S. based on FIA sample point locations and
ancillary data including satellite, topographic, climatic, soils,
geologic, ecological, and social variables. A classification tree
approach was also used to map forest types across the contermi-
nous United States and Alaska (Ruefenacht et al., 2008). These ap-
proaches appear to work reasonably well for mapping biophysical
forest attributes, but are untested for mapping social attributes
such as ownership.

The primary objective of this paper is to present techniques for
generating a forest ownership geospatial dataset for the U.S. The
methods selected must be operationally feasible for application
across the conterminous U.S. and result in forest ownership spatial
products with finer spatial, thematic, and temporal resolutions
than are currently available. This product will build upon existing
efforts, such as PAD. The resulting forest ownership geospatial
dataset should be able to address strategic level questions related to
forest policy, business, and conservation. The current tabular forest
ownership products do not provide sufficient information to meet
the needs outlined above nor do the current geospatial products.
The spatial products resulting from the techniques identified in this
paper should be well suited for: visually depicting broad ownership
patterns across national, regional, or state scales; incorporation into
strategic forest assessments, such as state forest assessments, as
mandated under the 2008 Farm Bill (P.L. 110—234 § 8002); inclusion
in national and state forest statistical reports (e.g., Smith et al.,
2009); and incorporation into other spatial analyses where these
spatial and thematic scales are appropriate. A forest ownership
map for the U.S. is not included as part of this paper. The purpose of
this paper is to test different techniques for generated such a map.
The full map will be published separately as a cartographic product

Point-based Sample of Federal and State (humar?t:;erulation Forest Area Estimates
Forest Ownership Ownership Boundaries — f:re’:ts Iand‘ by Ownership Group
Classification (FIA) (PAD) ! ! (FIA)

cover, etc.)
| l |

| |

Validation Dependent Independent
Dataset Variable Variables

Thiessen Polygon

Multinomial Logit

Classification Tree

vaupation < outputs € MODELING  PROCESSINGS  INPUTS

Thiessen Multinomial Classification

Polygon Logit Tree
—{ Validation Data

Thiessen Multinomial Classification

Polygon Logit Tree

Fig. 1. Overview of approach used in this paper to compare techniques for generating a forest ownership spatial product.
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(Hewes, Butler, Liknes, Nelson, & Snyder, 2013b) and a download-
able spatial dataset (Hewes, Butler, Liknes, Nelson, & Snyder,
2013a).

Methods

Using data from FIA and other sources, three methods were
investigated as techniques for creating a forest ownership geo-
spatial dataset: Thiessen polygons, multinomial logit, and classifi-
cation tree. These methods were selected because of their previous
applications in extrapolating FIA data and their diversity of ap-
proaches (i.e., simplistic to complex). Each method was tested using
identical inputs and validation procedures in four states: Alabama,
Arizona, Michigan, and Oregon. These states were selected because
they represent different regions of the U.S. and a variety of
ownership (e.g., public versus private) and land use (e.g., forest
versus non-forest) patterns based on statistics published by the
USDA-FS (Smith et al., 2009). An outline of the general approach
used in this paper is provided in Fig. 1. After describing the data
sources, each approach is discussed along with methods for
comparing the results.

Data sources

FIA has established a set of permanent inventory plots across the
U.S. (Bechtold & Patterson, 2005). A hexagonal sampling frame,
with each hexagon approximately 2428 ha (6000 ac), was gener-
ated across the U.S. and within each hexagon a sample point was
randomly located. Inventory plots at each sample point are
remeasured every 5—7 years in the East and every 10 years in the
West. FIA uses remote sensing and subsequent ground-truthing to
determine if a plot is likely to contain any forest land. Forest is
defined as “land at least 120 feet wide and 1 acre in size with at
least 10 percent cover (or equivalent stocking) by live trees of any
size, including land that formerly had such tree cover and that will
be naturally or artificially regenerated” (Smith et al., 2009 p. 142) —
a land use, rather than a land cover, definition. For the sample
points that are deemed to be forested, the ownership is determined
from public property tax records and classified into 1 of 16 cate-
gories (Table 1). A natural resource professional, such as a forester
or ecologist, visits each forested plot to collect information on the
species, size, and health of trees in addition to various environ-
mental conditions. This information is used to make tabular esti-
mates, including area by forest ownership category (e.g., Table 2 in
Smith et al.,, 2009), and for the biophysical data, raster spatial
products using interpolation techniques (Wilson et al., 2012).

The ownership information for the sample points that were
determined to be forested formed the underlying data for the forest
ownership modeling and validation datasets for this study. These
sample points represent the centers of the FIA inventory plots. This
study utilized: 3768 forested points from Alabama; 1716 from
Arizona; 9274 from Michigan; and 2535 from Oregon with all
points inventoried between 2003 and 2007. The differences in
numbers of sample points per state are due to differences in forest
area and differences in spatial and temporal sampling intensities
which vary due to funding availability.

The other major source of ownership information was PAD
(Conservation Biology Institute (CBI), 2010). This source is designed
primarily to identify the locations of protected lands across the U.S.
It also includes information on ownership, but only for those pro-
tected lands that are in the database, which are primarily publicly
owned. There is a high degree of agreement between PAD and FIA
for federally owned forest land, a moderate agreement for state
owned forest land, and a low degree of agreement for forest land
owned by local governments, but agreement varies considerably

Table 1
Forest ownership categories as defined by FIA (USDA-FS, 2010) and the broader
categories used for generating a forest ownership geospatial product.

Ownership FIA code Description
geospatial
product
category
Federal
11 National Forest
12 National Grassland
13 Other Forest Service
21 National Park Service
22 Bureau of Land Management
23 Fish and Wildlife Service
24 Departments of Defense/Energy
25 Other Federal
State
31 State
Local
32 Local (County, Municipality, etc.)
33 Other Non Federal Public
Corporate
41 Corporate (including private educational institutions)
Other private
42 Non-Governmental Conservation/Natural Resources
Organization
43 Unincorporated Partnerships/Associations/Clubs
44 Native American (Indian) — within reservation
boundaries
Family
45 Family/individual

among states (Table 2). Combining the federal and state ownership
data from PAD with the model outputs improved the accuracies and
was therefore incorporated as described below.

Data representing human population pressures, accessibility,
forest attributes, surrounding land cover, and other factors hy-
pothesized to influence forest ownership categories were included
in the multinomial logit and classification tree models (Table 3). All
data used had to be spatially explicit, have national coverage, be
readily available, and be hypothesized to influence ownership
patterns. Population/housing density is hypothesized to be a pre-
dictor because there are few, if any, people living on public or
corporate lands. As population pressures increase, there may be
two different consequences. For those lands deemed to have high
conservation and/or social benefit values, the population pressures
may shift land towards public ownerships. In the absence of public
ownership, the likelihood of an ownership category that maximizes
land sale profits, e.g., family and individual ownerships, may be
favored. How forests are managed is an indication of ownership
objectives, especially for industrial forest ownerships, and there-
fore forest type and basal area variables were included. The land-
scape context can influence, or be a result of, ownership patterns
and therefore fragmentation and land cover variables were
included. Overall, land values are a function of population pressures
and the amenity values (Kline & Alig, 2005; Snyder, Kilgore,
Hudson, & Donnay, 2008), so variables representing proximity to
water and proximity to public lands were also tested.

Thiessen polygons

The Thiessen polygons, also known as Voronoi tessellation,
approach assumes that the underlying pattern is non-random and
the value of any unknown point can be predicted, to some degree,
by its proximity to a known point (Okabe, Boots, Sugihara, & Chiu,
2000). In creating Thiessen polygons, areas are built around each
point in the model dataset such that any location within a given
polygon is closer to its associated point than to any other input
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Table 2

Comparison of FIA (USDA-FS, 2010) and PAD (CBI, 2010) forest ownership classifi-
cations at random forest sample points in Alabama, Arizona, Michigan, and Oregon.
Acc = overall accuracy (sum of the major diagonal); x = unweighted kappa statistic;
n = number of observations.

A. Alabama (Acc = 96.7; k = 0.73; n = 3768)

PAD Total
Federal State Local Private
FIA Federal 3.9 0.0 0.0 0.5 44
State 0.1 0.8 0.0 0.6 1.5
Local 0.0 0.0 0.0 0.5 0.5
Private 0.2 14 0.0 92.0 93.6
Total 4.2 2.1 0.0 93.6 100.0
B. Arizona (Acc = 95.7; k = 0.92; n = 1716)
PAD Total
Federal State Local Private
FIA Federal 53.0 0.1 0.0 13 54.4
State 03 8.8 0.0 0.7 9.8
Local 0.0 0.0 0.1 0.1 0.1
Private 0.8 1.0 0.0 33.8 35.6
Total 54.1 9.9 0.1 359 100.0
C. Michigan (Acc = 95.4; k = 0.92; n = 9274)
PAD Total
Federal State Local Private
FIA Federal 151 0.1 0.0 0.4 15.6
State 0.2 21.1 0.0 1.1 224
Local 0.0 0.1 0.0 1.7 1.8
Private 04 0.7 0.0 59.2 60.2
Total 15.6 22.0 0.0 62.4 100.0
D. Oregon (Acc = 67.6; k = 0.35; n = 2535)
PAD Total
Federal State Local Private
FIA Federal 46.2 0.5 0.0 15.9 62.6
State 0.5 0.3 0.0 24 3.2
Local 0.2 0.0 0.0 0.3 04
Private 11.7 1.0 0.0 21.1 33.8
Total 58.5 1.9 0.0 39.6 100.0

point. This approach is essentially a nearest neighbor interpolation
in which the polygons created take on the attributes of the parent
point, including, in this case, ownership category. All processing
was done using the ArcMap 10.0 geographic information system
(ESRI, Redlands, CA).

For each state, the FIA points in the model dataset were used to
create the Thiessen polygons. First, federal and state FIA points that
were located within the boundaries of federal and state ownership
areas contained in the PAD were dropped from the model dataset
because these PAD polygons were later burned into the final spatial
data product. All other sample points in the model dataset,
including federal and state FIA points not within PAD polygons,
were used as inputs for the Thiessen polygons. After the Thiessen
polygons were generated, the results were burned in or “unioned”
with the PAD federal and state ownership polygons with the PAD
data given precedence where there was overlap. Experimenting
with different techniques for handling sample points that fell
within the PAD polygons and subsequent inclusion of the PAD data
showed the approach outlined here to provide the highest
accuracies.

Multinomial logit model

A multinomial logit approach (Allison, 1999) was developed to
test the likelihood that a sample point (or pixel) was in one of the

six ownership categories. The resulting model could then be used to
model the ownership categories for all pixels across the area of
interest. In contrast to the Thiessen polygon approach which
assumed that ownership category was only influenced by a
geographically neighboring sample point, this method models
ownership patterns as the result of social, economic and biophys-
ical factors.

Solution of a multinomial logit model requires one of the
possible outcomes of the dependent variable to be chosen as the
reference level. For all of the runs reported here, the family
ownership category was chosen as the reference level, and the
models were solved comparing the likelihood of membership in
each of the remaining five ownership types relative to this one. The
model was solved using the maximum likelihood estimation
method with full model selection using SAS version 9.1 (SAS
Institute, Cary, NC). Regression coefficients and significance levels
are reported so that significant variables can be identified and the
direction of their influence observed.

Separate models were developed for each of the four states
to allow for state-specific patterns to be discerned. Prior to
model construction, pairwise correlations were computed
among the potential independent variables within each state. If
partial correlations were higher than 0.35, the variable with the
lower explanatory power was dropped from consideration in
the corresponding model to avoid multicollinearity. Correlations
among some of the predictor variables differed by state, so the
variables retained in each state model varied slightly. In the
Arizona and Oregon models, the state and local ownership
categories were combined into a single category because there
were too few local forest ownership sample points to create
separate models. Although federal and state ownerships were
included in the models, the relatively high accuracies and finer
spatial resolution available in PAD led to further refinement of
the predictions, similar to the approach used with PAD in the
Thiessen polygon models. If there was a discrepancy between
the model prediction and PAD data for federal and state own-
erships, the PAD data took precedent and its value was assigned
to the point.

Classification trees

Using the same predictor variables as the multinomial logit
method, a classification tree approach was used to predict forest
ownership categories within each state. Again, the resulting model
could be used to predict the ownership categories for all pixels
across the area of interest. Classification trees are a nonparametric
tool for predicting a variable that aims to minimize variability
within the final predicted nodes/bins and to maximize differences
among the nodes/bins by segmenting the data based on predictor
variables (Breiman, Friedman, Olshen, & Stone, 1984). These
methods: allow the inclusion of categorical and continuous vari-
ables; canyield high classification accuracy with complex datasets;
are relatively easy to apply and interpret; and permit high corre-
lations among predictor variables.

This approach was implemented using the random forest algo-
rithm in the R statistical computing environment (Liaw & Wiener,
2002; R Development Core Team, 2012). The random forests algo-
rithm (Breiman, 2001) builds a series of classification trees by
sequentially withholding observations and variables. Once the “forest
of trees” has been constructed, an observation is passed through all of
the trees, and the resulting class is assigned based on the most
commonly predicted class. Based on classification accuracies, this
method performed better than other classification tree algorithms,
i.e., tree (Ripley, 2011) and rpart (Therneau, Atkinson, & Ripley, 2011),
as is consistent with other research (Gislason, Benediktsson, &
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Descriptions of independent variables used to model forest ownership patterns. Values are means (and standard deviations).

Category/variable Short name Description Data Alabama Arizona Michigan Oregon Data source (and reference)
type®
Population
Population POP_DENS Number of people per square C 56.43 (138.83) 9.50(52.00) 18.18 (68.32) 10.68 (51.73) U.S. Census (GeoLytics,
density kilometer within a Census block 2004)
group
Housing density = HOUSE_DENS Number of houses per square C 21.55 (55.06) 3.49(20.99) 9.01(31.12) 4.16 (21.65) U.S. Census (GeoLytics,
kilometer within a Census block 2004)
group
Population POP_GI Average of the population C 306.29 (3072) 140.17 (1368) 173.41(1921) 225.94(2990) U.S. Census (ESRI, 2002)
gravity index divided by the distance (km)
(population squared for the three most
pressure) influential cities, towns, or
places
Roads
Distance to roads RD_DIST Distance (km) to nearest road C 0.40 (0.37) 0.92 (1.16) 0.99 (6.60) 0.56 (0.92) ESRI Streets (GDT, 2002)
(limited access highway,
highway/secondary road, or
local road)
Road density RD_DENS Density (km/km?) of roads C 1.20 (0.88) 0.75 (0.85) 1.26 (0.94) 1.32(1.11) ESRI Streets (GDT, 2002)
Forest attributes
Forest type HARDWOOD Dummy variable indicating if B 0.53 (0.01) 0.23 (0.01) 0.74 (0.00) 0.07 (0.01) USFS-FIA (Bechtold &
the plot was classified as Patterson, 2005)
hardwood (1) or softwood (0)
Basal area FOR_BA Basal area of live trees over C 69.47 (26.07)  53.80(43.08) 75.78 (38.67)  96.22 (73.17) USFS-FIA (Bechtold &
2.5 cm dbh in m?/ha Patterson, 2005)
Core forest FOR_CORE Proportion of forest land within P 0.32 (0.22) 0.24 (0.33) 0.37 (0.28) 0.32 (0.29) Morphological Spatial
1 km that is at least 120 m away Pattern Analysis of Forest
from a nonforest edge Cover (Riitters, 2011, 64 p.)
Land cover
Forest PROP_FOR Proportion of land that is P 0.70 (0.20) 0.44 (0.39) 0.74 (0.23) 0.63 (0.33) U.S. National Land Cover
forested within a 1 km radius Database (Homer et al.,
2004)
Agriculture PROP_AG Proportion of land that is P 0.12 (0.15) 0.00 (0.03) 0.09 (0.18) 0.04 (0.15) U.S. National Land Cover
agricultural crop or pasture Database (Homer et al.,
land within a 1 km radius 2004)
Developed PROP_DEV Proportion of land that is P 0.04 (0.07) 0.01 (0.03) 0.06 (0.09) 0.02 (0.07) U.S. National Land Cover
developed within a 1 km radius Database (Homer et al.,
2004)
Other PROP_OTH Proportion of land that is not P 0.12 (0.10) 0.55 (0.39) 0.09 (0.11) 0.30 (0.30) U.S. National Land Cover
forest, agriculture, or developed Database (Homer et al.,
within a 1 km radius 2004)
Other
Distance to water WAT_DIST Distance (km) to nearest C 2.67 (2.03) 37.41(37.64) 2.86(2.28) 4.61 (4.88) National Atlas of the United
stream, river, pond, lake, or States (2005)
other permanent water body
Water within WAT_0_25 Dummy variable indicating B 0.06 (0.00) 0.00 (0.00) 0.06 (0.00) 0.05 (0.00) National Atlas of the United
0.25 km whether there is a permanent States (2005)
water body within 0.25 km of
actual plot location
Water within WAT_1_0 Dummy variable indicating B 0.25 (0.01) 0.01 (0.00) 0.24 (0.00) 0.17 (0.01) National Atlas of the United
1.0 km whether there is a permanent States (2005)
water body within 1.0 km of
actual plot location
Water within WAT_5_0 Dummy variable indicating B 0.86 (0.01) 0.09 (0.01) 0.84 (0.00) 0.66 (0.01) National Atlas of the United
5.0 km whether there is a permanent States (2005)
water body within 5.0 km of
actual plot location
Distance to PUB_DIST Distance (km) to nearest public C 14.13 (12.47) 5.04(12.22) 1.97 (3.37) 0.64 (1.45) PAD (CBI, 2010)
public lands lands as defined by PAD
Distance to PRIV_DIST Distance (km) to nearest private C 0.04 (0.26) 1.97 (3.02) 0.29 (0.63) 2.27 (3.80) PAD (CBI, 2010)
private lands lands as defined by PAD
PAD inclusion PAD_INCLU  Dummy variable indicating B 0.06 (0.00) 0.64 (0.01) 0.38 (0.01) 0.60 (0.01) PAD (CBI, 2010)
whether a point falls within the
boundaries of a federal, state, or
locally owned parcel according
to the PAD
PAD defined PAD_CALL Ownership type (Federal, State, D - — PAD (CBI, 2010)

ownership type

Local, or Private) according to
the PAD

¢ Variable type: B = binary/dummy; C = continuous; D = discrete/categorical; P = proportion.
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Table 4
Weighting matrices used for calculating weighted kappa (k) statistics for forest
ownership confusion matrices with 5 and 6 ownership categories.

A. Predicted

Federal State/local Family Corporate Other private

Observed Federal 1.0 0.5 0.0 0.0 0.0
State/local 0.5 1.0 0.0 0.0 0.0
Family 0.0 0.0 1.0 0.5 0.5
Corporate 0.0 0.0 0.5 1.0 0.5
Other private 0.0 0.0 0.5 0.5 1.0
B. Predicted

Federal State Local Family Corporate Other private

Observed Federal 1.0 05 05 00 0.0 0.0
State 0.5 1.0 05 00 0.0 0.0
Local 0.5 05 10 0.0 0.0 0.0
Family 0.0 00 00 1.0 0.5 0.5
Corporate 0.0 00 00 05 1.0 0.5
Other private 0.0 00 00 05 0.5 1.0

Sveinsson, 2006). As with the other approaches, if a predicted
ownership category differed from the federal or state ownership as
identified in PAD, the point was assigned the PAD value.

Accuracy assessment

Model accuracies were assessed using a combination of site-
specific and non-site specific approaches. Cross-validation was
used to assess site-specific accuracies. Ten percent of the points in
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the initial FIA dataset were withheld as validation points. This
subsampling was accomplished by randomly selecting 10 percent
of the points from each ownership category within each state. This
percentage is within the range used by Blackard et al. (2008) — a
study that also relied on FIA sample points for modeling and vali-
dation. The same 1741 validation points were used to assess the
accuracy of all methods. To assess the differences between the
observed and predicted values, confusion matrices were created
with the rows representing the observed ownership categories and
the columns representing the predicted categories. Cell values
reflect the percentages of the validation points that fell within the
given observed/predicted combination. The overall accuracy is the
sum of the major diagonals of each matrix. To test the hypothesis
that the proportions correctly predicted were not significantly
different (i.e., p; = p), the p-value was calculated based on
Z = |d|/s.e. where d = pi — Dy,

s.e. = \/(51(1 —D1) + D2(1 = P3) — 2(P12 — P1D2))/Nes
P12 = proportion in common, and n. = effective sample size
(Dorofeev & Grant, 2006).

Weighted kappa (k) statistics (Cohen, 1968) were used to
summarize each confusion matrix. A «,, value of 1.0 represents
perfect agreement between the predicted and observed values and
a value of 0.0 represents full disagreement. The weightings
(Table 4) take into account where the misclassifications are and
here are used to differentiate between misclassifications within
versus outside the public/private quadrants of the matrices. Ninety-
five percent confidence intervals were calculated using the method
described by Fleiss, Cohen, and Everitt (1969). ky values and
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Fig. 2. Percentage of forest land by ownership based on FIA estimates for: A) Alabama, B) Arizona, C) Michigan, and D) Oregon. Error bars represent 95 percent confidence intervals.
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associated confidence intervals were computed using the Cohen
kappa function (Revelle, 2011) in the R statistical computing
environment.

Non-site specific accuracies were assessed by comparing the
predicted ownership percentages with those percentages based on
the FIA samples for each state.

Results

Based on FIA estimates, the distribution of forest ownership
varies considerably across the four states included in this analysis
(Fig. 2). In Alabama, the forest ownership is dominated by family (63
percent) followed by corporate (29 percent). In Michigan, family is
also dominant, but to a lesser extent (46 percent), and there are
substantial holdings by state (21 percent), federal (15 percent), and
corporate (14 percent) ownerships. In Oregon and Arizona, federal
ownership dominates (60 and 52 percent, respectively), but corpo-
rate (20 percent) is the second most common category in Oregon and
other private (31 percent), composed largely of Native American
tribal lands, is the second most common category in Arizona.

Across the four study states, the Thiessen polygon method
correctly predicts 77 percent of the validation points (k,, = 0.76)
(Table 5). The multinomial logit method correctly predicts 76
percent of the validation points (x,, = 0.73). The classification tree
approach correctly predicts 79 percent of the validation points
(kw = 0.76). The only statistically significant differences are be-
tween the multinomial logit and classification tree approaches.

For Alabama, the percentage correctly predicted ranges from 65 to
71 across the methods (Fig. 3). The classification tree approach has a
significantly (p-value = 0.04) higher percentage correctly predicted

Table 5
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Fig. 3. Percentage of correctly predicted forest ownership validation points in Ala-
bama, Arizona, Michigan, and Oregon using Thiessen polygons, multinomial logit, and
classification tree approaches. Error bars represent 95 percent confidence intervals.
Letters represent approaches that are not significantly different from each other within
each state.

than the Thiessen polygon approach. The multinomial logit approach
is not significantly different from either of the other approaches. The
weighted kappas for the three methods are very similar (Fig. 4). The
differences between the accuracies and the kappas are due to how the

Observed and predicted forest ownership using: A) Thiessen polygon, B) multinomial logit, and C) classification tree approaches. Values are percentages of 1741 validation
points across Alabama, Arizona, Michigan, and Oregon. Acc = overall accuracy (sum of the major diagonal); «,, = weighted kappa statistic; n = number of observations.

A. Thiessen polygons (Acc = 77.3; k,, = 0.76; n = 1741)

Predicted
Federal State Local Family Corporate Other private Total
Observed Federal 229 0.2 0.0 0.2 0.5 0.0 238
State 02 13.0 0.0 0.6 0.1 0.0 13.8
Local 0.1 0.0 0.3 0.7 0.1 0.1 13
Family 0.8 0.8 0.6 30.2 7.1 0.6 40.1
Corporate 1.2 0.8 03 6.1 8.0 0.3 16.7
Other private 0.2 0.1 0.0 1.0 0.2 2.9 4.4
Total 254 14.9 13 38.8 15.9 3.8 100.0
B. Multinomial logit regression (Acc = 76.3; ky, = 0.73; n = 1741)
Predicted
Federal State/local® Family Corporate Other private Total
Observed Federal 23.0 0.1 0.5 0.3 0.0 238
State/local” 0.6 12.8 1.6 0.1 0.0 15.0
Family 14 0.6 36.6 13 0.2 40.1
Corporate 2.2 0.6 121 1.8 0.1 16.7
Other private 0.5 0.1 14 0.2 2.2 4.4
Total 27.7 14.1 52.1 3.7 2.4 100.0
C. Classification tree (Acc = 78.9; ky = 0.76; n = 1741)
Predicted
Federal State Local Family Corporate Other private Total
Observed Federal 224 0.1 0.0 0.5 0.9 0.0 238
State 0.3 12.8 0.0 0.7 0.1 0.0 13.8
Local 0.2 0.0 0.1 0.8 0.2 0.0 13
Family 0.9 0.5 0.0 353 33 0.1 40.1
Corporate 1.6 0.5 0.0 8.9 5.7 0.0 16.7
Other private 0.3 0.1 0.0 1.2 0.2 2.6 4.4
Total 25.6 14.0 0.1 474 10.3 2.6 100.0

2 Due to low numbers of points owned by local governments, Local was combined with State for the logistic regression method.
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Fig. 4. Comparisons of state-level weighted kappa (k) statistics using Thiessen
polygons, multinomial logit, and classification tree approaches. Error bars represent 95
percent confidence intervals.

errors are propagated. The classification tree and multinomial logit
approaches over-predict the dominant ownership category, family,
and under-predict other categories, especially corporate (Fig. 5).

For Arizona, the methods correctly predict between 92 and 94
percent of the validation points (Fig. 3). The accuracies are not
significantly different among the methods. The kappa values are
likewise similar among the methods (Fig. 4). The predictions
among the ownership categories are similar with the exception of
corporate where the Thiessen polygon approach slightly over-
predicts the FIA estimate and the other methods fail to predict
any acres for this category (Fig. 5).

For Michigan, 79 to 83 percent of the validation points are
correctly predicted across the methods (Fig. 3). The accuracy of the
classification tree approach is significantly higher than the other
methods, and the other two methods are not significantly different
from each other. The weighted kappa statistics for the classification
tree approach is slightly higher than the other approaches (Fig. 4).
The estimates for federal and state ownership categories are similar
across approaches and the Thiessen polygon approach more closely
matches the FIA estimates for the other categories (Fig. 5).

Oregon has the greatest range in the model accuracies: 63 to 74
percent (Fig. 3). For this state, the Thiessen polygon approach is
significantly more accurate than the other approaches and the
other two approaches are not significantly different from each
other. The weighted kappa for the Thiessen polygon approach is
higher than classification tree approach which is higher than the
multinomial logit approach (Fig. 4). All of the approaches over-
estimate federal ownership and under-estimate family owner-
ship, but the Thiessen polygon approach is closest to the FIA esti-
mates (Fig. 5).

The multinomial logit and classification tree approaches allow
for the investigation of what factors are correlated with forest
ownership patterns. The significant variables in the multinomial
logit models vary by ownership group and state (Table 6). The
family ownership category was used as the reference condition in
all states. As such, the model coefficients are interpreted relative to
this ownership category. Housing density (HOUSE_DENS) is sig-
nificant, with a negative sign, in at least one of the models for

Arizona, Michigan, and Oregon. This suggests, for example, that
points within the vicinity of higher housing density areas are less
likely to be in federal versus family forest ownership. Road distance
(RD_DIST) is significant in at least one model in Alabama, Arizona,
and Michigan and had a positive sign. Forest basal area (FOR_BA)
has a positive, significant coefficient in at least one model in each
state. Proportion agricultural land (PROP_AG) is significant in at
least one Alabama, Oregon, and Arizona model; the sign is negative
in the Alabama and Oregon models and positive in the Arizona
model. One of the water distance variables is significant in four of
the Michigan models and one of the Arizona and Oregon models;
the signs of the coefficients vary. Distance to public land (PUB_D-
IST) is significant in Alabama, Arizona, and Michigan models (due to
multicollinearity it was dropped from the Oregon models) with
varying signs. Distance to private land (PRIV_DIST) is significant in
Arizona, Michigan, and Oregon models (it was dropped from the
Alabama models) with positive, often large, signs. The population
gravity index (POP_GI) is positive and significant in at least one of
the Alabama and Michigan models. Forest type (HARDWOOD) is
negative and significant in the corporate and other private models
for Alabama and Arizona, respectively. The PAD variables are sig-
nificant in multiple models for each state.

As with the multinomial logit model, the variables which are the
most influential in the classification tree models vary considerably
among the states (Fig. 6). The Arizona and Michigan classification
tree models are the most similar in terms of relative importance
values of variables. The ownership category from the PAD (PAD_-
CALL) and distance to public land (PUB_DIST) are the most influ-
ential variables in both of these models, but the difference between
the relative importance values of these variables is much greater in
Michigan. In the Oregon model, there are numerous variables that
have high relative importance values including: the population
gravity index (POP_GI); population density (POP_DENS); housing
density (HOUSE_DENS); forest basal area (FOR_BA); distance to
water (WATER_DIST); distance to road (RD_DIST); distance to
public land (PUB_DIST); and density of the road network
(DENS_RD). The Alabama model has many variables with high
relative importance values including: distance to public land
(PUB_DIST), which has by far the greatest relative significance;
proportion agricultural land (PROP_AG); the population gravity
index (POP_GI); distance to road (RD_DIST); and forest basal area
(FOR_BA).

Discussion

The three methods correctly predicted the observed ownership
values between 76 and 79 percent of the time (Table 5), values
comparable to many spatial products derived from remotely sensed
imagery (e.g.,, Homer, Huang, Yang, Wylie, & Coan, 2004). The
multinomial logit regression approach, and to a lesser degree the
classification tree approach, was prone to over-estimation of the
dominant ownership categories, especially in Alabama, Michigan,
and Oregon (Fig. 5). The accuracies of the methods vary across
states and ownership categories with a subset of them being
significantly different (Fig. 4). This variability is a result of forest
ownership heterogeneity, spatial configurations, and other factors,
such as historical land disposition events. In areas with lower
heterogeneity and larger more contiguous ownership blocks (e.g.,
Arizona), accuracies are higher. Although the sampling intensity
will not influence the expected values of the point estimates, higher
sampling intensities do, all else being equal, produce tighter con-
fidence intervals.

The Thiessen polygon method has accuracies that are similar to
the other methods, requires fewer input variables, better corre-
sponds to the FIA aspatial estimates (i.e., shows lower biases
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Fig. 5. Estimated percentages of forest area by ownership category using Thiessen polygons, multinomial logit, and classification tree approaches along with the corresponding

percentage of FIA validation points. Error bars represent 95 percent confidence intervals.

towards dominant categories), and is much simpler to implement.
This method can be used consistently for all states and across
borders, whereas other methods appear to require development of
separate models that are fit specifically for different states or at
least regions. For these reasons, it was selected as the method for
producing a forthcoming forest ownership geospatial dataset for
the conterminous U.S. (Hewes et al., 2013b). Examples of maps
created with this approach are in Fig. 7.

Although the multinomial logit and classification trees were not
superior for generating a national geospatial dataset, these ap-
proaches do provide additional insights into factors that are
correlated with forest ownership categories and patterns. Based on
the multinomial logit models, variables related to remoteness and

lower population pressures tended to indicate federal, state and/or
corporate ownerships — ownerships that tend to have larger, more
contiguous holdings. For example, as distance to road increases, the
probability of forest land in Michigan being family owned
decreases.

Public and private distance variables are important in many of
the Arizona and Michigan models and at least one multinomial
logit model for the other two states. The signs for the significant
variables are as expected. Forest structure is correlated with forest
ownership, especially corporate ownership patterns. Forest basal
area (FOR_BA) is significant in 3 of 4 of the corporate models. As
basal area increases, the probability of corporate ownership (versus
family) increases. This may be an indication of more intensive forest
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Table 6

Results from multinomial logit models of forest ownership models in Alabama,
Arizona, Michigan, and Oregon. Numbers represent coefficients and asterisks
represent significance levels.

Variable Model® Alabama  Arizona Michigan  Oregon
INTERCEPT FED —3.94"*  0.05 —1.53%* 0.87***
INTERCEPT STATE —4.05"** —5.60"** —6.53"** —1.70"**
INTERCEPT LOCAL —2.93** — —3.93"* —
INTERCEPT CORP 0.09 —1.84"* 2,67 —-0.09
INTERCEPT OTH_PRIV ~ —5.11*%*  -2.84™* 360" —1.12%
HOUSE_DENS  FED —-0.01 0.01 —-0.02* —0.05***
HOUSE_DENS  STATE 0.00 —0.06* 0.00 0.00
HOUSE_DENS  LOCAL 0.00 - 0.00** -
HOUSE_DENS  CORP 0.00 0.01 0.00 —0.02**
HOUSE_DENS  OTH_PRIV  0.00 —-0.01 0.00 —0.01
RD_DIST FED —-0.40 0.28 0.67*** —-0.03
RD_DIST STATE 0.54 0.18 0.63*** —0.48
RD_DIST LOCAL -1.20 - —-0.42 -
RD_DIST CORP 0.34** 0.42 0.66*** -0.16
RD_DIST OTH_PRIV ~ 0.31 0.79" 0.68*** 0.18
FOR_BA FED 0.00 0.01 0.00 0.00
FOR_BA STATE 0.00 -0.01 0.00 0.01**
FOR_BA LOCAL —-0.02 - 0.00 -
FOR_BA CORP 0.00** 0.01 0.02*** 0.01***
FOR_BA OTH_PRIV  0.01 0.02** 0.01** 0.00
PROP_AG FED —-0.02 0.07 - 0.00
PROP_AG STATE —-0.04* 0.13* - 0.01
PROP_AG LOCAL —0.03 — — —
PROP_AG CORP -0.05**  -0.03 - 0.00
PROP_AG OTH_PRIV ~ —-0.01 —-0.05 - -0.03*
WAT_1_0 FED 0.36 — 0.33* 0.40*
WAT_1_0 STATE —-0.02 - 0.54** 0.31
WAT_1_0 LOCAL 0.29 - 0.50** -
WAT_1_0 CORP —0.06 - -0.18* 0.31
WAT_1_0 OTH_PRIV ~ 0.18 — 0.21 -0.32
WAT_5_0 FED - -047 - -
WAT_5_0 STATE - —2.00"* - -
WAT_5_0 LOCAL - - - -
WAT_5_0 CORP - -0.32 - -
WAT_5_0 OTH_PRIV ~ — 0.45 - -
PUB_DIST FED —0.01 —5.58*** —4.43"* —
PUB_DIST STATE —0.06" 0.64 0.15** —
PUB_DIST LOCAL 0.00 0.06** -
PUB_DIST CORP 0.00 0.07 0.00 —
PUB_DIST OTH_PRIV ~ 0.00 1.05%** —0.03 —
PRIV_DIST FED - 10.98***  4.77* 0.47***
PRIV_DIST STATE — 10.41*** 4.34%* —-0.12
PRIV_DIST LOCAL — - 1.91 -
PRIV_DIST CORP - —5.74 3.54*** 0.17*
PRIV_DIST OTH_PRIV ~ — 7.49%* -0.22 0.20
POP_GI FED 0.00 - 0.00*** 0.00
POP_GI STATE 0.00 - 0.00 0.00
POP_GI LOCAL 0.00** - 0.00** -
POP_GI CORP 0.00 - 0.00 0.00
POP_GI OTH_PRIV ~ 0.00 - 0.00 0.00
HARDWOOD FED -0.14 —-0.08 0.05 -0.34
HARDWOOD STATE 0.24 0.52 -0.13 0.54
HARDWOOD LOCAL —0.59 - 0.38 -
HARDWOOD CORP -0.51"*  -0.81 0.09 —-0.08
HARDWOOD OTH_PRIV ~ -0.20 —-0.99* -0.10 —0.62
PAD_INCLU FED 6.90*** - - -
PAD_INCLU STATE 4.30™* - - -
PAD_INCLU LOCAL —-8.51 - - -
PAD_INCLU CORP 1.78** - - -
PAD_INCLU OTH_PRIV —-10.05 - - -
PAD_CALL FED - -1.06™* 1.43** 0.26
PAD_CALL STATE - 3.42%* 5.55%** -0.25
PAD_CALL LOCAL — — 1.30** —
PAD_CALL CORP - 0.46 -0.97** -0.36
PAD_CALL OTH_PRIV ~ — 0.14 -0.11 -1.18**

Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001.
® FED = Federal; STATE = State; LOCAL = Local; CORP = Corporate;
OTH_PRIV = Other private. The reference level is Family.
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Fig. 6. Relative importance of variables from random forest classification tree models
of forest ownership in Alabama, Arizona, Michigan, and Oregon. The values represent
the importance values (Breiman, 2001) divided by the maximum importance value for
a given state multiplied by 100.

management on corporate forest lands or the inclination of these
ownerships to acquire lands with higher potential productivity
relative to other ownership groups due to the greater emphasis on
financial motivations of the corporate ownerships. These financial
motivations are also likely the reason for the negative sign for the
hardwood dummy variable (HARDWOOD) in the corporate model
for Alabama where softwoods are the more important commercial
species.

Water is primarily significant in the Michigan multinomial logit
models. Points being close, i.e., within 1.0 km, to a water body in-
creases the probability of the point being federal, state, or local and
decreases the probability of them being corporate, as compared to
the reference level, family. These water resources may be protected
for the public good and/or the locations of these lands may be an
artifact of the places where public ownerships have tended to ac-
quire land.

Examining results from the classification tree model (Fig. 6), a
slightly different set of important variables is observable. For
Michigan and Arizona, the three top variables are related to PAD:
PAD ownership call (PAD_CALL), distance to public land (PUB_DIST;
which was measured using PAD), and whether the point is within
one of the PAD identified public ownership boundaries
(PAD_INCLU).

Although distance to public land (PUB_DIST) is the most
important variable in the Alabama classification tree model, a
majority of the most influential variables in the Alabama and
Oregon models are population-related. In the models for the other
states, population related variables are common among the second
tier of predictive variables. The population gravity index (POP_GI) is
highly influential in many of the models as are the population
(POP_DENS) and housing (HOUSE_DENS) density variables. Public
land holdings, particularly Federal and State, tend to be larger,
contiguous pieces and, partially related to this, in more rural areas
with lower population pressures. As compared to family, corporate
holdings also tend to be in larger holdings and in more rural areas.

In summary, many of the predictor variables hypothesized to
have an influence on forest ownership patterns did show some
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Fig. 7. Forest ownership maps for A) Oregon, B) Michigan, C) Arizona, and D) Alabama created using a Thiessen polygon approach. The forest/non-forest mask was developed by

Blackard et al. (2008).

level of correlation with FIA-observed ownership category. How-
ever, their signs and magnitudes of influence vary considerably
among the models. This suggests that different factors are influ-
encing forest ownership patterns across the U.S. and applying the
multinomial logit or classification tree approaches would require
separate parameterization of the models for different states or at
least regions.

Conclusions

The appropriate technique for creating a geospatial product,
such as a forest ownership map, depends upon the intended uses of

the end-product and the types and quality of the input data
(Stewart et al., 2009; Zhang & Wimberly, 2007). Ideally, detailed
forest ownership geospatial products could be derived from prop-
erty tax records and plat maps (Donnelly & Evans, 2008). Unfor-
tunately, these maps do not exist in electronic formats for all of the
U.S. nor is there a central repository for those datasets that do exist.
Until the time when comprehensive and compatible data sources of
spatial ownership data are available for the country broad-scale
forest ownership geospatial products must be created using
modeling approaches.

Using the techniques outlined above, a geospatial product rep-
resenting forest ownership patterns can be created that improves
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upon earlier products by providing increased spatial resolution,
more refined ownership categories, and quantifying the accuracy. A
forest ownership geospatial product for the conterminous U.S. is
not included here because this paper is intended to examine just
the techniques and a product of that extent cannot be satisfactorily
displayed in a journal article. In addition, publishing the final
product separately, with this paper referenced as the technical
document, will allow for easier distribution of the final product and
easier updating when new data, such as newer versions of PAD,
become available. This dataset should be useful to national and
state forestry agencies, policy analysts, researchers, and conserva-
tion organizations when conducting broad-scale, forest resource
analyses. Such products are not intended for identification of spe-
cific ownerships or parcels. For this, plat maps would be the
appropriate source. These are increasingly available in electronic
formats, but they have yet to be consolidated for most states. As
more FIA data become available and the PAD is updated/refined, the
ownership geospatial products developed through the techniques
outlined here can be further refined.

The goal of this paper was to test techniques for creating a national
geospatial product of forest ownership, but the methodology should
also be applicable to other social variables. For example, this approach,
with appropriate modifications, may be useful for exploring tech-
niques for generating spatial datasets that reflect size of forest hold-
ings, management practices, and other factors that are important for
analyzing forest resources. Likewise, this approach can be utilized to
generate forest ownership geospatial products in other countries
which may lack national spatial forest ownership data.
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