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Species distribution models (SDM) are commonly used to provide information about
species ranges or extents, and often are intended to represent the entire area of poten-
tial occupancy or suitable habitat in which individuals occur. While SDMs can provide
results over various geographic extents, they normally operate within a grid and cannot
delimit distinct, smooth boundaries. Additionally, there are instances where a zone of
primary occupancy (i.e., a mostly continuous region where species exists, excluding
outliers) is better suited for particular analyses, such as when examining source/sink
population dynamics or modeling movement into new habitats. We present a semi-au-
tomated method to delineate a generalized species boundary (GSB) from SDM output,
which provides a practical alternative to digitizing. This preliminary boundary is then
manually updated based on inventory data and historical ranges. We used the method
to generate contemporary boundaries for 132 tree species of the eastern United States,
which are complementary to the ranges generated by Elbert Little for North America
during the 1970s, but are not replacements. The methods we present can broadly be
applied to other grid-based SDM to generate GSBs.

Keywords: eastern United States; forest inventory and analysis; geoprocessing;
R statistical language; tree ranges

Introduction

Current ranges and distributions of many tree species have long been delineated (Munns
1938, Little 1971), or more recently, modeled (Moore et al. 1991, Skyes et al. 1996,
Harrison et al. 2006, Rehfeldt et al. 2006, McKenney et al. 2007, Iverson et al. 2008).
However, species ranges delineated from large-scale field and herbarium surveys are
usually now being superseded by process-based or statistical species distribution mod-
els (SDM) to map the potential extent of suitable habitat for a species. SDMs may
use environmental data obtained from remote sensing along with field survey records
to develop empirical relationships to predict species abundance or occurrence over a
landscape (Franklin and Miller 2009). These correlative relationships provide needed
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information about the ways in which species distributions are shaped by their surround-
ing environment and can then be applied to unsampled locations in a predictive manner
to map presence/absence or abundance/importance of a species. While the model out-
put is continuous and highly informative, the resulting maps make it difficult to estimate
distinct boundaries associated with the species (MacArthur 1972, Kirkpatrick and Barton
1997). Many processes (e.g., climate, land use, site quality, etc.) govern the area occupied
by a species, which result in ranges with unique patterns, especially near range bound-
aries where conditions often are less than optimal and thresholds of habitat suitability
ebb and flow. This dynamic along the range boundaries results from competition among
species and disturbance events. Because these interactions vary over time and space, there
are numerous ways to define the range boundary, including the use of clustering and
edge detection algorithms (Fortin and Drapeau 1995), fuzzy set algorithms (Leung 1987,
Burrough and Frank 1996), or Mahalanobis distance algorithms (Sangermano and Eastman
2012). Regardless of the method, species ranges are often generalized to represent the like-
lihood of the species being present near the edge of the range (Brown et al. 1996, Gaston
2009).

In this paper, we define a ‘generalized species boundary’ (hereafter GSB) as a highly
connected region ranging from high to low density of potential suitable habitat. We have
generated these boundaries for 132 of the 134 tree species previously modeled for the
eastern United States with DISTRIB (Iverson et al. 2008). These models are based on
species-level data, and as such, they ignore genetic variation within species ranges, such
an extensive data set does not exist for most species. We realize that genetic variation plays
an important role in determining the successful establishment and survival of a species in a
particular place, and recognize the need for further research and data acquisition of genetic
spatial variation for many species.

The use of a GSB, or the primary zone of occupancy for a particular species, has
the benefit of excluding potential outlier populations when exploring species migration
potentials (Ordonez and Williams 2013, Prasad et al. 2013), or when defining range limits
(Purves 2009). Analyses that utilize the full species’ range as defined by an unmodified
SDM are susceptible to introducing potential errors, or at least numerous outlier ‘islands’,
at or near the edge of the range boundary where greater uncertainty exists at the tail of a
distribution (Jiménez-Valverde and Lobo 2007). This error is particularly problematic for
binary range boundaries (e.g., Little’s range boundaries, Little 1971), where no abundance
data are available, or when small sample sizes are used. To further reduce error propagation
along the boundary edges, as described by Brown et al. (1996), for tree species using our
DISTRIB models, we set out to define the zone of primary occupancy of suitable habitat
for each species to generate GSBs.

Range boundaries occur naturally as a result of various interacting phenomena, and
there are several ways to define a species range (Gaston 1991, Brown et al. 1996). However,
there is little literature on how to create a boundary via digital processes (Purves 2009).
This deficit may be due to the fact that in recent decades, most researchers are using
grid-based SDMs to identify potential suitable habitat (Graham and Hijmans 2006), thus
replacing the need for maps and vector boundaries digitized from survey data. However,
each SDM has its own set of caveats [e.g., environmental equilibrium, inclusion of habitat
characteristics, and relevant scale (spatial and temporal), Franklin and Miller 2009], and it
might be undesirable to include the entire extent of suitable habitat from a SDM for certain
analyses (e.g., those considering the core or primary region of a species). In this paper, we
describe and present a new method for creating a boundary of primary occupancy from a
grid-based SDM output of potential species abundance.



International Journal of Geographical Information Science 3

Methodology

Data

During the 1970s, Elbert Little published a five-volume atlas of tree species ranges in
North America delineated from published tree distributions, herbarium records, and field
surveys. In general, Little’s boundaries define a generous extent for the species, with lines
drawn around the greatest extent of the species, and thus there are often large areas within
the boundaries that have sparse occupancy. The final ranges were reviewed by botanists,
foresters, and other experts (Little 1971), and today digital copies of the range boundaries
are available from the US Geological Survey (http://esp.cr.usgs.gov/data/atlas/little/) for
679 tree and shrub species. Little’s ranges are widely used, including by us for this paper,
to define a historical extent for a species’ distribution throughout the United States. It is
important to emphasize that the work we present in this paper is not intended to replace
Little’s boundaries, but to complement them in that we focus on the ‘zone of primary
occupancy’, rather than the extent of the species. Thus, we would expect that for most
species, Little’s ranges would be larger than the GSBs.

The US Forest Service’s Forest Inventory and Analysis (FIA) program is a long-term
effort mandated by the US Congress with the principal purpose to survey the extent,
condition, volume, growth, and depletions of timber on US-forested lands (Smith 2006).
Plot-level data were used to indicate the presence or absence of species as a visual check
while editing the GSBs. Plot locations with truncated coordinates (Lister et al. 2005) from
periodic inventories during 1980–1993 (hereafter ‘old’, Smith 2006) provided information
related to the distribution of tree species of the current model. Additionally, newer annu-
alized inventories during 1999–2010 (Woudenberg et al. 2010) were combined with the
earlier periodic records (1980–2010, hereafter ‘newer’) to help with the delineation of core
boundaries. At each FIA plot, the most recent inventory records were used to calculate
importance values for 132 modeled tree species (Iverson et al. 1998).

Predicted importance values (IV, i.e., relative abundance) from the DISTRIB model
(Iverson and Prasad 2008) use 38 environmental predictor variables and FIA data to sta-
tistically model potential suitable habitat for tree species. An ensemble technique using
RandomForest, bagging, and regression tree analysis (Prasad et al. 2006) is employed to
relate IVs at plot locations with environmental predictors. Output from DISTRIB (http://
www.nrs.fs.fed.us/atlas/) has a 20 × 20 km resolution across the eastern United States
and predicts importance values representing suitable habitat, even where few forested FIA
plots existed, under both current (1961–1990) and future (2071–2100) climate scenarios.
Each species model has a potential value of 0–100 for each grid and is rated for reliability
based on a series of statistical procedures, so that users know how to evaluate the pre-
dicted IVs (Iverson et al. 2008). The models thus range from high to low reliability, with
less reliability where FIA data for the species are sparse or wide-ranging. DISTRIB differs
from many other SDMs in that it produces a grid of predicted IVs (i.e., potential abun-
dance), rather than a probability of presence/absence, thus low values indicate areas where
a species’ habitat is potentially suitable but where individuals would be found only in low
numbers.

Procedures

A digital processing method, using R statistical language (R Development Core Team
2010), and custom geoprocessing tools, was used to delineate a representation of the

http://esp.cr.usgs.gov/data/atlas/little/
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Figure 1. Diagram of the processes used to generate a generalized species boundary.

species’ modeled distribution boundary (Figure 1). The contourLines function from the
grDevices library of R was used to define preliminary range boundaries based on the output
of DISTRIB, following the method used by Matthews et al. (2011). To delineate the mod-
eled boundary, a binary contour was identified for SDM values representing presence (IV
≥1) or absence. Because IVs represent potential suitable habitat related to species abun-
dance, it is reasonable to include low values to initially define the species GSB. Outliers
were removed if contour lines contained < 12 segments, typically 3 adjacent DISTRIB
cells optimized for the minimum number of cells, defined by the number of unique seg-
ments of the vectorized grid across all species modeled by DISTRIB. By removing small
isolated polygons, irrespective of their potential habitat suitability, we identify the larger
continuous polygons of the species’ distribution. Without implementing a segment thresh-
old, the contours contained numerous small segments, both inside and outside the species’
modeled extent. The resulting 20 × 20 km vectorized grid consisted of cells designating
the rough boundary of the species’ current modeled habitat.

Shapefiles of line segments were then generated from the delineation algorithm rep-
resenting the outline of a species’ boundary in a presence/absence format, followed by
additional GIS processing to edit and finalize the GSB. Several custom tools were devel-
oped in ArcGIS 9.3 ModelBuilder (ESRI 2009), to reduce the set-up time of individual
processes. Although much of the work was automated, users must interact with the inter-
mediate products generated throughout the boundary generation process by manually
inspecting and editing input/output files as explained below, and setting up the model
parameters.

The initial step is to visualize the output file from the delineation algorithm containing
the boundary outline (Figure 2a) and determine how the primary zone of occupancy for the
species should encompass the inventory data. The algorithm identifies the boundary based
on neighboring cell values from the DISTRIB modeled current output (Figure 2b), which
can cause ‘islands’, ‘gaps’, ‘coves’, and ‘peninsulas’ to be present in the initial boundary.
Islands are defined as smaller boundaries detached from the larger GSB distribution, and
conversely, gaps are voids within the GSB (Figure 3). Coves are defined as small areas
along the GSB edge that contain 1–2 cells indicating a gap, and peninsulas occur when
two or more cells are aligned in a straight line (Figure 3). Depending on the purpose of
the boundary delineation, it is often necessary to edit the initial file to simplify the final
boundary, which we performed by manually selecting cells and changing the boundary
value (presence or absence), within the attribute table so that the GSB follows the desired
path. Small alterations to the boundary files were thus accomplished subjectively, but with
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Figure 2. Unedited results from the delineation algorithm with A) the generalized species boundary
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Figure 3. The gray boundary derived from the delineation algorithm may contain various features
(coves, gaps, islands, and peninsulas) which often need to be edited when creating the generalized
species boundary. The dark line within the insets is the final smoothed boundary and points are the
FIA plots reporting presence.
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ample underlying information consisting of the current modeled DISTRIB values (IVs ≥
1 interpreted as present), the density of FIA points (presence vs. absence), and Little’s
historical range, simultaneously viewed in a GIS. We created holes, or areas of absence,
within the primary zone of occupancy when sufficient FIA sampling (1 plot per ∼6 km2)
indicated that the species was not found among many plots (usually <1.5% tolerance of
presence).

Once this initial editing was completed, a rudimentary polyline outlining the extent
of the primary zone of occupancy was created. This was an automated step where cells
identified as ‘present’ in the edited boundary shapefile were converted to a temporary raster
file with the same dimensions as the shapefile, by using the cell center option for cell
assignment type and setting the cell size equal to the SDM output (20 × 20 km in our
case). The raster file was then converted to a polyline with a minimum dangle length set to
1.25 times the cell size and ‘simplify polyline’ set to true. The dangle length parameter is
used to remove lines that do not connect or are noncontinuous, thus setting the minimum
length ≥ 1 cell width ensured that each included line could be present in a single cell.

The resulting boundary line then needed to be inspected and manually edited to remove
unwanted lines (Figure 4a) or to correct the shape of lines that should follow another path
(Figure 4b). The process used to convert the raster grid cells to a line places the line along
the cell centroid; thus cells along the coast can underestimate the extent by not including the
coastline by roughly one-half of a cell width. Where data support the presence of a species
to the coast (or within 1 cell of the coast), the rough boundary line was manually digitized
outward to encompass the coastline (to be later clipped by the mapped coastline). Once
satisfied that the lines conform to the primary zone of occupancy for a particular species
(based on the modified presence/absence vectorized grid), a second custom tool was used
to finalize the shape of the boundary. Here, the edited boundary polyline was converted to
a polygon, after which the outline was smoothed using the Polynomial Approximation with
Exponential Kernel (PAEK) algorithm with a smoothing tolerance set, by trial and error to
1.75 times the cell size (35 km in our case). The smoothing provides a continuous boundary
that reduces artifacts imposed by coarse grid cells and creates more biologically realistic
and esthetically reasonable boundaries. The PAEK algorithm was the default option for

Figure 4. The original boundary from the delineation algorithm (light and medium gray) with the
edited boundary (black). The inset in panel A shows removed cells (medium gray) from the edited
boundary (black). Panel B shows the original boundary (medium gray) with the edited boundary
(black) and the inset shows an alternative path where the few black cells in the center have been
added while the gray cells are the original path.
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smoothing a polygon and does not generalize past the original extent. Lastly, the smoothed
boundary was clipped to the outline of the coastline to remove any generalization that may
have included areas outside the continental land mass (Figure 5).

The final boundary polygon represents the primary zone of occupancy for a species
based on the current model of a SDM and recent inventory data and should be evaluated for
accuracy. Boundaries that include gaps should especially be examined, as they were found
to contain errors when overlapping polygons did not share the same vertices. Again this
is where manual editing, at a fine scale, may need to be performed to snap vertices of one
feature to the adjoining feature. One final examination and reality check is then required,
and at times, decisions need to be made and remade (with expert opinion), regarding where
the ‘zone of primary occupancy’ should lie. Species of rare but extensive distribution are
especially difficult to settle on a satisfactory boundary; it will be the case for these species
that many possibilities exist for how ‘primary occupancy’ is defined and where the GSB is
finally drawn.

Analyses

GSBs were generated for 132 tree species modeled with DISTRIB, though we focus on
flowering dogwood (Cornus florida), to describe some processes of creating the GSBs.
To analyze trends within the new GSBs, we conducted three sets of GIS overlays with
resulting calculations: (1) the area of Little’s range (within the eastern United States), as
compared to the area of the GSB representing presence; (2) the portions of each range
extending beyond the other (e.g., percent of GSB’s area beyond Little’s range and the
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percent of Little’s range beyond GSB boundaries); and (3) the percent of FIA plots, from
two sets of FIA data, reporting presence contained within each boundary (Table 1).

Using combinations of values based on the proportion of area shared among FIA ‘pres-
ence’ points, Little’s ranges, and the GSBs, the species were assigned to a general class
indicating the extent of the GSB as compared to Little’s range (i.e., sparse, no difference,
broader, and narrower, see Table 2) to identify general trends among each group. Sparse
indicates the species is widely found in low densities and a single zone of occupancy is not
readily defined; no difference means GSB and Little are similar; broader indicates GSB
has a greater area than Little, and narrower indicates Little has a greater area than GSB.
To interpret the general classes of Table 2, the species were classified as large for Little’s
range if the area of Little’s range shared ≥ 75% of its area with the GSB; otherwise, it was
considered small. Likewise, the species had a GSB registered as small if < 75% of its area,
with < 15% extending beyond Little’s range, was shared; otherwise, it was considered
large. Finally, the species had percent FIA classed as high if the GSB contained ≥ 75% of
all FIA presence records, medium if 50–75%, and low if < 50%.

Results

A comparison of the area defined by Little’s range and the GSB for a select number
of species is provided in Table 1. Overall, 7 of the 132 tree species’ GSBs were larger
than Little’s range (Supplementary Table 1), providing evidence that the GSBs provide
a ‘primary zone of occupancy’, rather than the full extent of the species. This result
also emphasizes that we are not replicating Little’s ranges, but producing a comple-
mentary product. Among all GSBs, the percentage of all old (1980–1993) and newer
(1980–2010) FIA plots reporting presence within each GSB was roughly similar (±5%)
for 107 species, indicating a good fit of actual species presence to the GSB. Of the remain-
ing 25 GSBs with a larger (≥ ±5%) difference between old and newer FIA plots, only one
species (Quercus ilicifolia) had a lower proportion of newer FIA plots reporting presence,
while the remaining 24 species had higher proportions of newer FIA plots reporting pres-
ence than the older plots. These statistics indicate that the GSBs do well to account for the
newest FIA information available.

Classifying the species as having a sparse, no difference, broader, or narrower extent
for GSB as compared to Little’s range resulted in 15, 39, 5, and 73 species, respectively
(Supplementary Table 1). Of the sparse GSBs, each had a relatively larger range defined
by Little, with only 9–50% of their area shared with GSB, and capturing only 52–73%
(median 64.6%) of the old and 39–73% (median 68.1%) of the newer FIA presences (Table
1). As expected, these sparse species are the most difficult to draw a boundary around the
‘zone of primary occupancy’.

The five species classed as broader (Supplementary Table 1) have GSBs with smaller to
equal sized areas, as compared to Little’s ranges (84–100% of area shared), but captured
95–99% (median 96.8%) of old and 94–99% (median 96.3%) of newer FIA presences
(Table 1). These represent species that, based on FIA data, have possibly expanded their
range since delineation by Little over 40 years previously. The 73 species with narrower
(Supplementary Table 1) GSBs have larger Little’s ranges (19–74% of area shared), cap-
tured 61–98% (median 90%) of old and 62–97% (median 88%) of newer FIA presences.
Species in the no difference class (Supplementary Table 1) have ≥75% of the GSB shared
with Little’s range and capture between 66–99% (median 97%) of old and 62–99% (median
97%) of newer FIA presences (Table 1).
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Table 2. Range classes defined by Little’s range and GSB area, and the portion of FIA. reported
presence.

Little’s range GSB Percent FIA Class

Small Small High No difference
Small Small Medium Sparse
Small Large High Broader
Small Large Medium Sparse
Large Small High Narrower
Large Small Medium Sparse
Large Large High No difference
Large Large Medium Sparse

Discussion

Our method to derive tree species boundaries provides a quick and cost-effective mapped
estimate of the primary zone of occupancy for tree species, where the species would have a
reasonable probability of being found, as opposed to the more generous definition of range,
where the species may be seen occasionally at their fringes of extent. To accomplish this
task, we used inputs from three sources: Little’s boundaries published in the 1970s, recent
(1980–2010) FIA presence/absence data (approximate locations of plots), and output from
the DISTRIB model which statistically predicts suitable habitat based on FIA data and
38 environmental variables (Iverson et al. 2008). There are many 20 × 20 km cells that are
modeled to have suitable habitat for a species even though there may be no record of the
species according to the FIA plot data; indeed, many lesser forested cells, such as in the
highly agricultural ‘Corn Belt’ zone (e.g., Iowa, Illinois, and Indiana), do not even have one
forested FIA plot. Therefore, by including the vectorized grid cell that represents suitable
habitat, the reduced density of FIA data can be partially overcome in the final placement of
the boundary. Additionally, our GSB finally represents the primary zone of occupancy and
not the full range of occupancy which is represented better with Little’s maps. The GSB
also represents an update with the latest data available; with the Little’s boundaries derived
from 1960s and early 1970s data, there could be some changes appearing in the intervening
period (though we have no concrete evidence for this based on analyses presented here).

For six species with low model reliability and sparse distributions, usually due to too
few known presence locations (i.e., rare species), the delineation algorithm produced unde-
sirable results. For such species, more manual editing and agreement among the four
authors was needed to more subjectively create the boundary. While FIA data provided
the primary source for forest records within the United States, Westfall (2009) examined
its accuracy based on the quality assurance program used to validate FIA data. Thirty-
eight of the 51 genera for which GSBs were created are included in Westfall’s report,
of which 10 have a high accuracy (≥ 75%) of species identification between inventories,
14 are moderate (≥ 50%), and 14 are low (< 50%). Regardless of how well the delineation
algorithm or final GSB is perceived to perform, the accuracy of inventory data and model
performance of the SDM will primarily drive the delineation of GSBs.

It may seem redundant to begin with a raster output from the SDM, vectorize the grid
and then convert it back to a raster, then a polyline, and finally to a polygon; however, the
alternative of digitizing would require much more user interaction and the entire process
could be biased depending on where the user places line segments and vertices. By con-
verting the original raster to the vectorized grid, the algorithm of counting line segments (to
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thin out outliers) can be performed. Then with the conversion to a raster, we can define the
placement of vertices globally as the centroids of each raster cell, which are then converted
into a set of polylines, and which are then manually edited before cleaning up into the
final boundary polygon files. Thus, we use some automation where traditional digitizing
would require a large amount of user interaction. An advantage of creating polygon bound-
aries over the line files that were created during the process is the ability to calculate area
statistics or perform overlay analyses with other files based on the polygons’ geometry and
spatial configuration.

While the entire process can usually be completed for one species in under an hour
by someone familiar with the data (and with the data all in place), there are disadvantages
with this process. These include the manual inspections and editing between automated
procedures, generalization along the outer edges where inventory data may be sparse,
and determining general rules for defining the primary zone of occupancy versus gaps or
islands. Such rules should consider the purpose of the resulting boundary to deal with
undesirable artifacts from the delineation algorithm. Additionally, our method requires
extensive information (e.g., an extensive inventory data set plus historic boundaries) about
the spatial distribution of species. Thus, for other applications, our approach may not pro-
duce reliable results; but for locations with adequate inventory data and SDMs (dependent
on scale and scope of application), the delineation algorithm and custom tools could be
applied to generate a GSB.

Alternative methods could have been used to delineate a polygon boundary from
the output of a SDM (e.g., minimum bounding geometry, threshold classification, etc.).
However, creating a boundary from the minimum bounding geometry of vertices along
the outline of the SDM would need to deal with outliers and uncertainty near the edge.
Additionally, classifying the SDM based on a threshold has issues, as discussed by
Jiménez-Valverde and Lobo (2007), and, thus, applying a threshold ≥1 to DISTRIB’s out-
put could have introduced gaps within the range boundary. While outliers and some or most
of the uncertainty near the edge may be removed, the threshold method has the potential to
allow small outlying areas of presence to remain during the delineation process. Similarly,
if FIA data were used to place vertices around the majority of records via clustering, the
resulting boundary would be more subjective and similarly weak where FIA plots are few
or missing.

With respect to Little’s (1971) ranges, we believe that for many applications (e.g.,
examining source/sink population dynamics or modeling movement into new habitats),
these GSBs might better define the species’ range since they exclude outlier populations
that may differ from the core distribution, and are based on large amounts of data col-
lected since the time of Little. The work of Little attempts to create a well-established
range extent for species based on many sources of data, however, since many herbarium
records contain only coarse-level county locations and the resulting distributions were cre-
ated prior to major advances in GPS and GIS technologies, one can assume that some
level of generalization is present in the ranges. Additionally, Little’s range maps are aging
such that significant changes in presence/absence and actual distributions are possible
in the time that has passed (Woodall et al. 2009). Little (1971) also used community
type boundaries to define edges for individual species, which has the potential to have
overestimated the full extent of the range. Furthermore, when recent FIA data is over-
laid with Little’s range for most of the 132 species, many locations near the edge of the
boundary contain few or no survey plots reporting presence. Thus, Little’s range maps
represent a more broad distribution as compared to the generalized species boundaries
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presented here. Range maps created by Little represent the distribution of tree species
in North America, and still have highly significant scientific values. However, there are
instances where the broadening assumptions (e.g., including an entire county based on
a single herbarium record) encompassing Little’s boundaries are a limiting factor. Such
challenges arise predominantly when the distinction between zones of realized occupancy
are needed, e.g., for purposes of assessing a species’ colonization potential, where a bound-
ary derived from plot level data and modeling results provide a closer link to the SDM
inference.

The classification of each GSB into the four categories, albeit subjective, provided a
way to describe general trends among species, even though changing any of the thresholds
used could place species in another class. Thus, for sparse species, GSBs were generated
over an area with FIA plots generally more sparsely dispersed than for other species. The
five broader species have GSBs more broadly defined than Little’s boundary, and could
represent species that have expanded their range since defined by Little or, more likely,
presence is now found in places previously thought to be absent due to additional or more
extensive sampling. Species with a narrower GSB represent the bulk of the species and
have ranges smaller than those defined by Little; these GSBs captured a high percentage of
FIA plots, suggesting that the core area can be defined by a smaller area than the full extent
as defined by Little. This does not indicate that the species has lost habitat, but rather that
the GSB is defining a primary zone of occupancy with a higher density of FIA sampling
sites. The no difference GSBs typically share an area similar to that defined by Little’s
range and also contained a high portion of FIA presence.

Conclusions

In an age when computer-based technologies dominate many aspects of the scientific
process, more and more species ranges and distributions are being generated from
computer-based models. Though widely needed to assess trends in global biodiversity,
large-scale efforts to survey vast tracks of land to delineate species’ ranges are not com-
mon, and some key efforts are aging (e.g., Little (1971) for North America and Jalas and
Suominen (1972) for European vascular plants). In keeping pace with the current practices
of using a SDM to define ranges, we offer one way to create a polygon boundary from
a grid-based estimate of suitable habitat. Because the resulting boundary maps were cre-
ated from a combination of FIA presence/absence data, Little’s maps, and model outputs
of suitable habitat, they provide a reasonable estimate of the primary zone of occupancy
within a species’ distribution. We believe that the combination of the best characteristics of
each of the three input sources provides an overall better product that represents the recent
range. It should be noted, however, that these GSBs are based on data and models that are
likely to change over time, with additional FIA data and with newer suitable habitat models
run at finer resolutions or with different data sets (The latter is underway by the authors.).
We believe the GSBs are appropriate for many purposes, among them to provide a basis
from which to model migration or assisted migration under climate change. The methods
presented here can also be used with other SDM output to delineate ranges of suitable
habitat for both animal and plant species. To do so will require recent inventory data for
the species and knowledge of its habitat environment.

The generalized species boundaries we describe should not be viewed as replacements
for Little’s maps or FIA plot data, but rather as supplemental products aimed at the pri-
mary zone of a species’ distribution, potentially useful to others for various applications.
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Our intention is to provide these boundaries for 132 tree species online along with our cli-
mate change atlas (http://www.nrs.fs.fed.us/atlas). We also provide details on the methods
used to create the GSBs should others wish to generate specific boundaries for their work.
Specifics on the protocol are available from the corresponding author.
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