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Effects of Measurement Errors on Individual Tree
Stem Volume Estimates for the Austrian National
Forest Inventory
Ambros Berger, Thomas Gschwantner, Ronald E. McRoberts, and Klemens Schadauer

National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter,
both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based
tree stem volume estimates. The impacts were investigated using two approaches: the law of propagation of error and Monte Carlo simulation. Estimates of total
uncertainty also included variability associated with the model itself. Results for both approaches indicate that the relative standard deviation over plots of the volume
estimates for all tree species is approximately 11%. A partition of the total uncertainty by sources indicates that error in measurement of the upper diameter makes
the greatest contribution. Thus, the greatest potential for improvement in the precision of overall estimates lies in increasing the accuracy of upper diameter
measurements. Although the uncertainty of individual tree stem volume estimates may be considered negligible for nationwide assessments of growing stock volume,
it is relevant for small-scale and plot-level estimates used as training or accuracy assessment data for remote sensing applications that rely on emerging technologies
such as airborne laser scanning.

Keywords: stem volume, uncertainty, measurement error, error propagation, Monte Carlo error simulation

Measurement errors play an important role in the assess-
ment of uncertainties in forest inventory estimates, but
they are not the only source of error. Cunia (1965) dis-

tinguishes among sampling variability, model error, and measure-
ment error. For this study, errors from the first source were omitted
because only plot-level estimates were considered. Several studies on
error analysis refer to Cunia’s classification, and some recognize
classification or grouping error as an additional source of uncer-
tainty (Gertner 1990, Gertner and Köhl 1992, Phillips et al. 2000).
Other references classify error sources differently (e.g., Canavan and
Hann 2004).

National forest inventories (NFIs) often consider only sampling
variability. This study investigated the effects of individual tree mea-
surement errors, which tend to be neglected due to the large sample
sizes characteristic of nationwide inventories. However, they may
have a considerable impact on single-tree volume estimates.

For estimating the stem volume of a tree, NFIs assess variables in
the field (Tomppo et al. 2010) that are subject to measurement
errors. When these variables are used as input to volume models,
their errors affect stem volume estimates. The Austrian NFI uses a
set of volume models that relies on up to four input variables to

estimate the stem volume of a tree (Gabler and Schadauer 2008).
The volume models were developed by Braun (1969), Pollanschütz
(1974), and Schieler (1988). During the measurement process, ob-
servations for the four variables were rounded to the next full unit
(Table 1).

Although many studies have focused on the assessment of mea-
surement errors (e.g., Skovsgaard et al. 1998, Kaufmann and Schw-
yzer 2001, Barker et al. 2002, Elzinga et al. 2005, Kalliovirta et al.
2004, Kitahara et al. 2009), considerably less attention has been
paid to the effects of these errors on volume estimates. On the other
hand, Breidenbach et al. (2014) quantified the model-related vari-
ability of Norway spruce (Picea abies [L.] Karst.) biomass stock and
change estimates using a Monte Carlo simulation technique. Özçe-
lik et al. (2010) examined estimates of tree bole volume using
artificial neural network models for four species. Clark et al.
(1991) compared different taper models, input variables, and
input variable estimates used to estimate tree stem volume. Their
main interest was not in biomass or volume of the whole tree
stem but in merchantable timber, and, therefore, they studied
only the portions of the bole with diameters greater than a spec-
ified threshold, usually 10.2, 17.8, or 22.9 cm (4, 7, or 9 in.). Li
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and Weiskittel (2010) also juxtaposed several taper models, some
of which were taken from Clark et al. (1991), but they estimated
the volume of the whole tree stem. None of these four studies
took measurement errors into account.

Williams et al. (1999) compared two laser dendrometers and
investigated the influence of their measurement errors on taper
models. Gertner (1990) assessed the impact of measurement errors
on stand volume estimates when a nonlinear volume model was used
to estimate the volume of individual trees. Westfall and Patterson
(2007) analyzed measurement variation from quality assurance data
and evaluated the effects on volume change estimates for 682 inven-
tory plots. McRoberts et al. (1994) estimated the effects of variation
in measurements on 20-year predictions of basal area and basal area
growth using Monte Carlo simulations. Mowrer and Frayer (1986)
analyzed variance propagation in growth and yield projections over
five 10-year periods using Monte Carlo simulations and error prop-
agation. Williams and Schreuder (2000) investigated the upper
limit for tree height measurement error beyond which inclusion of
tree height as a model input variable impairs rather than improves
model estimates.

Kangas (1996) investigated the effects of measurement errors on
volume estimates for 8,516 Scots pine sample trees but with differ-
ent volume models. The focus was on the effects of estimated rather
than measured input variables and possible corrections for resulting
biases. Schmid-Haas and Winzeler (1981) compared several types of
volume models for spruce trees with regard to measurement cost and
total variability, including the effects of measurement errors.

Ståhl (1992) examined the standard errors (SEs) of compart-
ment-wise stand volume estimates using multiple assessment meth-
ods: pure ocular estimation, a relascope method, a circular plot
method, aerial photo interpretation, aerial photo interpretation
combined with field control, and data acquisition from satellite
images.

Thus, measurement errors have been investigated thoroughly for
many instruments and under various conditions, and their effects
are often well known. Much effort has also been committed to
constructing volume models for tree stems, but less relevant infor-
mation is available for the Austrian NFI on the connection between
measurement errors and volume model prediction uncertainty. Be-
cause the variety of methods for estimating tree stem volume is huge
and because different countries usually use different measurement
instruments, input variables, and methods, the results from one
country may provide little understanding of the situation in another
country.

Information about the quality of volume estimates is relevant not
only for stem volume estimation but also for aboveground carbon
estimation under the United Nations Framework Convention on
Climate Change and the Kyoto Protocol, where, according to the
Intergovernmental Panel on Climate Change (2006) guidelines, the
uncertainty must be reported. The results are also important for
training and validating remote sensing-based algorithms and prod-
ucts based on laser scanning data, satellite imagery, or digital aerial

photographs. Because these methods use plot data for training and
validation purposes, the uncertainty for each plot estimate is impor-
tant (Holmgren 2004). These plot data are also used to estimate
growing stock and aboveground biomass efficiently for large areas in
Austria (Hollaus et al. 2009) and in many other regions around the
world (Næsset 2007). Undoubtedly, they will continue to play an
important role in NFIs long into the future.

The objective of this study was to quantify the effects on indi-
vidual tree stem volume estimates of measurement errors for input
variables for volume models used by the Austrian NFI. To this end,
the effect of measurement errors for dbh, h, hk, and d03h (Table 1)
are investigated using two different approaches: first, we simulate
the errors in a Monte Carlo simulation and study their impact on the
uncertainty of stem volume estimates, and second, we use the law of
error propagation.

Data and Methods
Data
Standard Deviations of the Measurements from a Control Survey

Berger et al. (2012) studied measurement errors for the Austrian
NFI using multiple data sets to assess the magnitude of the measure-
ment errors and the dependence of the measurement errors on the
measurement conditions. Data from a control survey were best
suited to represent measurement errors made during normal field-
work. The control survey was conducted as part of the quality as-
surance program of the Austrian NFI. Approximately 5% of the
sample plots were revisited a short time after the original survey, and
the variables noted in Table 2, among others, were reassessed. The
control survey measurements were assumed to be taken under the
same conditions as the original measurements and to be of equal
quality. Table 2 shows the standard deviations (SDs) of the four
measurements used for this study as reported by Berger et al. (2012).

The presentation in Table 2 suggests that SDs depend linearly on
measurement values and thus provide a simple model for the SD of
the measurement

SD̂ i � i � SDi,r, (1)

where i denotes the measurements dbh, h, hk, and d03h and SDi, r

denotes the relative SD from Table 2. However, a closer evaluation
revealed that linearity is merely an approximation. To construct
measurement error models that can adapt to the data more flexibly,
nonlinear regressions were conducted and evaluated using the same
scheme for all variables documented by Hosmer and Lemeshow
(1989) and described here for dbh. First, the data were sorted in
ascending order with respect to the mean of the two measurements,

dbh* �
dbh1 � dbh2

2
, (2)

Table 1. Input variables for the volume models.

Variable Description Tool Unit

dbh Diameter at breast height (1.3 m) Calliper, tape mm
h Tree height Vertex dm
hk Height to the living crown base Vertex dm
d03h Diameter at 3/10 of the tree height Mirror relascope mm

Table 2. Relative standard deviations (SDs) of the tree measure-
ments.

Variable
Average SD
for conifers

Average SD for
broadleaved trees

. . . . . . . . . . . . . .(%) . . . . . . . . . . . . . .

dbh 1.1 1.2
h 3.3 6.6
hk 19.5 22.2
d03h 6.1 8.3
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where dbh1 is the original measurement and dbh2 is the measure-
ment from the control survey. Then, the first n (usually 25) trees
were grouped into one class, the next n trees into the next class, and
so on except for the last class, which was combined with the previous
class if the last class contained fewer than n trees. For each class i, the
mean of the measurements dbhi and the SDi of the measurement
differences, Diffdbh, were estimated as

dbhi �
1

n
� �

j�1

n

dbhj
*, (3)

Diffdbh � dbh1 � dbh2, (4)

and

SDi �
1

n � 1
� ��

j�1

n �Diffdbh, j � Diffdbh, j� 2

. (5)

Finally, the nonlinear regression model,

Ŷ � �̂ 1 � �̂ 2 � �1 � e�̂3�X� (6)

was fit to these data, where X is the class mean and Ŷ is the SD. After

several analyses, �̂ was set to 0 for all models (Table 3), because the

curves with and without �̂ 1 were so similar that no statistically
significant differences in the quality of fit of the model to the data
were detected. Thus, omitting the intercept should have no relevant

impact on the overall result. In addition, negative values for �̂ 1

could produce negative values for the SD for small measurement

values and large values of �̂ 1 would lead to unreasonably large errors
for small values.

To obtain the SD of the measurement, Ŷ must be divided by �2

because Ŷ is the SD of the difference of two random variables
assumed to be identically and normally distributed. Thus, the model
for the SD of dbh is

SD̂dbh �
1

�2
� �̂ 2 � �1 � e�̂3�dbh�. (7)

The same model form, but with different parameter estimates, was
used for all the input variables because this kind of curve can adapt
well to the data points. For h, the data were separated into conifers
and broadleaved trees because the resulting models were quite dif-
ferent (see also Table 2). However, the data were not similarly sep-
arated for dbh or hk because the curves were very similar or for d03h
because not enough data were available to construct separate mod-
els. Both models 1 and 7 were used in the analyses.

The “Model Stems” (“Funktionsstämme”)
A large-scale survey was conducted in the 1950s to construct

volume models for the Austrian NFI. More than 17,000 trees were
felled, and many measurements were taken on each tree including
dbh, h, hk, d03h, and diameters at heights of 0.5 m (1.64 ft), 1.5 m,
2.5 m, and so on up to the top. All diameter measurements were
taken with a caliper, and all heights were measured with a tape, so
they are considered to be precise and accurate.

One of the goals was to capture as much of the variability in the
Austrian forest as possible. Thus, trees were sampled at different
locations with different management types, species composition,

and age structures. The proportions of these trees per species repre-
sent approximately their occurrence in the Austrian forest. For a
more detailed description, see Braun (1974) and Gabler and
Schadauer (2008).

The tree stem volume models currently used by the Austrian NFI
were constructed using this data set (hence its name) and were used
for volume estimation for this study (see next section).

Simulation and Estimation of Stem Volume Variability
To assess the effects of measurement errors on stem volume

estimates, two different approaches were tested, both of which are
based on the volume models used by the Austrian NFI (Braun 1969,
Pollanschütz 1974, Schieler 1988). The magnitude of measurement
errors is estimated from the measurement error models introduced
in the section SDs of the Measurements from a Control Survey. For
the first approach, which used Monte Carlo error simulations, the
effects of randomly altered values of the explanatory variables on
volume estimates were investigated (see Stimulation of Measurement
Errors below). The second approach, which was based on the law of
error propagation, used a first-order Taylor series approximation
and thus the first derivatives of the model expression for volume
with respect to the explanatory variables (see Error Propagation
below).

Stem Volume Models
The Austrian NFI uses multiple models to estimate the stem

volume of a sample tree. The particular model used depends on the
species and size of the tree. All the models have the same basic form,

V �
�

4
� dbh2 � h � f̂ , (8)

which is based on the volume of a cylinder with diameter dbh and

height h multiplied by a form factor function, f̂ . Five different types

of f̂ are currently used. For small trees (50 mm � dbh � 105 mm,
1.97 in. � dbh � 4.13 in.),

f̂ � c0 � c1 � �ln�dbh��2 � c2 �
1

h
� c3 �

1

dbh
� c4 �

1

dbh2

� c5 �
1

dbh � h
� c6 �

1

dbh2 � h
. (9)

This function relies on the variables dbh and h, whereas the func-
tions for trees with dbh �105 mm also use d03h for all tree species
and hk for broadleaved trees

➤ for conifers, except silver fir:

f̂ � c0 � c1 �
d03h

dbh
� c2 �

h

dbh
� c3 �

1

dbh
(10)

➤ for silver fir:

f̂ � c0 � c1 �
d03h2

dbh2 � c2 �
h

dbh
� c3 �

1

dbh
(11)

➤ for broadleaved trees, except oak:

f̂ � c0 � c1 �
d03h

dbh
� c2 �

hk

h
� c3 �

h

dbh2 (12)
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➤ for oak:

f̂ � c0 � c1 �
d03h2

dbh2 � c2 �
hk

h
� c3 �

h

dbh2 (13)

The ci are the coefficients and depend on the tree species. They
were estimated for all tree species and sizes by Braun (1969), Pol-
lanschütz (1974), and Schieler (1988), and are available in Gabler
and Schadauer (2008).

The basis for these calculations was data from the model stems
described above. Using Huber’s formula, the tree stem was approx-
imated by cylinders 1 m (3.28 ft) in height with diameters as noted
in this section. The only exception was the top cylinder whose
height was adapted to accommodate the total tree height. Any mis-
representation of the stem by cylinders and any caliper measurement
errors were considered negligible and ignored, and the sum of the
volumes of the cylinders was assumed to represent the true tree
volume without error. Finally, the ci were estimated using ordinary
linear regression analyses.

Variability of the Estimates of Stem Volume Due to the Volume Models
There are several sources of uncertainty due to the volume mod-

els such as residual uncertainty around the predicted regression
curves and failure of the model to fit the data. However, we do not
distinguish between these sources and only regard the pooled un-
certainty, which is referred to as model uncertainty. For the purpose
of evaluating the variability of estimated stem volumes due to the
volume models, the volume of each tree of the model stem data was
estimated using two methods

Method 1: As the sum of 1-m high cylinders yielding the “true” stem
volume

Method 2: Using volume model 8 and f̂ as in Equations 9–13

The relative error of the volume estimate obtained with the volume
model was estimated for each tree as

eV2,r �
V2 � V1

V1
, (14)

where the subscript for V indicates whether method 1 or method 2
was used to obtain the stem volume Vi and the r in the subscript
refers to the relative error. From eV2, r

, the relative SD of the volume
model SDVf, r was computed.

To check the volume models for biases, the absolute (V2 � V1)
and the relative (eV2, r

) volume errors were examined by calculating
the means of the errors and by producing histograms of the errors
(Figure 3A and B).

Simulation of Measurement Errors
The simulations were based on the Monte Carlo concept. To

quantify the variability in estimated stem volumes, including the
effects of measurement errors, the volume of each tree was estimated
using a third method

Method 3: Volume model 8 and f̂ as in Equations 9–13 with
randomly modified input values according to models 1 and 7 for
the SDs of the measurements.

For Method 3, the input values were modified to simulate measure-
ment errors as follows

1. Every input value (dbh, h, hk, and d03h) was multiplied by a
number randomly generated from a normal distribution
N(1, SDi,r

2 ) with SDi,r as in Equation 1.

2. To every input value, a randomly generated number from a

normal distribution N(0, SD̂i
2) was added with the SD̂i as the

SDs obtained from Equation 7.

Negative values were not an issue because the SDs were sufficiently
small. After the random modification of the input values, the SD of
the volume estimates was estimated from the errors eV3, r

as above
with

eV3,r �
V3 � V1

V1
, (15)

where the subscript for V again indicates whether method 1 or
method 3 was used to obtain the stem volume Vi. This procedure
was replicated 15 times for the entire data set, and the mean was
taken as the final result. Fifteen replications were considered appro-
priate and sufficient because there was little variation among esti-
mates from the individual replications and because each replication
included calculation of volumes for more than 17,000 tree stems.
The calculations were implemented in GNU Octave (2012).

To evaluate the importance of the magnitudes of measurement
errors and the potential for improvement, additional sensitivity
analyses were conducted by adapting method 3. For one input vari-
able at a time, the SD was halved, whereas the SDs for the other
variables remained the same. In addition, the SD of volume esti-
mates was estimated, assuming half SDs for all measurements.

Error Propagation
The law of error propagation, which is based on a first-order

Taylor series approximation, states that if V � V(xi) is a function of
the input variables xi, the SD of V SDVm can be estimated from the
SDs SDxi

of the variables xi by the following equation (Taylor 1997,
p. 79)

SDVm � ��
i

� �V

� xi
SDxi� 2

, (16)

where �V/�xi are the first derivatives of the expression for V, assum-
ing the measurement errors (which are the cause of the SDxi

) are
pairwise independent from each other. Because of this indepen-
dence, the covariances are zero and are not included in Equation 16.

The input variables xi for the volume and form factor functions,
Equations 8 to 13, are dbh, h, d03h, and hk. The measurement
procedures are independent of each other, except for the procedure
to assess d03h, which depends on h. However, the lack of correlation
between measurement errors for d03h and h (see Appendix 1) allows
us to use the law of error propagation as presented in Equation 16.

The volume models and their first derivatives can be found in
Appendix 2. Inserting the derivatives into Equation 16 delivers the
SD of the stem volume estimate SDVm for every tree. From SDVm we
obtain the relative SD as

SDVm,r �
SDVm

V
. (17)

The calculations were made using the model stem data. Note
that SDVm,r takes only the measurement errors into account. The
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variability due to the volume model is included in a second step.
Thus, the true volume, V, consists of the estimated volume V plus
two independent error terms, the first as a result of incorrect mea-
surements, em, and the second due to the shortcomings of the vol-
ume model, ef,

V � V � em � ef, (18)

where E(em) � E(ef) � 0 (V unbiased), Var(em) � SDVm
2 and

Var(ef) � (V � SDVf, r)
2. Thus, to obtain the total variance of the

single-tree volume estimate, the variance caused by the measure-
ment errors and the variance of the volume model can simply be
added (Cunia 1965, 1987, Schmid et al. 1971, Gertner 1990)

Var�V� � Var�em� � Var�ef�. (19)

The relative SD for the volume estimate is

SDV,r � �SDVm,r
2 � SDVf,r

2 . (20)

As in the section Simulation of Measurement Errors, the total SD was
also estimated using half the SDs of the measurements. Similar
analyses were conducted using data split into conifers and broad-
leaved groups.

As stated in Equation 19, the total variance is the sum of multiple
variances and can be expressed by squaring and expanding Equation
16 and inserting it into Equation 19 as

Var�V� � � �V

�dbh
SDdbh�2

� ��V

�h
SDh�2

� � �V

�hk
SDhk�2

� � �V

�d03h
SDd03h�2

� Var�ef�, (21)

where the terms with SDhk and SDd03h enter the expression when
they are also used in the respective volume model (Schmid-Haas and
Winzeler 1981). For each tree, the relative contribution, RC, of each
component to the total variance can be estimated as

RCi �

��V

�i
SDi� 2

Var�V�
, (22)

where i denotes dbh, h, hk, and d03h and

RCf �
Var�ef�

Var�V�
, (23)

which facilitates comparison of the separate contributions. The trees
were stratified into conifers with dbh �105 mm, broadleaved trees
with dbh �105 mm, and trees with 50 mm � dbh � 105 mm. The
final results are the means RCdbh, RCh, RChk, RCd03h, and RCf over
all trees of the respective stratum. In addition, for these analyses, the
model stem data were used.

Results
Measurement Error Models

The measurement error model, Equation 7, has two parameters,
and it can easily adapt to different point clouds. Table 3 presents the
estimates, �̂i, and Figure 1A and B show the fits of the models to the
data for h, as well as the linear error models as dotted lines for
comparison.

Stem Volume Uncertainty
Table 4 presents the results for the simulations using the linear

measurement error models. The SD due to the volume model SDVf,r

was 5.6% for all species, 8.2% for broadleaved trees, and 4.9% for
conifers. Braun (1969) originally estimated SDVf,r as between 4.33
and 7.65% for single tree species, but not all tree species were in-
cluded in his analyses.

Simulating the measurement errors for the input variables with
the linear error models resulted in SDs of the volume estimates
between 10.9 and 11.2%. The final result, the average of 15 repli-
cations, is 11.1%, which is almost twice as large as the SD caused by
the shortcomings of the volume model.

Applying the equations for error propagation, Equations 16 and
17, yielded a relative SD SDVm,r of 9.4%. By adding the variance of
the volume model to the variance obtained from the error propaga-
tion (Equation 20), we obtain the total relative SD per tree,

SDV,r � �SDVm,r
2 � SDVf,r

2 � �0.0942 � 0.0562 � 0.1094

� 10.9%,

which compares very well to the results of the error simulations.
Using the nonlinear error models instead of the linear ones re-

sulted in similar but slightly greater values, except for broadleaved
trees. The main difference is that broadleaved trees and conifers now
share the same error models except for h, and, therefore, the results
for broadleaved trees and conifers are more similar. The results are
presented in Table 4.

Sensitivity Analysis of the Volume Models to Measurement Errors
As mentioned above, additional analyses were conducted to

quantify the effects of measurement errors on volume estimates.
Obviously reducing the SD of the measurement error from any
source reduces the total uncertainty, but there are large differences
among the input variables. First, the linear measurement error
model was used. Only very small changes resulted from halving the
SD of dbh (a drop from 11.1 to 11.0%) and hk (an imperceptible
drop due to rounding). Improving the measurement of h made a
small difference (10.5%), but of all analyses using a modified SD of
only one input variable, lowering the SD of d03h yielded the best
result by far (8.2%). To produce a guideline, the simulations were
also conducted with half SDs for all variables. This yielded a SD of
7.5% for the volume estimates.

The SDs were modified in the same manner for the analyses
using the law of error propagation. The results followed the same
pattern but were slightly smaller for every case.

Finally, the trees were split into broadleaved trees and conifer
groups, and the analyses were conducted for the two groups sepa-
rately. Although uncertainties were greater for broadleaved trees, the

Table 3. Estimates of parameters for the nonlinear measurement
error models.

No. of
measurements

Class
size n

No. of
classes �̂ 1 �̂ 2 �̂ 3

dbh 4,411 25 176 0 6.9654 �0.0033
h conifers 1,134 25 45 0 9.8495 �0.0234
h broadleaved trees 336 25 13 0 18.3986 �0.0115
hk 1,292 25 51 0 24.754 �0.0266
d03h 180 15 12 0 22.3525 �0.0104

18 Forest Science • February 2014



basic structure of the results remained the same. Again, the applica-
tion of the nonlinear error models resulted in similar values. The
complete results are presented in Table 5.

Partition of the Total Variance of the Volume Estimates
Even though the volume model for silver fir differs slightly from

the model for the other conifers, the results were similar. The same
holds for oak and the other broadleaved trees, but there are large

differences between conifers and broadleaved trees with regard to
both volume models and results. Thus, the data were separated with
respect to the input variables used for the volume models into three
tree groups: broadleaved trees with dbh �105 mm, coniferous trees
with dbh �105 mm, and trees with 50 mm � dbh � 105 mm. The
results are presented in Table 6 and illustrated in Figure 2A and B.

Results obtained using the linear and the nonlinear error models
differed somewhat. When the linear error models were used, the
uncertainty in d03h (where available) always turned out to be the
greatest contributor to the total variance followed by the uncertainty
in the model itself, then in h, in hk (where available), and finally in
dbh. The proportions of the total variance due to the model and to
h are greater for broadleaved trees than for conifers and consequently
the share of d03h is less. This result is attributed to the better ap-
proximation by the volume models for conifers (Table 4) and the
much greater SD for h for broadleaved trees, whereas the SD for
d03h is only slightly greater for broadleaved trees (Table 2).

Qualitatively, the results are the same as those reported in “Sen-
sitivity Analysis of the Volume Models to Measurement Errors,”
except that in Table 5 the model variability is not analyzed. It shows
more clearly that hk has a greater effect than dbh in Table 6, but they
are of similar and small magnitude. In Table 5, some small differ-
ences are masked by rounding.

Because d03h is not assessed on trees with dbh �105 mm, the
volume model uses less information and consequently provides a less
precise estimate. In addition, because of the absence of d03h, the
biggest relative contributor for the other strata is not available. Thus,
the relative proportion of the overall variance contributed by the

Figure 1. A. The linear model and the nonlinear model for the SD of h for conifers. B. The linear model and the nonlinear model for the
SD of h for broadleaved trees.

Table 4. SDs of the tree stem volume per tree, linear, and non-
linear error models.

Data
Simulation:

all trees

Error propagation

All trees Broadleaved Coniferous

. . . . . . . . . . . . . . .(%) . . . . . . . . . . . . . . .

Linear error model
SDVf, r 5.6 8.2 4.9
SDVm, r 9.4 11.2 9.1
SDV3, r/SDV� , r 11.1 10.9 13.9 10.3

Nonlinear error models
SDVf, r 5.6 8.2 4.9
SDVm, r 9.6 9.9 9.6
SDV3, r/SDV� , r 11.4 11.2 12.9 10.8

Table 5. Sensitivity analysis with modified SDs, linear, and non-
linear error models.

Data
Simulation:

all trees

Error propagation

All
trees Broadleaved Coniferous

Linear error models
SDV3, r/SDV� , r 11.1 10.9 13.9 10.3
Half SD of dbh 11.0 10.9 13.8 10.3
Half SD of h 10.5 10.3 12.6 9.8
Half SD of hk 11.1 10.9 13.8
Half SD of d03h 8.2 8.2 11.6 7.4
Half SD of all 7.3 7.3 9.9 6.7

Nonlinear error models
SDV3, r/SDV� , r 11.4 11.2 12.9 10.8
Half SD of dbh 11.4 11.1 12.8 10.7
Half SD of h 10.8 10.4 11.6 10.2
Half SD of hk 11.4 11.1 12.9
Half SD of d03h 8.4 8.3 11.1 7.6
Half SD of all 7.5 7.4 9.6 6.9

Table 6. The relative contributions to the total variance.

Data
error

model

dbh �105 mm 50 mm � dbh �
105 mm: all

speciesConiferous trees Broadleaved trees

Linear Nonlinear Linear Nonlinear Linear Nonlinear

. . . . . . . . . . . . . . . . . . .(%) . . . . . . . . . . . . . . . . . . .

RChk 1.3 0.7
RCd03h 67.8 67.2 45.2 37.0
RCh 10.8 9.9 19.9 19.4 14.0 31.7
RCdbh 0.2 0.2 0.5 0.5 3.1 4.2
RCf 21.2 22.6 33.1 42.5 82.9 64.1
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volume model must be considerably greater, in this case more than
80%.

The nonlinear error model for d03h is the same for broadleaved
trees and conifers. Because the SD of d03h for broadleaved trees is
greater than that for conifers when the linear error model is used, the
measurement errors for d03h for broadleaved trees from the nonlin-
ear model are a little smaller. Thus, the effects of the measurement
errors for d03h for broadleaved trees are smaller.

The second main difference is that the nonlinear error models for
h predicted much larger measurement errors for small trees (Figure
1A and B). Thus, the relative contribution of h measurements to the
total variance is more than twice as great (31.7%) as that with the
linear error models, and consequently the relative contribution of
the volume model is 64.1% instead of 82.9%.

Deviations of the Mean
The mean of the relative errors was less than 1% for all analyses.

The histograms in Figure 3A and B show the distributions of the
absolute (dm3) and relative errors. They demonstrate well that the
errors are almost symmetrically distributed and that the mean is
close to 0.

The shapes of the two histograms are so different, because trees of
all sizes (50 mm � dbh � 985 mm) are included in the data set.
When absolute values are considered, all small trees fall into the

classes of small error. Only large trees can fall into the other classes,
and only those with average or big relative errors actually do so.

Discussion and Conclusion
Table 4 reveals that the SD of the volume estimates cannot drop

below 5.6% without constructing new and better volume models,
because the 5.6% is due to the shortcomings of the current volume
models. With these models, the threshold of 5.6% can be reached
only with perfect measurements without error. Factoring in the
measurement errors increases this SD to approximately 11%.

Ståhl (1992) estimated relative SDs between 12.1 and 26.4%
(between 12.1 and 15.1% for the methods relevant for this article)
for compartment-wise stand volume estimates, depending on the
method. The greater values are probably due to the fact that not all
trees were assessed.

Li and Weiskittel (2010) compared several different taper models
for estimating tree stem volume for balsam fir (Abies balsamea [L.]
Mill.), red spruce (Picea rubens [Sarg.]), and white pine (Pinus stro-
bus [L.]). Depending on the species, model, and input variables,
they obtained relative root mean squared errors between 7.5 and
24.0%. Extracting the biases from these values resulted in relative
SDs from 6.0 to 21.3% without including measurement errors. This
result shows that the volume models of the Austrian NFI perform
well compared with the analyzed taper models. Much smaller SDs of

Figure 2. A. Contributions to the overall variance in percent, linear error models. B. Contributions to the total variance in percent,
nonlinear error models.

Figure 3. A. Histogram of the absolute errors in dm3 of the volume estimates. B. Histogram of the relative errors of the volume estimates.
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2.8 to 8.6% depending on tree species and model were obtained by
Clark et al. (1991), but they applied the taper models only to the
part of the bole with diameter greater than 10.2, 17.8, or 22.9 cm (4,
7, or 9 in.), and the top of the tree stem was ignored. The top of the
tree accounts for a large part of the total uncertainty of tree stem
volume estimates because there are more irregularities in this part of
the stem (Altherr 1960). Thus, the results of Clark et al. (1991) are
consistent with the results obtained during this study.

Özçelik et al. (2010) investigated a very different approach. They
estimated tree bole volume using artificial neural network models
for four species, and their analyses resulted in percent root mean
squared errors ranging from 4.1 to 16.0%, depending on species,
model, and data set, mostly without significant bias.

Our sensitivity analysis showed (Table 5) that the greatest im-
provement in the SD of the estimates was achieved by enhancing the
measurement of d03h. For our analyses using the law of error prop-
agation, the total SD decreased from 10.9 to 8.2% (and from 11.2 to
8.3% for nonlinear error models), which is a relatively large amount
considering that the other measurement errors remained unchanged
and that the theoretical minimum for the current models is 5.6%.

Less potential for improvement was found for h (decreased to
10.3%/10.4%), and for dbh there was very little change (no decrease
visible due to rounding/decrease to 11.1%). This result can proba-
bly be attributed to the rather precise measurements for these two
variables (Table 2) and the greater effects of d03h on the form factor

function f̂ .
The measurement of hk, on the other hand, is the most imprecise

of the four measurements because of the difficulty in defining the
base of the crown (Berger et al. 2012). However, the impact of
halving its SD was even a little less than that for improving the
measurement of dbh. There are two reasons for this result. First, hk
enters into the volume models only for broadleaved trees, and sec-
ond and more importantly, the coefficients c2 in the respective vol-
ume models (see Appendix 2) have small values. Even for broad-
leaved trees alone, doubling the precision of the measurement of hk
does not really change the overall result.

Of course, the best outcome was achieved by halving all SDs.
This resulted in a decrease to 7.3% (7.4% with the nonlinear
model), which is not very much less than the 8.2% (8.3%) obtained
by improving only the measurement of d03h. To summarize, if the
Austrian NFI wishes to enhance estimates of tree stem volume by
improving the measurements, the focus should be on d03h for
which new measuring instruments are available.

Gertner and Köhl (1992) came to the same conclusion that the
error in the measurement of upper diameter had the greatest effect
on the volume estimate followed by that of h and that the error of
dbh had no relevant effect. However, Gertner and Köhl (1992) used
different volume models, and hk was not used as an input variable.
The upper diameter was D7, which is the diameter at a height of 7 m,
independent of the tree height. Therefore, the results can only be
compared qualitatively.

Schmid-Haas and Winzeler (1981, p. 244) found that “The
random measuring error in d1.3 [dbh] induces a negligible volume
variance” and that “the measuring error in the upper diameter ac-
counts for the largest volume variance component,” a result that is
confirmed by the results of this study. For their study, only spruce
trees were used, and the results for the volume model with d03h are
very similar to the ones presented in Table 6 and in Figure 2A and B
for coniferous trees.

Özçelik et al. (2010) stated that “The greatest limiting factor, at
present, is the development of accurate and affordable instruments
for measuring upper-stem diameters” when referring to the centroid
method (Wood et al. 1990). The same is true for the volume models
of the Austrian NFI.

Clark et al. (1991) obtained the most accurate results when in-
cluding an upper diameter (in this case at the height of 5.27 m
[17.3 ft]) in the volume models. These results underscore once more
the importance and the relevance of upper diameter measurements.

Analyses for only coniferous and for only broadleaved trees dem-
onstrated the well-known fact that volume estimates for conifers are
more precise. They also showed that the proportional effects of the
input variables are approximately the same for broadleaved trees, for
coniferous trees, and for all trees combined, which was expected
because the volume models are of the same general type.

The total uncertainty of the volume estimate per tree was esti-
mated using two different measurement error models and both re-
peated simulations and the law of error propagation. Even though
the measurement error models and consequently the contribution of
the single components to the total variance differed notably at some
points, the overall results for all methods were very similar, ranging
from 10.9 to 11.4%. The results of the simulations were slightly
greater than the results of the law of error propagation for both types
of error models. These differences can be caused by minor effects
that were not accommodated such as small correlations between the
explanatory variables or simply by differences in the estimation
process.

To be on the safe side, 11.4% should be used for future analyses,
which results in a 95% confidence interval of �22.3% at the sin-
gle-tree level for all species combined. For a nationwide inventory,
this level of uncertainty can be inconsequential because of the large
sample and can be minimal relative to the most important source of
uncertainty by far, sampling variability (Gertner and Köhl 1992).
Breidenbach et al. (2014) also state that in all their simulations of
biomass stock and change models, the largest part of the overall
variability was caused by sampling-related variability. McRoberts
and Westfall (2014) examined the effects of uncertainties of volume
models for individual trees on large area estimates. They came to the
conclusion that the model prediction uncertainties played only a
minor role in the large area estimates and that the best way to
improve those estimates was focusing on reducing the effects of
sampling variability. Ståhl et al. (2014) investigated the sources of
uncertainty for nationwide estimates such as biomass stock. They
did not focus on individual tree stem volume uncertainty which is
reasonable according to our findings.

However, results for small-scale estimates could be impaired.
This uncertainty also must be accommodated when terrestrial data
are used for training or validating algorithms that predict volume
estimates from airborne measurements. For example, Næsset (2007)
described an airborne laser scanning experiment for stand volume
estimation. Plots with areas of 1,000 m2 (0.25 acres) were divided
into 250 m2 (2,691 ft2) quadrants with minimum stem counts as
small as four trees per quadrant. The results are presented as SDs of
the differences between results from laser scanning data and from
ground truth data (10.8 and 12.8% for the two examined strata).
However, the estimates from ground truth data are not “true” val-
ues, and thus they can inflate the total variance and introduce a bias.
The uncertainty estimate reported for this study enables us to par-
tition the different sources contributing to the total variation and
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thus to assess the real SD of the estimates from laser scanning data
more accurately.

Because the mean of the relative errors was always less than 1%,
which is very small compared with the SDs of the volume estimates,
no relevant deviation of the mean was found in this study. Kangas
(1996) found statistically significant biases only in volume estimates
with input variables predicted from models, which was not part of
this study. In practice, even these biases may be seen as negligible for
single-tree estimates.

The facts that the inclusion of an upper diameter significantly
improves the volume models (Pollanschütz 1974, Schmid-Haas and
Winzeler 1981), that the upper diameter measurement is expensive
and has a relatively high SD, and that the upper diameter accounts
for the biggest share of the variance result in a dilemma. The large
SD mitigates the advantages of the volume model to a certain extent.
As mentioned above, in a nationwide survey, other error sources
account for the largest part of the uncertainty and make the inclu-
sion of an upper diameter irrelevant, although surveys for small
strata will still benefit from it. Further research on when an upper
diameter should be included and how the measurements can be
improved, for example, by using better instruments, is advised.
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Appendix 1: The Relationship Between d03h
and h
Methods: Dependence of d03h on the Error of h

Because the stem diameter of a tree generally decreases with
increasing height, an error in measuring h would be expected to have
an effect on the measurement of d03h. For example, if the h mea-
surement is erroneously large, d03h will be measured at a higher
point on the stem and, therefore, will generally be smaller than if
measured at the correct height and vice versa. To analyze this effect,
data from the control survey of NFI plots (described above in SDs of
the Measurements from a Control Survey) were used. First, the
absolute differences of the measurements of d03h and h were calcu-
lated for each tree as

Diffh � h1 � h2 (24)

Diffd03h � d03h1 � d03h2 (25)

where h1 and d03h1 refer to the measurements obtained during the
regular NFI survey and h2 and d03h2 refer to measurements ob-
tained during the control survey. Next, the relative difference (rela-
tive to the mean of the two measurements) was calculated as

Diffhr �
Diffh

h1 � h2

2

�
2Diffh

h1 � h2
; (26)

and similar calculations were made for d03h. Then, a correlation
analysis was conducted to assess the degree to which differences in
the measurements of h could predict differences in the measure-
ments of d03h.

Results: The (Non)dependence of Errors of d03h on the Errors
of h

The relationship between measurement errors for d03h and for h
was analyzed with data from the control survey. Relative errors for
d03h and h were graphed against each other, and a regression anal-
ysis was performed. The regression analysis returned a significant
slope of the estimated regression line (P � 0.2%), and a correlation
coefficient of 22% when the complete data set was used. However,
a closer evaluation revealed that these results were only due to two
outliers. After removal of only two data points (	1% of 177) cor-
responding to the most extreme values, P increased to 63%, the
correlation coefficient decreased to 3.7%, and the estimated regres-
sion line became almost horizontal. The analysis of absolute values
of measurement differences yielded very similar results. Thus, d03h
and h are related, but the relationship is barely visible, and it has no
relevant effect because the correlation is not statistically significantly
different from 0.

Discussion: Independence of d03h from h
The intuitive assumption that the measurement errors for d03h

and h would compensate for each other was not confirmed. Instead,
they can be considered statistically independent for which there are
two major reasons

1. A measurement error for h translates into a much smaller
error (only 30%) of the position of d03h. If h deviates by 1 m,
the position of d03h will change only by 30 cm. Thus, when
the relatively high precision for the measurement of h is
considered, the result is a small variation in the position of
d03h.

2. At about 30% of its height, a tree stem is almost cylindrical
(Grosenbaugh 1967, p. 4). Therefore, moving up or down
along the stem does not change the diameter to a great
extent. Instead, local factors such as bases and proliferation
of branches as well as the measurement error with the relas-
cope have a much greater effect on the total error of
d03h.

Of course, the results obtained are only approximate because
of measurement error terms occurring both in the denominator
and the numerator of Equation 26. However, the correlation is
so low that it is still safe to say that no correlation term needs
to be included in the formula for the error propagation
(Equation 16).

Appendix 2: Volume Models and Their First
Derivatives

Conifers except silver fir:

V �
�

4
� dbh2 � h � � c0 � c1 �

d03h

dbh
� c2 �

h

dbh
� c3 �

1

dbh�
(27)

�V

�dbh
�

�

4
� h � �2 � c0 � dbh � c1 � d03h � c2 � h � c3�

(28)

�V

�d03h
�

�

4
� c1 � dbh � h (29)
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�V

�h
�

�

4
� dbh � �c0 � dbh � c1 � d03h � 2 � c2 � h � c3�

(30)

Silver fir:

V �
�

4
� dbh2 � h � � c0 � c1 �

d03h2

dbh2 � c2 �
h

dbh
� c3 �

1

dbh�
(31)

�V

�dbh
�

�

4
� h � �2 � c0 � dbh � c2 � h � c3� (32)

�V

�d03h
�

�

4
� 2 � c1 � d03h � h (33)

�V

�h
�

�

4
� �c0 � dbh2 � c1 � d03h2 � 2 � c2 � dbh � h � c3 � dbh�

(34)

Broadleaved trees except oak:

V �
�

4
� dbh2 � h � � c0 � c1 �

d03h

dbh
� c2 �

hk

h
� c3 �

h

dbh2�
(35)

�V

�dbh
�

�

4
� �2 � c0 � dbh � h � c1 � d03h � h � 2 � c2 � dbh � hk�

(36)

�V

�d03h
�

�

4
� c1 � dbh � h (37)

�V

�h
�

�

4
� �c0 � dbh2 � c1 � dbh � d03h � 2 � c3 � h� (38)

�V

�hk
�

�

4
� c2 � dbh2 (39)

Oak:

V �
�

4
� dbh2 � h � � c0 � c1 �

d03h2

dbh2 � c2 �
hk

h
� c3 �

h

dbh2�
(40)

�V

�dbh
�

�

4
� dbh � �2 � c0 � h � 2 � c2 � hk� (41)

�V

�d03h
�

�

4
� 2 � c1 � d03h � h (42)

�V

�h
�

�

4
� �c0 � dbh2 � c1 � d03h2 � 2 � c3 � h� (43)

�V

�hk
�

�

4
� c2 � dbh2 (44)

Small trees (no d03h and hk):

V �
�

4
� dbh2 � h � � c0 � c1 � �ln�dbh��2 � c2 �

1

h
� c3 �

1

dbh

� c4 �
1

dbh2 � c5 �
1

dbh � h
� c6 �

1

dbh2 � h� (45)

�V

�dbh
�

�

4
� �2 � h � dbh � �c0 � c1 � ln�dbh� � �1 � ln�dbh���

� 2 � c2 � dbh � c3 � h � c5� (46)

�V

�h
�

�

4
� �dbh2 � �c0 � c1 � (ln�dbh��2� � c3 � dbh � c4)

(47)
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