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The Great Lakes watersheds have an important influence on the water quality of the nearshore environment,
therefore, watershed characteristics can be used to predict what will be observed in the streams. We used
novel landscape information describing the forest cover change, along with forest census data and established
land cover data to predict total phosphorus and turbidity in Great Lakes streams. In Lake Superior, we modeled
increased phosphorus as a function of the increase in the proportion of persisting forest, forest disturbed during
2000-2009, and agricultural land, and we modeled increased turbidity as a function of the increase in the propor-
tion of persisting forest, forest disturbed during 2000-2009, agricultural land, and urban land. In Lake Michigan,
we modeled increased phosphorus as a function of ecoregion, decrease in the proportion of forest disturbed
during 1984-1999 and watershed storage, and increase in the proportion of urban land, and we modeled
increased turbidity as a function of ecoregion, increase in the proportion of forest disturbed during
2000-2009, and decrease in the proportion softwood forest. We used these relationships to identify priority
areas for restoration in the Lake Superior basin in the southwestern watersheds, and in west central and south-
west watersheds of the Lake Michigan basin. We then used the models to estimate water quality in watersheds
without observed instream data to prioritize those areas for management. Prioritizing watersheds will aid
effective management of the Great Lakes watershed and result in efficient use of restoration funds, which will

lead to improved nearshore water quality.
Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.

Introduction

Water quality in lakes is profoundly influenced by the characteristics
of the watersheds that support them (Allan et al., 1997; Arnold and
Gibbons, 1996; Gergel et al,, 2002). As the world's largest source of
surface fresh water, the Laurentian Great Lakes are an important
resource for the eight U.S. states and one Canadian province that border
them. A recent analysis of data collected by the Bureau of Labor
Statistics suggests that 1.5 million jobs are directly connected to the
Great Lakes, and these jobs generate $62 billion in wages (Vaccaro
and Read, 2011). In this study, we evaluate the relationship between
landscape conditions, including novel forest predictors, in the water-
sheds of Lake Superior and Lake Michigan and water quality in streams
draining those watersheds. These tributaries influence the water quality
of the nearshore area of the Great Lakes, so our research will have an
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important application in the management of nearshore water quality
for beneficial uses by fisheries and people. The nearshore region -
defined as that portion of the lake directly influenced by contributing
watersheds and extending from the shoreline to 20-30 m of depth
(Edsall and Charlton, 1997; Mackey and Goforth, 2005) - is particularly
important because it is used as a drinking water source, for recreation,
and is an important aquatic ecosystem (Fuller and Shear, 1995).

The Great Lakes Restoration Initiative (GLRI) is a multi-million dollar
investment to improve the health of Great Lakes watersheds by ad-
dressing toxic substances, invasive species, nearshore health and non-
point source pollution, habitat and wildlife protection and restoration,
and education, monitoring, evaluation, communication, and strategic
partnership (WHCEQ, White House Council on Environmental Quality
et al, 2010). In Fiscal Year 2010, 255 million dollars were awarded
to 16 different federal agencies and 163 million dollars were awarded
to other partners as grants (http://greatlakesrestoration.us/projects.
html). In an era of shrinking resources, the Action Plan (WHCEQ,
White House Council on Environmental Quality et al., 2010) identified
the need for methods to target watersheds where management and
restoration activities could be rapidly and effectively applied. Nonpoint
source pollutants contribute to the degraded conditions in the Great
Lake nearshore areas, but these sources can be challenging to pinpoint
for restoration and management (Riseng et al., 2010). The Action Plan
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identifies soluble reactive phosphorus, soil erosion, and pollutants as
contaminants, so we developed models to predict and rank watersheds
for two related variables, instream total phosphorus (TP) and turbidity
(NTU [nephelometric turbidity units]).

There is a large literature describing the methods used to predict
stream delivery of chemical and physical pollutants using watershed
variables (e.g., land use, surficial geology). The methodologies used
to model water condition in the Great Lakes have ranged from single
watersheds (Bosch, 2008) to the entire U.S. basin (Robertson and
Saad, 2011). There is a trade-off between the amount of time and
data that are needed for a model and the spatial scale the model
can describe. Mechanistic (or deterministic) models (e.g., Soil Water
Assessment Tool (SWAT); Bosch, 2008) use complete, computational
characterizations of watersheds (e.g., topography, hydrology, climate)
to predict detailed nutrient and sediment exports. Mechanistic models
are data intensive and would be difficult to parameterize for an entire
Great Lake basin. A hybrid mechanistic-statistical method called
SPAtially-Referenced Regression On Watershed attributes (SPARROW;
Smith et al, 1997) uses a mass-balance approach that combines
observed water quality and watershed features to model watershed
export. This method can be used for larger spatial scales, and was
recently completed for the Great Lakes (Robertson and Saad, 2011);
it will provide a reference point for comparison with our models. We
selected a statistical approach using landscape characteristics and
observed water quality in multiple watersheds to create models that
predict instream water quality (Lopez et al, 2008). Our method
has the advantage of being effective for a large spatial area, while not
having the intense data requirements of mechanistic models; it is also
readily applicable to watersheds not already modeled using landscape
characteristics alone, which is more difficult for other models, such as
SPARROW. Our models also utilize higher resolution spatial data
(30-meter pixels) compared to SPARROW, which uses county-level
estimates of agricultural land use (Smith et al., 1997). Our models also
utilize a newly available forest database that tracks the persistence
and disturbance of forest through time. Forest has been closely linked
to high quality water (de la Crétaz and Barten, 2007), especially in
relation to intense human development, and forest also represents a
wide range of potential restoration activities (e.g. tree planting, riparian
buffer restoration). We developed models that can be used to address
water clarity issues (NTU), in addition to nutrients (TP), so they can
be used in association with the SPARROW models to link water quality
with watershed and forest conditions.

The goal of this research is to provide the U.S. Environmental
Protection Agency (USEPA) and watershed managers with models
to predict water quality in gauged basins to predict future changes
in water quality associated with landscape changes in the watersheds,
and to prioritize the ungauged watersheds of Lake Superior and Lake
Michigan for restoration. We will link the landscape characteristics
in each basin to observed water quality in streams that contribute to
nearshore water quality. The models will then be applied to ungauged
sites to identify areas with watershed conditions that may lead to
degraded water quality. Ranked watershed groups can then be used
to target the areas in the basin where management is most needed
and where restoration dollars can be most efficiently spent.

Material and methods

Lake Superior is located in the headwaters of the Great Lakes
watershed and is bordered by Ontario to the north and Minnesota,
Wisconsin and Michigan to the west and south. It has the highest
surface elevation, largest total water volume, and greatest depth of
the five Great Lakes (Fuller and Shear, 1995). Due to the relatively
undeveloped nature of the watershed, Lake Superior has the lowest
concentration of open water phosphorus, and, although the status of
nearshore phosphorus likely is also low, it has not yet been assessed
(EC, Environment Canada and USEPA, United States Environmental

Protection Agency, 2009). Lake Michigan is the only lake located
entirely within the United States, bordered by Wisconsin, Michigan,
Illinois, and Indiana, and it has higher nutrient and pollutant loadings
than Lake Superior. Lake Michigan is the second largest Great Lake by
volume with the second greatest maximum depth. The current status
of open water phosphorus concentration is rated as good with an
improving trend in Lake Michigan, while nearshore phosphorus
concentration remains poor (EC, Environment Canada and USEPA,
United States Environmental Protection Agency, 2009). We used
multiple landscape data types to describe the conditions present in
watersheds of Lakes Superior (U.S. only) and Lake Michigan. Only
the U.S. side was included in our modeling because comparable
datasets for predictor and response variables (with the exception of
forest disturbance data) were not readily available for the Canadian
watershed of Lake Superior.

Water quality data

Water quality data were retrieved from EPA's STOrage and
RETrieval (STORET) database and USGS's National Water Information
System (NWIS). We augmented the water quality data for Lake
Superior with collections from the Wisconsin Department of Natural
Resources. The study interval was limited to the years 2005 to 2009
to overlap with the landscape data, especially the recent forest distur-
bance class and the forest inventory data, and to limit the amount of
climatic variation occurring during the interval. To model the most
active period of stream flow when the transport of large quantities of
nutrients and turbidity (i.e., sediment) occurs, the models described
the spring runoff period (March to June; Detenbeck et al., 2003).
Multiple water quality variables were available for the basins, but
after considering the spatial and temporal availability, along with the
number of observations for each variable that was below the minimum
detection limit, we selected two: total phosphorus (mg/L) and turbidity
(NTU). Total phosphorus (TP) is a commonly collected primary nutrient
variable in monitoring programs and is associated with enrichment
from human sources. Turbidity is a measure of water clarity and was
selected, as opposed to total suspended solids, because there was
acceptable temporal and spatial coverage of the data and no samples
were below the minimum detection limit. In the Lake Michigan water-
shed, NTU data were available at fewer sites than TP, so there were
fewer watersheds (23) with NTU observations to use in the modeling.
We modeled concentrations rather than loads (quantity delivered per
unit time) because stream flow data were not available for all water-
sheds. By focusing on the hydrologically-active spring season, we
should indirectly account for the periods when the greatest amounts
of nutrients and sediments are entering the nearshore areas of the lakes.

Landscape data

Principal components analysis was used to identify collinearity
between continuous landscape variables (Table 1), and some were
excluded because of redundancy. The loadings of each variable on the
first two principal components were examined graphically, and we
provide details on which variables were excluded below. The selected
variables were then used to build models to predict water quality.
Data were obtained from multiple sources and summarized in ArcMap
(version 9.3.1, Redlands, CA) using the Spatial Analyst extension.
General boundaries for the Lake Superior and Michigan watersheds
were defined by the 10 digit Hydrologic Unit Code (HUC10) from
the Watershed Boundary Dataset (http://datagateway.nrcs.usda.gov,
Accessed July 19, 2010). We used the National Hydrological Dataset
Plus (NHDPlus; http://www.horizon-systems.com/nhdplus/index.php,
accessed 25 June 2010; USGS, U.S. Geological Survey, 2009) to charac-
terize the stream network. Artificial paths (i.e., artificial connections
through lakes and impoundments) were removed, because we were
only interested in actual streams in relation to water quality stations.
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Table 1

Study watershed summary of proportion of landscape variables for Lake Superior and
Lake Michigan. Landscape variables are Vegetation Change Tracker (VCT; persistent
forest, disturbed forest 1984-1999, and disturbed forest 2000-2009), National Land
Cover Dataset 2006 (NLCD; agriculture, urban, and watershed storage), and Forest
Inventory and Analysis (FIA; softwood). The table only contains variables that were
selected for the final models and not all the variables considered.

Lake Variable Landscape variable Mean SD
Superior Total phosphorus Persisting forest 0.77 0.15
Disturbed forest 2000-2009 0.03 0.02
Agriculture 0.03 0.05
Turbidity Persisting forest 0.80 0.12
Disturbed forest 2000-2009 0.04 0.02
Agriculture 0.03 0.05
Urban 0.02 0.06
Michigan  Total phosphorus Disturbed forest 1984-1999 0.02 0.02
Watershed storage 0.18 0.15
Urban 0.14 0.22
Turbidity Disturbed forest 2000-2009 0.01 0.01
Softwood 0.08 0.11

We calculated watershed drainage intensity as a metric of
area watershed's drainage potential (drainage intensity = stream
length (km)/watershed area (km?)).

A recently completed Vegetation Change Tracker (VCT) database
for the entire Lakes Superior and Michigan basins was used to
describe forest persistence and disturbance (Stueve et al, 2011).
VCT is an algorithm which uses time series stacks of Landsat images
to detect persisting nonforest, persisting forest, and water, as well
as disturbed land cover as a 30-meter raster (Huang et al., 2009); in
our case, the raster identified two disturbance intervals: 1984 to
1999 and 2000 to 2009. Persisting categories represent pixels that
did not change classes during the period 1984-2009. The disturbed
areas were pixels that changed from forest to nonforest during the
time period covered by Landsat imagery, but VCT does not reveal
the ultimate fate of those lands after the disturbance (e.g., return
to forest or a permanent conversion to other land use).

The most recent version of the National Land Cover Dataset
(NLCD2006; http://www.mrlc.gov/nlcd2006.php, accessed 28 March
2011; Fry et al., 2011) was used to quantify four general land cover
classes for consideration as predictors (agriculture, urban, and water-
shed storage). Of the original 15 land cover classes observed in the
two basins, we retained agricultural (pasture and cultivated), and
urban (low, medium, and high density developed land). The combined
agricultural and urban land covers were highly correlated with
persisting nonforest derived from VCT, so we retained the more infor-
mative pair of NLCD variables for modeling. The nonforest variable
from VCT also included wetland areas that were neither forested nor de-
veloped, so using the NLCD agriculture and urban was the best
measurement of human development in the watersheds. Other classes
observed in the basins were: open water, developed open space, barren,
forest, shrub, grassland, and wetland, but were not considered individu-
ally as predictors in the models. We computed watershed storage
from NLCD variables by combining the proportion of area classified
as open water and wetland in each watershed. Another measure of
urban development, USGS 2006 percent developed impervious (http://
www.mrlc.gov/nlcd06_data.php, accessed 3 March 2011), was highly
correlated with NLCD's urban class. Although it has been argued that im-
pervious surface is a better indicator of urban degradation (Arnold and
Gibbons, 1996), we selected the NLCD urban metric for consistency
with NLCD agriculture. In the case of the urban land for the Lake
Michigan TP sites, we found that there was a threshold at 14% urban
land use where increasing urban area was no longer associated with
increased observed TP concentrations. A comparison of model perfor-
mance between the 14% urban threshold and using all the observed
urban values showed better overall model performance when using
the urban threshold, so it was retained in the Lake Michigan TP model.

We used proportion of softwoods and proportion of hardwoods as
two predictor variables reflecting forest composition. These data were
based on the USDA Forest Service's Forest Inventory and Analysis plot
data, which were generalized into a continuous surface raster dataset
(Wilson et al., 2009, 2012). Details on the plot data collection and tree
species in forest type groups are available in Woudenberg et al.
(2010). We collapsed the thirteen observed forest type groups into
softwoods and hardwoods in order to use forest type information
parsimoniously. The total proportion of each group was calculated
for each watershed and used in the analysis.

Watersheds were also categorized into ecoregions using the
USDA Forest Service Province and Section classification (http://www.fs.
fed.us/rm/ecoregions/ and http://fsgeodata.fs.fed.us/other_resources/
ecosubregions.php, Accessed July 22 2010; McNab et al,, 2005; Fig. 1).
We use the division, province, and section level of ecoregion classifica-
tion developed for the continental United States by the U.S. Forest
Service. The division classified land by regional climate differences,
while the province reflected the potential of natural vegetation in the
area (McNab et al., 2005). There were two overlapping Divisions and
Province in the study area; the Lake Superior basin and the northern
Lake Michigan basin in the Laurentian warm continental division
and mixed forest province (212); while the southern half of the Lake
Michigan basin was in the hot continental division and Midwest broad-
leaf forest division. The watersheds were divided to an additional
level by sections (indicated by a letter following the province) while
described the geologic stratigraphy and lithology, and soils (McNab
et al., 2005). The Lake Superior sections were grouped into four cate-
gorical variables in order to provide fairly homologous areas for the
assignment of membership to watersheds. The ecoregion groups were
primarily a geographical gradient from west to east along Lake Superior,
but these groups also captured the differences in soils (e.g., Lake
Superior clay plain in 212 K) that were present. It was a logical division
to separate the Lake Michigan watershed to the north and south by the
division and province. Further study of the sections indicated that
the 222 province could be separated into two groups on either side of
the lake, while the eastern 212 was also a single section. To minimize
the number of groups in the analysis, we assigned the remaining 212
sections to a single class (212 west). Lake Michigan was divided into
four categorical ecoregion groups based on province and orientation
to the Lake (212 E, 222 E, 212 W, 222 W). East and west were defined
with a hypothetical line dividing the lake from Lake Huron in
the north, through the center of the Lake to the most southern point
on Lake Michigan between the HUCs 04040001 and 04040002. Water-
sheds with mixed provinces were assigned to the ecoregion in the
majority. The percentage of NLCD agriculture and urban was calculated
within each ecoregion using GIS.

New watershed delineation

Before landscape information could be summarized, watersheds
needed to be delineated for each site where total phosphorus or
turbidity was collected (gauged sites), along with other parts of the
Great Lake basins that did not have available water quality data
(ungauged sites). Portions of the watershed, mostly small coastal
areas, were not delineated because they did not contain a stream
network larger than 1 km? (i.e., the minimum gauged watershed
size) or lacked a direct link in NHDPlus to the lake. We used Arc
Hydro Tools 9 (ESRI, Redland, CA) to delineate watersheds draining to
the coordinates of each water quality station following standard proce-
dures outlined by ESRI (2005). The 1 arc second National Elevation
Dataset (NED; http://seamless.usgs.gov/ned1.php, accessed 29 June
2011) was used for the digital elevation model. We utilized established
stream paths (NHDPlus) and watershed boundary (HUC10) to maintain
consistency between the new watersheds and available hydrology
(ESRI, 2005). The NHDPIlus stream layer was used to lower the DEM
along the stream path, which resulted in Arc Hydro mapped streams
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Fig. 1. Ecoregion groups and location of water quality sampling sites for A) Lake Superior and B) Lake Michigan. Symbols show type of water quality sampled (total phosphorus only,
turbidity only, or both). Delineations of the ecoregion groups for Lake Michigan are shown with dash lines (222 east, 222 west, 212 east, and 212 west). Ecoregions were divided
into provinces (numbers), which were subdivided into sections (letters), see Material and methods for additional information.

agreeing with NHDPlus. The outlines of HUC10 were used to build inner
walls in the DEM, which kept delineated watersheds in agreement
with HUC10 boundaries. Area (km?) was calculated in ArcMap for
each watershed. To increase sampling size and reduce the influence
of correlation from nested watersheds, we only included nested
watersheds for Lake Michigan when they were a small proportion
of the larger watershed.

Water quality modeling

In both basins, the sample distributions of TP and NTU values were
highly right-skewed and ranged over multiple orders of magnitude,
so we log-transformed all TP and NTU values. Also, because the
minimum NTU observed in Lake Michigan was zero, we added a
constant (0.5; i.e., half the minimum non-zero NTU value) to each
NTU observation for Lake Michigan before transformation (Gotelli
and Ellison, 2004). Because repeated measurements of water quality
were taken from many watersheds, we expected more similarity
within a watershed than between watersheds. Also, within a single
site we expected observations taken during the same year to be
more similar if they were taken on days close together than if they

were take on days far apart. These expectations suggested using a
mixed-effects regression model, where i represented a site, j represented
a year, and k represented a day in the following model:

Yige = Xis + Ui + v + €

where Yj; is an observed value, X; is a vector of landscape variables, Bis a
vector of coefficients describing the relationship between landscape and
water quality, u; is a random intercept for site, v;; is a random intercept
for a year within a site, and e, is measurement error. We assumed that
the random intercepts for site and year within each site are independent
normal random variables. We also assumed that the measurement errors
were normal, and may be correlated (with a first-order autoregressive
structure) if they correspond to observations taken from the same
site in the same year, but are otherwise independent.

To estimate the parameters in this model, we followed the same
general approach for TP and NTU. The statistical software R (version
2.13.2; R Development Core Team, 2011) and the Ime function in
the nlme package (version 3.1-102; Pinheiro et al., 2011) were used
to fit all models. First, we included in X; all the landscape variables
described above, then fit models with a variety of random effects
structures (all special cases of the model described above) using
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restricted maximum likelihood, and, finally, compared them using
likelihood ratio tests. In Lake Superior, for both TP and NTU, a
model including both random intercepts (u; and v;) was found to fit
better than models lacking these terms. Also, a first-order continuous
autoregressive correlation between measurement errors within the
same site (e;) improved the fit, and was kept in the model. In Lake
Michigan, for both TP and NTU, tests suggested that only the random
intercept for site (u;) was necessary, so the intercept for year within
site (v;) was discarded from the model. However, the first-order
continuous autoregressive correlation of measurement errors within
the same site and year (ej) still improved both fits and was kept.

Next, we determined the landscape variables to be included in the
landscape variable vector (X;) by backwards elimination. A sequence
of models (all containing the same error structure as set above) were
fit using maximum likelihood where the least significant predictor (as
measured by the p-value testing if its coefficient was non-zero) from
the previous model was removed. This sequence was extended until
all coefficients were estimated with significance (p-value < 0.05).
We then studied the likelihood ratio tests comparing adjacent models
in sequence to select a model that balanced parsimony with fit,
and made sense from an ecological perspective. The information in
the Akaike information criterion and Baysian information criterion
supported the model selection decisions. The chosen model for each
response/lake combination was then refit using restricted maximum
likelihood. The models were then used to predict the TP and NTU at
gauged and ungauged sites in both lake basins. Gauged site estimates
included predicted site-specific effects ({i;), while ungauged site
estimates were based on the landscape composition only. Goodness of
fit for the models was measured between the population-level fitted
values (based on landscape composition only) and the mean response
as a measure of how much additional variability was explained by the
predictors. Goodness of fit was defined as the difference between the
estimated site-level variance of a null model where no predictors
were used and the estimated site-level variance of a fitted model
using the landscape predictors, as defined in the following:

2 . .
Riiee = 1-Varianceg,q/Variance,,

We chose to ignore within-site variability when assessing model fit
because our landscape data were constant within site and because
we are primarily interested in the typical water quality at a given site,
rather than the expected water quality on a given day at a given site.
The reduction of site-level variance is analogous to a squared
correlation (R%.) value and represents the percentage of site-to-site
variability in water quality that is being explained by the models.
In order to demonstrate the importance of individual predictors to
the estimated water quality values, we conducted a series of model
predictions with a range of predictor values. Each predictor was
changed by set amounts (+/— 1-5%), and then the predicted values
were compared to a baseline value equal to the mean landscape compo-
sition of the model watersheds (Table 1). We used the Mantel test to
quantify spatial autocorrelation between the model residuals and
spatial location with the mantel.rtest function (with 10,000 permuta-
tions in the p value calculation) in the afe4 package in R. There was a
slight correlation only in the LS TP model (0.23, p = 0.03, n = 457),
so we proceeded with the modeling with the understanding that
there was a small amount of autocorrelation.

For the purpose of prioritizing risk, watersheds were grouped
with different criteria for gauged and ungauged model outputs.
We understood the error structure for the models of the gauged
sites and grouped them by the predicted concentrations. We selected
two general thresholds to group data after observing the current water
quality criteria in the states bordering Lakes Superior and Michigan
(e.g., Wisconsin TP <0.075 mg/L for streams and <0.1 mg/L for rivers;
current standards available at USEPA, U.S. Environmental Protection

Agency, 2011). The risk group thresholds for TP were 0.05 and
0.075 mg/L, while for NTU we used 10 and 25 NTU (based on Minnesota
NTU standard levels) for gauged rivers. Because of the multijurisdictional
nature of the Great Lakes basin, no single water quality criterion will
apply to an entire Lake, but the levels we selected should be informative
in the management of the basin's aquatic resources. We chose not to
map ungauged areas by predicted concentration because we suspected
that gauged sites would tend to have higher concentrations than
ungauged sites. In other words, we believe that our sample of water-
sheds is biased. Instead, we used predicted concentrations to rank
the watersheds based on the potential risk to water quality based on
the landscape. These rankings are based on the assumption that the
relationships between the landscape predictors and water quality
are the same at the gauged and ungauged locations. The groups were
conservatively assigned as low risk (0-74th percentile), moderate risk
(75-89th percentile), and high risk (90-100th percentile). We plotted
the predicted values for each model from minimum to maximum, and
these figures were used to guide the selection of the risk thresholds,
which showed small differences in low group concentrations, higher
concentrations in the moderate group, and highest concentration in the
high group (between group differences were significant). These groups
were judged to be the best way to objectively classify groups, while
also providing useful differences between groups of watersheds.
Although these groups were based on percentiles, the differences in
the predicted values were large and would be useful for selecting sites
for management actions.

In order to assess the relationship between our TP model and
SPARROW TP model, we obtained flow-weighted TP (mg/L) from
the SPARROW Decision Support System for the Great Lakes model
(USGS Major River Basin 3; http://water.usgs.gov/nawqa/sparrow/
dss/, accessed January 5, 2012). The SPARROW model TP estimates
describing the base year of 2002 in Lakes Superior and Michigan
were available for most gauged watersheds, and we selected the TP
concentration that most closely corresponded to the location of a
gauged water quality location. The SPARROW and gauged watershed
concentrations were transformed with the natural logarithm to obtain
normal distributions before comparisons. We calculated Pearson corre-
lation coefficients and linear regression for the paired dataset of the
SPARROW and gauged estimates in R (version 2.13.2; Development
Core Team, 2011).

Results
Data description

We used data collected at 49 sites for total phosphorus (TP) and
41 sites for turbidity (NTU) in Lake Superior, and 47 sites for TP
and 23 sites for NTU in Lake Michigan. Mean watershed size was
475 km? for TP and 539 km? for NTU in Lake Superior (range: 3-9,
158 km?), while in Lake Michigan mean watershed size for TP was
1,976 km? and NTU was 2684 km? (range: 1-16, 410 km?; Table 2).
Mean gauged site TP was 0.08 mg/L and mean NTU was 62.6 NTU in
Lake Superior tributaries (Table 3). The mean gauged site TP was
0.15 mg/L and mean site NTU was 15.4 NTU in Lake Michigan. Median
TP and NTU were lower than mean values but the patterns between
basins were the same (Table 3).

The mean proportion of persisting forest was large in the Lake
Superior basin (0.77 for TP watersheds and 0.80 for NTU watersheds;
Table 1). The larger proportion of forest in the Superior basin was
associated with a larger amount of disturbed forest (2000-2009),
while Lake Michigan had lower quantities of disturbed forest (disturbed
forest 1984-1999 and 2000-2009). Land cover patterns from the NLCD
reflected the forest disturbance data with small proportion of urban
(0.02 in NTU watersheds) and agricultural land (0.03 in both models)
in Lake Superior, and a larger proportion of urban in the Lake Michigan
basin (0.12; Table 1). Ecoregion 212 was the only province present in
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Table 2
Summary of mean size, minimum size, maximum size, and standard error of watersheds
used in modeling total phosphorus and turbidity in Lake Superior and Lake Michigan.

Water quality variable U.S. Lake Superior Lake Michigan

Total phosphorus

Mean (km?) 4749 1975.7
Min (km?) 33 1.1
Max (km?) 9158.4 16,410.2
Standard error 205.0 546.0
n 49 47
Turbidity

Mean (km?) 539.1 2684.3
Min (km?) 33 1.0
Max (km?) 9158.4 13,591.2
Standard error 243.8 776.9
n 41 23

the Superior basin, and was subdivided into nine sections (Fig. 1).
Lake Michigan had two ecoregion provinces (212 and 222), with area
approximately divided between the two (0.58 in ecoregion 212,
and 0.42 in ecoregion 222), although there was more area in 222 to
the east of Lake Michigan than to the west (Fig. 1).

Model development

Table 4 presents the model 3 values that are the estimated fixed
effect coefficients, along with the lower and upper bounds of 95%
confidence intervals and p-values for individual predictors for each
model. Although some predictors had p-values greater than 0.05,
variables were not solely selected based on p-values; we also considered
the overall fit of the model, which was reduced when the non-significant
predictors were removed. We quantified the relative importance of each
predictor to estimated water quality values (Fig. 2). For Lake Superior,
the selected TP model used the proportion of persisting forest, forest
disturbed during 2000-2009, and agricultural land as predictors, and
the NTU model used the proportion of persisting forest, forest disturbed
during 2000-2009, agricultural land, and urban land as predictors.
In both Lake Superior models, there was a positive relationship between
predictors and estimated water quality, where an increase in the propor-
tion of land use resulted in an increase in TP or NTU. Agriculture and
disturbed forest 2000-2009 were the most influential predictors in
Lake Superior for TP (Fig. 2a) and NTU (Fig. 2b). The magnitude of change
was less in the TP model than the NTU model, where an increase of 5% of
agriculture or disturbed forest resulted in an increase in TP of >40% and
nearly 30%, respectively. For the NTU model, an increase of 5% disturbed
forest 2000-2009 resulted in nearly 300% increase in NTU, while a
similar increase in agriculture had nearly 200% increase in NTU.

Table 3
Mean, median, minimum, maximum, and standard deviation for tributary sampling
site total phosphorus and turbidity in the Lake Superior and Lake Michigan basin.

Water quality variable U.S. Lake Superior Lake Michigan

Total phosphorus (mg/L)

Mean 0.08 0.15
Median 0.04 0.08
Minimum 0.01 0.01
Maximum 0.72 1.05
Standard deviation 0.13 0.21
n 49 47
Turbidity (NTU)

Mean 62.6 15.4
Median 20.6 9.3
Minimum 2.9 2.1
Maximum 641.6 70.0
Standard deviation 1125 16.1
n 41 23

For Lake Michigan, the TP model used ecoregion, the proportion of
disturbed forest during 1984-1999, watershed storage, and a threshold
response of the proportion of urban land as predictors, and the NTU
model used ecoregion, and the proportion of forest disturbed during
2000-2009 and the proportion of softwood forest as predictors. The
most influential predictor for TP in Lake Michigan was ecoregion, while
within each ecoregion disturbed forest 1984-1999 had slightly more
influence than storage and urban area (Fig. 2¢). Increased disturbed
forest 1984-1999 and storage were related to lower TP, while % urban
had a positive relationship with TP. In the Lake Michigan TP model, the
threshold response of % urban was used after observing scatterplots of
the relationship with TP. The threshold was set at the mean proportion
of urban land (0.14) in Lake Michigan TP gauged watersheds, where
the model used the mean proportion for watersheds with more than
14% urban areas. The Lake Michigan NTU model was influenced more
by increases in disturbed forest 2000-2009 than changes in softwood
(Fig. 2d). There was a large positive relationship between NTU and
forest disturbance 2000-2009, while the proportion of softwood
was negatively related to NTU. All the models included forest as useful
indicators in determining the status of water quality in the tributaries,
while the influence of human development was also reflected in the
models directly (agriculture and urban) and indirectly (ecoregion).

The major ecoregion groups for the Lake Michigan watershed, 212
and 222, demonstrated the differences between the less developed
(i.e. urban and agricultural land use in NLCD) northern part and the
more developed southern part of the basin. There was less urban in
the north (212: 2.7% in the east and 2.4% in the west) than the
south (222: 8.3% in the east and 10.3% in the west). There was
a similar pattern in ecoregion 222 for agriculture with less in
the north (212: 16.2% in the east and 20.1% in the west) and more
in the south (222: 51.8% in the east and 46.6% in the west).
There was a temporal lag associated with the older forest disturbance
(1984-1999) in the Lake Michigan TP model, so we overlaid the areas
of older disturbance in the gauged watersheds over the recent
land cover (i.e., NLCD). The overlay summary showed that a
majority (78%) of the area of forest disturbed in 1984-1999 was in
an undeveloped state (e.g., 45% forest, 16% grassland and shrubs,
16% wetland) compared to areas that were developed (22%). In the
developed areas, a large overall part of the landscape was urban
open space (6%), with only 14% overall land that became a potential
nutrient source (4% low and moderate urban development and 10%
agricultural lands).

We show the relationship between fitted and observed values on
the natural log scale for Lake Superior and Lake Michigan (Fig. 3). The
population-level fitted values in Fig. 3 are based only on information
contained in the predictors, and do not include predicted values of
random effects. For Lake Superior, the R? between the observed and
predicted values was 0.23 for TP and 0.58 for NTU. In Lake Michigan,
the R? were 0.77 for TP and 0.43 for NTU. The models did a reasonable
job of explaining variability in water quality using only watershed-
scale variables. Comparing the variance of the fitted to the null model
R%e indicated that the models explained at least half of the variation
in the mean water quality values with the lowest value for Lake Superior
TP (49%) and highest for Lake Michigan TP (76%; Table 5). The NTU
models explained a similar amount of variation in both lakes (64%;
Table 5).

Model predictions

Fig. 4 presents the predicted TP and NTU for gauged watersheds
(i.e., watersheds with observed water quality values and site-
specific effects in models), and estimated ranks of ungauged sites
(no observed water quality and no known site-specific effects) for
Lake Superior. The five watersheds with the highest observed mean
TP (>0.075 mg/L) were located in southwestern Lake Superior and
two watersheds in the east (Fig. 4A). The middle range of gauged
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Landscape variables and associated 3 for total phosphorus and turbidity models in Lake Superior and Lake Michigan. Upper and lower bounds report 95% confidence intervals on {3.
P-values for each variable are also reported.

Lake Water quality Landscape variable Lower B Upper p-value
U.S. Lake Superior Total Phosphorus (Intercept) —3.49 —3.33 —3.18 <0.01
Persisting forest —0.38 1.01 240 0.15
Disturbed 2000-2009 —1.89 5.25 12.39 0.15
Agriculture 3.11 7.04 10.97 <0.01
Turbidity (Intercept) 2.39 2.64 2.88 <0.01
Persisting forest 4.05 8.92 13.79 <0.01
Disturbed 2000-2009 14.62 27.12 39.61 <0.01
Agriculture 12.71 21.83 30.94 <0.01
Urban —0.27 8.21 16.68 0.06
Lake Michigan Total phosphorus Ecoregion e212 —3.53 —3.03 —2.54 <0.01
Ecoregion €222 —3.23 —2.76 —2.28 <0.01
Ecoregion w212 —2.58 —2.25 —1.93 <0.01
Ecoregion w222 —234 —2.07 —1.80 <0.01
Disturbed 1984-1999 —26.50 —16.55 —6.60 <0.01
Watershed storage —3.39 —2.19 —0.99 <0.01
Urban (threshold) —0.41 4,04 8.49 0.07
Turbidity Ecoregion e212 1.90 235 2.81 <0.01
Ecoregion €222 1.24 1.65 2.06 <0.01
Ecoregion w212 2.14 2.64 3.15 <0.01
Ecoregion w222 1.74 2.37 2.99 <0.01
Disturbed 2000-2009 1.50 33.08 64.65 0.04
Softwood —11.37 —7.19 —3.00 <0.01

watersheds for TP includes three large western watersheds and
a cluster of smaller watersheds along the north shore of Superior.
Moderate to high risk watersheds were located mainly in the
southwestern part of the basin. The NTU model outputs (Fig. 4B)
show a larger number of watersheds in the high group of observed
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were in the southwest part of the basin, similar to the TP model
for ungauged watersheds.

In Lake Michigan, TP was highest in the western watersheds for both
the gauged and ungauged sites (Fig. 5). Gauged TP concentrations were
also elevated in the watersheds on the eastern side of Lake Michigan.
The ungauged watersheds on the south and west side of the lake were
expected to have higher TP concentrations, although most of the smaller
ungauged watersheds in the southeastern part of the basin were in
the low risk group (Fig. 5A). The eastern gauged watersheds had inter-
mediate NTU levels, while the highest NTU was in the small west central
watersheds (Fig. 5B). Smaller ungauged watersheds in the western
watersheds along the middle lake (and into Door County peninsula)
were predicted to have the highest risk of elevated NTU. There were
three small watersheds in the high risk category and six watersheds

Table 5

Estimated variance of null model with no predictors, full model with predictors, and
the estimated variance reduced by fitted model. Variance reduction was analogous to
an r-squared value for the models.

Lake Water Null Fitted Variation explained
quality model model by fitted model
variance variance
U.S. Lake Superior Total phosphorus 1.011 0.228 77.5%
Turbidity 0.208 0.075 63.8%
Lake Michigan Total phosphorus  0.127 0.065 49.1%
Turbidity 0.813 0.296 63.6%

in the moderate risk category for NTU for ungauged watersheds on
the eastern side of the Lake.

SPARROW estimates in gauged watersheds

There was a significant correlation between our TP predictions and the
flow-weighted TP concentrations estimated by the SPARROW model. The
correlation was weaker in Lake Superior (r = 0.62; n = 38; p < 0.01)
than in Lake Michigan (r = 0.88; n = 47; p < 0.01). Linear regressions
were also significant for both Lakes (Fig. 6).

Discussion

We developed models using landscape variables to predict two
common water quality variables, total phosphorus and turbidity,
with particular emphasis on the role of landscape composition and
forest disturbance metrics. Landscape variables explained the varia-
tion in water quality to various degrees, from 49 to 78%, with only
watershed-scale landscape data used in the model. In comparison to
other studies that modeled water quality using linear mixed models,
our models explained a comparable degree of variation using landscape
variables. In models for a single California watershed (Cosumnes River),
variation explained was similar (nitrate 47%) or higher (total suspended
solids, a measure of water clarity; 93% variation; Ahearn et al,, 2005),
while for models of streams in Puerto Rico the amount of variation
explained was similar to our models (TP 58% and NTU 32%; Uriarte
et al.,, 2011). Models for instream concentrations of fecal bacteria were
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Fig. 4. Modeled spring runoff A) total phosphorus (mg/L) and B) turbidity (NTU) for
watersheds with observed values (gauged) and based on landscape variables only
(ungauged) for Lake Superior. Gray areas are the portions of the basin not modeled.

also similar to our models, with 70% variation in Enterococcus concentra-
tion explained for Hawaiian streams (Ragosta et al., 2010) and 49% vari-
ation in fecal cattle concentration in California streams (Tate et al., 2003).
The low r-squared for the Lake Superior TP model indicate that the set
of landscape variables that we included did not explain the patterns in
TP very well, so future research is needed to identify the important
predictors of TP. This study represents the first use of vegetation change
tracker (VCT) metrics to model water quality. VCT provides novel
metrics with both spatial and temporal components, such as persisting
forest and nonforest, along with forest disturbance classes. Our use of
VCT data also accounted for the temporal status of forest rather than
simply the current status of the land cover, such as persistent forest
factor, which has added value compared to simply a snapshot of forest
(e.g., NLCD land use).

We developed models that identified a mix of landscape predictors
in relation to water quality, including human development, forest,
and large scale ecological classifications. Models of TP and NTU in Lake
Superior both included persisting forest and recently disturbed forest,
which were both retained because they resulted in a better overall fit
of the model, even though they had p-values of 0.15. The Lake Superior

watershed is heavily forested, with little agricultural and urban land, so
it was not unexpected to have forest predictors strongly linked to
changes in TP and NTU. However, when human development, especially
agriculture, was present in a watershed, it was closely linked with
increased TP and NTU. Detenbeck et al. (2004, 2005) reported that
watersheds with less mature forest (<50%) had 3 times higher NTU
than watersheds with more mature forest, but our results were not
able to support or reject these findings. Our dataset only contained 2
watersheds with persisting forest below 50%, so conclusions could not
be drawn. The differences in seasonal and regional NTU between
the studies may also be a factor, Detenbeck et al. (2004) reported
that north shore, low forest (<50%) watersheds in Lake Superior had
elevated NTU values in spring, and south shore, low forest watersheds
had elevated NTU in summer; our study used only water quality from
the spring runoff period and had a larger spatial area.

Ecoregion was included as a categorical variable in the models for
both Great Lakes, although only the Lake Michigan model selection
process included ecoregion in the final models. The ecoregion divided
Lake Michigan into four roughly equal size units, where the water
quality observations were more similar within the ecoregion than
between the ecoregion. Within the framework of the model,
ecoregion provides a range of potential starting points for estimated
concentrations because ecoregion does not change through time,
and some ecoregions have higher concentrations than others. Thus,
the changes in landscape variables of the same proportion of the
landscape will be different in each ecoregion. These ecoregion specific
models will allow managers to look at specific landscape changes in
their region, which may be more effective for management planning.
The division of the watershed by ecoregion boundaries was also likely
to incorporate basin-scale differences in land use, with a greater
proportion of agriculture and urban in the southern ecoregion 222
than in the northern ecoregion 212. This difference in general
patterns is important to keep in mind while discussing the other
predictors that were included in the Lake Michigan models. The
percentage of agriculture has been linked to water quality elsewhere
(Riseng et al., 2010), and we do not suggest that agriculture was not
important in the Lake Michigan models; rather the difference in
ecoregion (i.e., ecoregion differentiating between developed and
undeveloped parts of the entire watershed) was identified as a better
predictor in these models by the stepwise method than the observed
percent agriculture. Spatial scale may also account for the improved
model fit provided by the section of ecoregion rather than percentage
agriculture; we aggregated land use across whole watersheds, while
ecoregion was also a generalization of the entire lake basin into
large units with similar climate and soils. It is worth noting that the
differences in agriculture and urban land uses also are captured by
the ecoregions. Future models may benefit from including riparian
land use and the specific type of farming (e.g. row crops) and riparian
buffers; these may be a better representation of the true impacts of
land use on water quality. Within each ecoregion, forest cover was
important in Lake Michigan watersheds, with the only occurrence
of forest disturbed during 1984-1999 in the TP model. The land
with older disturbance was mostly undeveloped land, and was not con-
tributing high amounts of TP to waterways. The relationship between
the location of tributaries and the nearshore water quality has been
documented (Twiss and Marshall, 2012). The location of higher TP con-
centrations in tributaries are in areas where there is elevated nearshore
TP (e.g., eastern shore of Lake Michigan) as reported in the State of the
Lakes Ecosystem Conference report (EC, Environment Canada and
USEPA, United States Environmental Protection Agency, 2009). The
Lake Michigan NTU model identified the importance of forest composi-
tion with the softwood and recently disturbed forest variables. The for-
est disturbance data did not differentiate between natural and
anthropogenic forest disturbance, so a future improvement to the
dataset should link cause of disturbance to time period. Additional re-
search is needed to better understand the relationship between recent
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forest disturbance and turbidity, particularly the spatial orientation and
proximity of forest disturbance to streams and water quality stations
(Peterson et al,, 2011).

The conversion of forest land to other land uses can have profound
impacts on water quality in streams and other water bodies. Forest
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Fig. 6. Natural log-transformed total phosphorus estimates for gauged watersheds and
SPARROW model estimates for Lake Superior (open circles) and Lake Michigan (black
squares). Lines represent the linear regression for Lake Superior (dashed) and Lake
Michigan (solid) and associated R? values in the upper left.

disturbance is associated with short-term increases in stream
discharge (Stednick, 1996), along with increases in phosphorus
(Meyer and Likens, 1979) and suspended sediment (Martin and
Hornbeck, 1994). If the forest disturbance is short term (~5 years),
followed by a return to forest, then water quality may only be
disturbed for only a short time (Martin and Pierce, 1980; Thornton
et al, 2000). On the other hand, if the forest is permanently
transformed into a different land use (e.g., urban), then the changes
in water quality may be more profound and long-lasting associated
with the new land use (Allan, 2004). Only one of the models identi-
fied an older disturbance interval (1984-1999), so we were not able
to identify long-term effects on water quality from forest disturbance
that occurred more than five to ten years in the past, which is consistent
with the short-term (2-5 years) disturbance in water quality that
has been reported elsewhere (Thornton et al, 2000). When older
disturbance was an important variable in the model, it was negatively
correlated with TP concentration, so areas with higher proportions of
older forest disturbance had lower TP. There were larger areas of older
disturbance found in watersheds when there was also higher overall
forest (e.g., northern half of the Lake Michigan basin). By overlaying
the areas of older forest disturbance over recent land cover (NLCD),
we were able to determine that old forest disturbance was serving as
an indicator of low landscape development because those areas with
older forest disturbance remained undeveloped. The Lake Michigan TP
model also contained watershed storage, which was the proportion of
watershed covered with open water and wetlands, and was negatively
related to TP concentration. Watershed storage was also higher in the
northern half of the Lake Michigan basin and represents lands that
were not available for development.

The landscape of the Great Lakes basin is in constant flux, with
approximately 2.3% reductions in both agricultural and forested
land during the period from 1992 to 2001, along with increases
in the percentage of urban land (Wolter et al., 2006). The increases
in urban cover were the amount of low intensity development
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(+33.5%), high intensity development (+ 19.6%), and roads (+ 7.5%;
Wolter et al., 2006). The pattern of increased urban land and
decreased agriculture and forest lands is expected to continue into
the future (2060; Wear, 2011). Although urban lands make up
a small part of the overall landscape, they have a disproportionate
influence on water, habitat, and biotic quality (Paul and Meyer,
2001). The majority of the agricultural land that changed in the
Great Lakes basin was to developed land, while the forest was split
between changing to development (a permanent change) and early
successional vegetation (temporary change leading to reforested;
Wolter et al., 2006). Estimated nutrient loading from agricultural
and urban land is estimated to be approximately 11 and 14 times,
respectively, higher than forest (Wickham et al., 2002), although
our models were able to identify forest coverage and disturbance
data as a useful predictors of water quality degradation in the western
Great Lake watersheds. Although water quality appears to rapidly
return to less altered conditions following a disturbance, that may
not be the case for the biotic communities where legacy effects
have long-term influences even after the landscape has reverted to a
more natural state (Harding et al., 1998). Future research is needed to
investigate the relationship between biotic communities in streams
and coastal wetlands with forest disturbance in the Great Lakes basin.

We provide managers with models to be used for the water
quality-based ranking of watersheds within the Lake Superior and
Lake Michigan basins using watershed-scale landscape information.
Considering the more developed nature of the Lake Michigan basin
compared to Lake Superior, we were surprised to find that field
observations of NTU were higher for the Lake Superior watersheds.
The difference in NTU between the lakes was not evident when a
longer time period (2000-2009) for the spring melt period is considered,
thus it appears that the higher NTU in Lake Superior was only an artifact
of the time period of the data we used in the model. It should also be
noted that because the watersheds in Lake Superior were smaller than
in Lake Michigan, and watershed size is proportional to stream discharge,
the total load being delivered to the nearshore zone would be higher in
Lake Michigan, even if the measured concentrations in the tributaries
were similar. Because these statistical models were based solely on the
available water quality data within each Lake, we do not recommend
comparing the predicted values between lakes, although it is reasonable
to make comparisons of the predictors that were important in the
models. Mechanistic models (e.g., SWAT) have a different relationship
with field observations of water quality; watershed features are param-
eterized to estimate water quality without using observed water quality
values, instead of using observed values for model calibration and
post-hoc validation (Bosch, 2008).

Within the Lake Superior model, we were able to use the model
predictions to identify the easily erodible Lake Superior Clay Plain
(e.g., Nemadji River) in the southwestern Lake Superior watersheds,
which contribute to higher concentrations of suspended sediment
(Detenbeck et al., 2004; Shy and Wagner, 2007). On a watershed
scale in the Nemadji River, forestry practices may have significant
influence on sediment transport (Shy and Wagner, 2007). Reduced
water clarity was more common in Lake Superior streams than
elevated phosphorus, which may be linked to the attenuation of
total phosphorus by fine clays (Bahnick et al., 1978; Fitzpatrick
et al., 1999). This reduction in phosphorus may be observed in the
tributaries but the nearshore waters may be impacted by the added
sediment, in addition to the potential release of phosphorus from
the clays (Bostrom et al., 1988; Steinman et al., 2006). The model
had the opportunity to select an ecoregion that described the distinc-
tive clay soil type in the southwestern portion of the basin, but
ecoregion did not explain more variation than the current model for
TP or NTU. This is an example of the utility of our models to identify
turbidity problem areas where management actions are needed.

We compared our model with a TP loading model for the entire
U.S. Great Lakes basin (Robertson and Saad, 2011). Both models

utilized landscape-scale predictors, but our models also added
forest-based predictors. The Great Lakes SPARROW model relates
observed TP to potential sources in the watersheds, such as point
sources, agriculture (confined manure, unconfined manure, and
farm fertilizers), urban areas, and forested (including wetland)
areas. We demonstrated that the general findings of the SPARROW
model and our study are similar. Robertson and Saad (2011) found
that the major source of TP in the Lake Superior basin was from
forested land, while they found agriculture, urban, and point sources
contributed most in the Lake Michigan basin. We found that
persisting forest, disturbed forest 2000-2009, and agriculture were
important variables for predicting TP in the Lake Superior basin,
while ecoregion, disturbed forest 1984-1999, watershed storage,
and urban land were significant variables in the Lake Michigan
model. Our models showed that agriculture had a very pronounced
effect on water quality in the Lake Superior basin, while there was a
more complex relationship between TP and watershed factors in
the Lake Michigan basin. In comparison to the SPARROW model,
a strength of our model approach is that it allows for predictions
directly related to forest management for TP and NTU, which can be
targeted for work in the watershed to improve water quality in
the tributaries and nearshore areas. Our model also utilizes higher
resolution landscape data (i.e., 30 m pixels for VCT and NLCD), com-
pared to the county scale extrapolations for agriculture in SPARROW
(Smith et al., 1997). Our model is also more straightforward when
considering future changes in landscape. We used proportions of
land cover classes in our models, so these can be easily adjusted to
simulate future scenarios, while SPARROW mixes total load from
point sources and agriculture with the total area of forest and urban
land use. The time period considered by the SPARROW model is
standardized to represent a model year of 2002 and predicted annual
total loads, while our model specifically relates to a more recent
time period. Additionally, our models have a seasonal specificity
(i.e., spring-runoff water quality) that may aid in planning for restora-
tion because restoration plans can be customized to maximize efforts
targeting the most important landscape factors. Because a high per-
centage of the total annual load occurs during the high runoff period
in the spring, there was agreement between the two models about
the relative condition of watersheds. Landscape data need to be gen-
eralized and aggregated to the watershed-scale to produce a model
capable of making predictions of water quality. Our models and the
Great Lakes SPARROW model use different predictors to describe
the landscape, which results in different strengths and weaknesses
for each modeling approach, but ultimately they are in agreement
in the relative condition of watersheds. We suggest that both models
be consulted when planning watershed management activities to
utilize the strengths of each model and to most effectively use
restoration funds.

Conclusions

We found that in the Lake Superior watershed, percentage
agriculture was the most influential predictor, closely followed by
forest disturbance, of TP concentrations, while forest disturbance
was the primary factor, with agriculture also an important factor,
correlated with increases in NTU. In the Lake Michigan watershed,
concentrations of TP were correlated with the percentage of
urban land, but decreased with old forest disturbance (1984-
1999) and watershed storage. Forest disturbance and the relative
abundance of softwood forest types were important predictors
of turbidity in the Lake Michigan basin. Our model results for
TP were consistent with a recent SPARROW model for the Great
Lakes, but have the added prediction of turbidity. Our models
compliment the SPARROW model by providing greater understanding
of the role of forest and forest disturbance on TP in Lake Superior and
Lake Michigan tributaries.
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Our models can be used to predict the impacts of future manage-
ment actions or multiple management scenarios. This will be especially
true for the heavily forested Lake Superior and northern Lake Michigan
areas, where our models will be directly useful in predicting water
quality using forest indicators. The models can also be used to predict
the expected water quality in a watershed of interest, and to estimate
the expected change in water quality under alterative landscape
configurations (e.g., urban development of watershed, large-scale
disturbance of forest). In future work, we will refine the models to identify
areas within larger watersheds and to include the spatial configuration of
lands (e.g., buffers) to predict the water quality of Great Lakes tributaries.
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