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[1] Seasonal variation in photosynthetic capacity is an important part of the overall seasonal
variability of temperate deciduous forests. However, it has only recently been introduced in a
few terrestrial biosphere models, and manymodels still do not include it. The biases that result
from this omission are not well understood. In this study, we use the Ecosystem Demography
2 model to simulate an oak-dominated stand in the New Jersey Pine Barrens. Two alternative
model configurations are presented, one with seasonal variation of photosynthetic capacity
(SPC-ON) and one without seasonal variation of photosynthetic capacity (SPC-OFF). Under
typical climate conditions, the two configurations simulate values of monthly gross primary
productivity (GPP) as different as 0.05 kg C m�2 month�1 in the early summer and 0.04 kg C
m�2 month�1 in the fall. The differences between SPC-ON and SPC-OFF are amplified when
there is temporal correlation between photosynthetic capacity and climate anomalies or
disturbances. Warmer spring temperatures enhance GPP in SPC-ON more than in SPC-OFF,
but warmer fall temperatures enhance GPP in SPC-OFF more than in SPC-ON. Defoliation
by gypsy moth, a class of disturbance that typically happens in late spring in the New Jersey
Pine Barrens, has a disproportionately negative impact on GPP in SPC-ON. It is concluded
that including seasonal variation of photosynthetic capacity in models will improve
simulations of monthly scale ecosystem functioning as well as of longer-term responses to
climate change and disturbances.
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1. Introduction

[2] Phenology refers to the study of the timing of season-
ally recurring biological events. In temperate forests, sea-
sonal variation of leaf area is one obvious and important
aspect of phenology [Richardson et al., 2013]. However,
there are other aspects of phenology that warrant attention.
In particular, seasonal variation of leaf photosynthetic capac-
ity has been shown to affect the functioning of temperate de-
ciduous forests [Wilson et al., 2001; Xu and Baldocchi, 2003;
Grassi et al., 2005; Wang et al., 2008; Ow et al., 2010] and
temperate grasslands [Wolf et al., 2006]. In a synthesis of

observations, Bauerle et al. [2012] argued that seasonal var-
iation of photosynthetic capacity for broadleaf deciduous
trees was related to photoperiod, with photosynthetic capac-
ity attaining a maximum around the summer solstice and then
declining in concert with photoperiod. Although seasonal
variation in photosynthetic capacity has been incorporated
into a few terrestrial biosphere models [Krinner et al.,
2005;Medvigy et al., 2009;Oleson et al., 2010], the specifics
of the implementations have varied, and many models have
not included it at all. Consequently, the broad implications
of the seasonal variation of photosynthetic capacity are not
well understood.
[3] The impacts of seasonal variation in photosynthetic ca-

pacity are likely to be sensitive to particular time scales.
Consider a pair of forest stands, one of which has a seasonal
variation of photosynthetic capacity that tracks photoperiod,
and the other without seasonal variation of photosynthetic ca-
pacity (Figure 1). We propose here that it is possible for these
two types of stands to yield, on average, similar annual gross
primary productivity (GPP) but different monthly GPP. The
essential prerequisite for this is that the stand with seasonal
variation of photosynthetic capacity must have a larger max-
imum photosynthetic capacity than the stand without sea-
sonal variation in photosynthetic capacity. Then, the stand
that experiences seasonal variation in photosynthetic capac-
ity would have less GPP during the spring and fall than a

1Department of Geosciences, Princeton University, Princeton, New
Jersey, USA.

2Silas Little Experimental Forest, USDA Forest Service, New Lisbon,
New Jersey, USA.

3USDA Forest Service, Northern Research Station, Morgantown, West
Virginia, USA.

4Department of Biological Sciences, Rutgers University, Newark, New
Jersey, USA.

Corresponding author: D. Medvigy, Department of Geosciences, Guyot
Hall, Princeton University, Princeton, NJ 08544, USA.
(dmedvigy@princeton.edu)

©2013. American Geophysical Union. All Rights Reserved.
2169-8953/13/10.1002/2013JG002421

1

JOURNAL OF GEOPHYSICAL RESEARCH: BIOGEOSCIENCES, VOL. 118, 1–12, doi:10.1002/2013JG002421, 2013



stand with constant photosynthetic capacity, more GPP in
early summer, and similar annual average GPP.
[4] Here, we present three hypotheses based on these

ideas. (1) If unfavorable climate anomalies were more likely
to occur during times of long photoperiod, the GPP of sea-
sonal photosynthetic capacity trees will be affected more
strongly than that of constant photosynthetic capacity trees.
Conversely, unfavorable climate anomalies occurring during
times of short photoperiod will have less of an effect on the
GPP of seasonal photosynthetic capacity trees than that of
constant photosynthetic capacity trees. (2) Certain distur-
bances, such as defoliation by insects, tend to occur at partic-
ular times of the year. In the forests of the eastern US
Atlantic coastal plain, defoliation by gypsy moth (Lymantria
dispar L.) larvae tends to occur during times of relatively long
photoperiod [Liebhold et al., 1992; Johnson et al., 2005,
2006]. Consequently, seasonal photosynthetic capacity trees
will be more strongly affected by defoliation than constant
photosynthetic capacity trees. (3) There will be interactions
between seasonal variations of leaf area and seasonal varia-
tions of photosynthetic capacity. If global warming causes ear-
lier budburst or delayed senescence [Menzel et al., 2008;
Lebourgeois et al., 2010; Vitasse et al., 2011; Migliavacca
et al., 2012; Jeong et al., 2013], the ability of vegetation to
capitalize on the prolonged growing season and increase car-
bon uptake will hinge on photosynthetic capacity being suffi-
ciently high at the start and end of the growing season. Thus,
the carbon gains achieved by trees with seasonal variations
of photosynthetic capacity will be less than the gains achieved
by trees with constant photosynthetic capacity if increasing
temperatures cause growing seasons to be lengthened.
[5] In this paper, we test these ideas using model simula-

tions of a highly instrumented forested stand in the New
Jersey Pinelands. In section 2, we describe the model, the for-
est stand, and the simulation design. In section 3, we evaluate
model performance and assess how seasonal variations in
photosynthetic capacity modulate the impacts of transient cli-
mate anomalies, defoliation, and increased temperatures.
Section 4 contains a discussion of our results, and our conclu-
sions are presented in section 5.

2. Methods

2.1. Model Description

[6] Our model simulations were carried out with the
Ecosystem Demography 2 model (ED2). Although ED2 is
a regional model, it is used here in single-grid cell mode be-
cause we are interested in understanding processes rather
than regional variations. The grid cell is intended to represent
the approximate footprint of an eddy flux tower (1 km2).
Detailed descriptions of ED2 already exist in the literature
[Medvigy et al., 2009; Medvigy and Moorcroft, 2012]. Here
we give a brief overview of the most relevant aspects of the
model, including those related to photosynthetic capacity.
For further details, see Medvigy et al. [2009].
[7] ED2 distinguishes different resource environments,

and, in each resource environment, tracks the number density
of trees of different sizes and plant functional types [Medvigy
et al., 2009; Medvigy and Moorcroft, 2012]. Forest structure
and composition can be initialized directly from forest census
information. Each tree observed in an actual measurement
plot has a direct representation in ED2. On subdaily time
scales, tree-level GPP and net primary production (NPP)
are calculated using parameterizations for radiative transfer,
leaf biophysics, photosynthesis, and respiration [Medvigy
et al., 2009]. When integrated over time, tree-level GPP
and NPP determine tree growth, mortality, and reproduction.
Tree diameter is a prognostic variable in the model and it is
connected to maximum tree leaf area index (LAI) through al-
lometric relationships (Appendix A). Site-level LAI evolves
in time as trees grow, die, and reproduce.
[8] Two options for photosynthetic capacity were imple-

mented. The first option is the conventional one, in which the
maximum rate of carboxylation (Vcmax) depends on tempera-
ture, but does not otherwise have any seasonal dependence:

Vcmax ¼ Vcmax;s
e3000 1=288:15�1=Tð Þ

1þ e0:4 277:85�Tð Þð Þ 1þ e0:4 T�318:15ð Þð Þ : (1)

[9] In equation (1), Vcmax,s is a constant and T is the leaf
temperature in K. The factors in the denominator ensure that
Vcmax approaches 0 as temperatures get very low or very
high. The second option includes seasonal variation of photo-
synthetic capacity according to the formulation of Oleson
et al. [2010], who introduced a quadratic dependence of
Vcmax on photoperiod (P):

Vcmax ¼ Vcmax;s
P

Ps

� �2 e3000 1=288:15�1=Tð Þ

1þ e0:4 277:85�Tð Þð Þ 1þ e0:4 T�318:15ð Þð Þ : (2)

[10] P itself depends on day-of-year and latitude [Bonan,
2008]. The photoperiod at the summer solstice is denoted Ps.
At a given temperature, equation (2) states that Vcmax takes
on its largest value at the summer solstice, declines between
the summer solstice and the winter solstice, and then increases
from the winter solstice to the summer solstice (Figure 1).

2.2. Model Initialization and Forcing

[11] We used an intermediate-aged upland forest stand in
the New Jersey Pinelands as a test bed for our analysis.
This stand is located in the Silas Little Experimental Forest
(SLEF) and is oak dominated with a small amount of pine.

Figure 1. Seasonal changes in Vcmax at 25°C using our best
estimates for model parameters (Table 3). The Vcmax in SPC-
ON (solid line) depends on photoperiod while the Vcmax from
SPC-OFF (horizontal dashed line) does not. The vertical
dotted lines, placed at 1 May and 1 October, approximate
the start and end of the growing season.
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An earlier version of ED2 has already been evaluated for
this stand [Medvigy et al., 2012]. Detailed descriptions of
the stand can be found in Clark et al. [2010, 2012]; here we
review only the data sets that are most relevant to the present
study.
[12] Measurements of stand structure and composition, soil

carbon, litter, and woody debris [Skowronski et al., 2007;
Clark et al., 2010; Schäfer, 2011] were used to initialize the
model. All oaks were mapped into a single oak plant func-
tional type (PFT) and all pines were mapped into a single
pine PFT. The resulting forest structure and composition
are shown in Figure 2. Except as specified in Appendix A,
the oak PFT was the same as the ED2 mid-successional
hardwood, and the pine PFT was the same as the ED2 north-
ern pine [Medvigy et al., 2009]. Meteorological measure-
ments have been made from an overstory (19 m) tower at
SLEF since 2005 [Clark et al., 2010, 2012] and were used to
force the model. The required measurements included in-
coming photosynthetically active radiation (PAR), incoming
longwave radiation, air temperature, relative humidity, wind
speed, pressure, and precipitation. An eddy covariance system
is also located on the tower and has been providing measure-
ments of net ecosystem exchange (NEE; net flux of CO2 be-
tween the land and the atmosphere) since 2005 [Clark et al.,
2010, 2012].
[13] Herbivory by gypsy moth was observed to reduce the

total leaf area index (LAI) to less than 0.5 m2 m�2 during the
early summer of 2007 [Clark et al., 2010, 2012; Schäfer
et al., 2010]. Following the peak of herbivory in mid-June,
a second, partial leaf-out occurred and resulted in a total
LAI of about 50% of the maximum LAI occurring in 2005
and 2006. In 2008, partial defoliation reduced canopy LAI
again, although a second leaf-out did not occur. The timing
of defoliation has been reconstructed using sap flux, litter,
and frass measurements [Schäfer et al., 2010], and has

previously been implemented into ED2 as a prescribed dis-
turbance [Medvigy et al., 2012].

2.3. Model Experiments

[14] We developed two model configurations that made
different assumptions about the seasonality of photosynthetic
capacity. In our “SPC-OFF” configuration, we used the con-
ventional approach in which Vcmax depended on temperature
but did not depend on photoperiod (equation (1)). In our
“SPC-ON” configuration, Vcmax had the same temperature
dependence as in SPC-OFF, but also had a quadratic depen-
dence on photoperiod (equation (2)).
2.3.1. Model Optimization and Evaluation
[15] We usedMarkov chainMonte Carlo to estimate several

model parameters in both the SPC-OFF and SPC-ON config-
urations. Markov chain Monte Carlo has previously been used
to constrain terrestrial biosphere models [Knorr and Kattge,
2005; Richardson and Hollinger, 2005; Richardson et al.,
2010; Trudinger et al., 2007; Fox et al., 2009; Jeong et al.,
2012]. The joint probability distribution of four parameters
was estimated for the SPC-OFF and SPC-ON configurations.
Details on our Markov chain Monte Carlo implementation
can be found in Appendix A.
[16] We used our Markov chain Monte Carlo results to cre-

ate an ensemble of possible parameter sets for the SPC-OFF
and SPC-ON configurations. In both cases, we first identified
the parameter set that maximized the posterior probability
density function. We then randomly sampled the posterior
probability density function nine times. This led to a total
of 10 parameter sets for both the SPC-OFF and the SPC-
ON configurations.
[17] The full period for which data are currently available

(2005–2011) was simulated using these parameter sets. We
denote these ensembles “SPC-OFF-EVAL” and “SPC-ON-
EVAL” for the SPC-OFF and SPC-ON configurations, respec-
tively (Table 1). For each ensemble, we computed the ensemble
mean of each predicted quantity. We characterized the spread in
model predictions by computing the standard deviation of the
predictions of all ensemble members. This approach allowed
us to assess the impacts of parameter uncertainty. The ability
of each ensemble to simulate the observed eddy fluxes and tree
growth and mortality was then evaluated.
2.3.2. Impacts of Seasonal Variation of
Photosynthetic Capacity
[18] We carried out longer-term simulations using the same

parameter sets to further highlight the differences between the
SPC-OFF and SPC-ON configurations (Table 1). These simu-
lations ran for 42 years. The meteorological forcings for the 42
years were created by repeatedly cycling over the 7 years of

Figure 2. Representation of forest structure and composition
in the ED2 model derived from inventory measurements at the
Silas Little Experimental Forest. Red colors represent oaks and
blue colors represent pines.

Table 1. Ensembles Carried Out as Part of this Study

Name
Seasonal variation of

Photosynthetic Capacity
Years

Simulated
Meteorological

Forcing Defoliation

SPC-OFF-EVAL No 2005–2011 2005–2011 2007 only
SPC-OFF-LONG No 42 years 2005–2011 None
SPC-OFF-DEF No 42 years 2005–2011 Year 3 only
SPC-OFF-WARM No 42 years (2005–2011) + 4°C None
SPC-ON-EVAL Yes 2005–2011 2005–2011 2007 only
SPC-ON-LONG Yes 42 years 2005–011 None
SPC-ON-DEF Yes 42 years 2005–2011 Year 3 only
SPC-ON-WARM Yes 42 years (2005–2011) + 4°C None
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meteorological observations (2005–2011). This simulation
length allowed an adequate amount of time for the model to
equilibrate after disturbances such as gypsy moth attack and
warming perturbations (see below). All simulations were ini-
tialized with the 2005 forest composition (Figure 2). For sim-
plicity, we focused our analysis on model predictions of GPP
because of the close association between GPP and photosyn-
thetic capacity. All simulations were forced with the same
solar radiation, and so solar radiation is controlled for in com-
parisons between SPC-OFF and SPC-ON.
2.3.2.1. Direct Effects of Seasonal Variation of
Photosynthetic Capacity
[19] The objectives of these simulations were to determine

the long-term differences in GPP between the SPC-OFF and
SPC-ON configurations, determine the differences in the av-
erage seasonal cycle, and to identify any differential impacts
of climate anomalies. Ten simulations were carried out for
each configuration, corresponding to the parameter sets used
in SPC-OFF-EVAL and SPC-ON-EVAL. The SPC-OFF
simulations were denoted “SPC-OFF-LONG” and the SPC-
ON simulations were denoted “SPC-ON-LONG” (Table 1).
No defoliation was implemented in these simulations.
[20] For any quantity, we calculated the pure effect of sea-

sonal variation of photosynthetic capacity by taking the dif-
ference between SPC-ON-LONG and SPC-OFF-LONG.
We expected that the effect on GPP would be correlated with
climate, but assessing the statistical significance of the corre-
lation was not straightforward because the periodic meteoro-
logical forcing led to strong autocorrelation in our simulation
results, reducing the effective degrees of freedom. To ac-
count for this, we averaged overall simulation results condi-
tional on the meteorological forcing before computing the
correlations. This generated a time series of 7 years duration,
matching the length of the observational record. Correlations
between the pure effects of seasonal variation of photosyn-
thetic capacity and monthly solar radiation, temperature,
and soil water were then assessed using Spearman’s ρ, a non-
parametric measure of correlation.

2.3.2.2. Effects of Defoliation
[21] We created “SPC-ON-DEF” and “SPC-OFF-DEF” en-

sembles that were identical to SPC-ON-LONG and SPC-OFF-
LONG, respectively, in every way except for the disturbance
forcing. In the third year of SPC-ON-DEF and SPC-OFF-
DEF, we prescribed a defoliation event according to the ob-
served 2007 defoliation [Medvigy et al., 2012]. No other defo-
liation was prescribed in the remainder of the simulations
(Table 1). The pure effects of seasonal variation of photosyn-
thetic capacity, the pure effects of defoliation, and the
nonlinear interaction term were distinguished according to:

Pure Photosynthetic Capacity

¼ SPC-ON-LONG minus SPC-OFF-LONG; ð3aÞ

Pure Defoliation ¼ SPC-OFF-DEF minus SPC-OFF-LONG; (3b)

Interaction ¼ SPC-ON-DEF minus SPC-ON-LONGð Þ minus

SPC-OFF-DEF minus SPC-OFF-LONGð Þ: ð3cÞ

2.3.2.3. Effects of Increased Temperature
[22] We investigated the effects of increased temperature

by carrying out two additional ensembles, “SPC-ON-
WARM” and “SPC-OFF-WARM,” that were identical to
SPC-ON-LONG and SPC-OFF-LONG, respectively, in ev-
ery way except for the meteorological forcing (Table 1).
Warming was implemented by increasing all temperatures
by 4°C. This increase is at the upper end of climate model
projections for 2100 [Meehl et al., 2007]. All other meteoro-
logical driver variables (PAR, longwave radiation, relative
humidity, precipitation, pressure, wind speed) were kept the
same. Although future climate change may also lead to
changes in these other variables [Seager et al., 2013], climate
models disagree on how they will change. We therefore de-
cided to focus on the case of a simple temperature increase.
The pure effects and interaction term were calculated using
a procedure analogous to equation (3).

3. Results

3.1. Model Optimization and Evaluation

[23] The SPC-ON configuration achieved a better overall fit
to the NEE measurements and tree biometry measurements
than the SPC-OFF configuration (Table 2). The differences
occurred mainly in the simulations of monthly gapped NEE.
The gapped NEE includes only the NEE values that were ac-
tually observed and passed quality-control (see Appendix A).
Predictions of yearly gapped NEE were only slightly better
in SPC-ON than in SPC-OFF, indicating that the errors ac-
crued by SPC-OFF in the monthly gapped NEE largely can-
celed out when summed over all months. The two model
configurations also gave similar results for annual growth

Table 2. Weighted Log Likelihoods (wi LLi) for Different
Model Formulations

Data Set SPC-OFF SPC-ON

Half-hourly gapped NEE �1.4 �0.8
Monthly gapped NEE �288.2 �205.0
Monthly nighttime gapped NEE �105.7 �100.3
Yearly gapped NEE �5.6 �2.8
Yearly nighttime gapped NEE �11.7 �7.1
Basal area growth, oaks �1.9 �3.1
Basal area growth, pines �0.1 �0.1
Basal area mortality, oaks �1.5 �1.6
Basal area mortality, pines �15.8 �17.7
Total �431.9 �338.5

Table 3. Parameter Values Corresponding to the Maximum of the Posterior Probability Density Functiona

Parameter Symbol Units SPC-OFF SPC-ON

Maximum rate of carboxylation at summer solstice at 15°C Vcmax,s μmol m�2 s�1 13.0 (0.3) 16.4 (0.3)
Fine root turnover rate Troot a�1 2.0 (0.1) 1.9 (0.2)
Slope of stomatal conductance-photosynthesis relationship M - 42 (1) 35 (3)
Baseline heterotrophic respiration rate αsx/αsx,orig - 1.06 (0.09) 1.20 (0.05)

aStandard errors are shown in parentheses.
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and mortality, although SPC-OFF was slightly better than
SPC-ON for these quantities.
[24] The parameter sets that maximized the posterior proba-

bility density functions for SPC-OFF and SPC-ON are given
in Table 3 (see Appendix A for parameter definitions).
Because the Vcmax,s from SPC-ON was larger than the Vcmax,s

from SPC-OFF, the SPC-ON simulations have larger values
of Vcmax,s than SPC-OFF around the times of the longest
photoperiod (June–July), and smaller values during the fall
(September–October). The resulting seasonal cycles of Vcmax

are shown in Figure 1. The difference in Vcmax seasonality be-
tween SPC-ON and SPC-OFF leads to differences in the sea-
sonality of gapped NEE, and also explains how relatively
lowmid-summer values of Vcmax in SPC-OFF can be compen-
sated for by high values in the fall, thus leading to an annual
average carbon uptake that is similar to that of SPC-ON. The
percent difference for Vcmax,s (26%) between the SPC-ON
and SPC-OFF values was larger than the percent difference
for any of the other estimated parameters.

[25] SPC-ON-EVAL was a closer match to almost all tar-
get data sets than SPC-OFF-EVAL during the 2005–2011
evaluation period (Table 4). In particular, for the gapped
yearly and monthly NEE, the biases associated with SPC-
ON-EVAL were almost an order of magnitude smaller than
those of SPC-OFF-EVAL. Model performance in each month
is shown in Figure 3a, which compares the gapped monthly
NEE for the observations, SPC-OFF-EVAL, and SPC-
ON-EVAL. In almost all years, SPC-ON-EVAL is better than
SPC-OFF-EVAL in simulating the maximum summer draw-
down. The main exception to this is 2007, the year of the
gypsy moth outbreak. Overall monthly biases and RMSEs
over 2005–2011 are shown in Figures 3b and 3c, respectively.
Both SPC-ON-EVAL and SPC-OFF-EVAL exhibit similar
positive biases in May (Figure 3b), suggesting that budburst
may be occurring too late in all simulations. SPC-OFF-
EVAL also has large negative biases in September–October,
while the biases from SPC-ON-EVAL are near zero in these
months (Figure 3b). RMSEs are smaller in SPC-ON-EVAL

Table 4. Evaluation of ED2 at the Silas Little Experiment Forest

Data Set Units Observations Bias: SPC-OFF RMS Error: SPC-OFF Bias: SPC-ON RMS Error: SPC-ON

Annual gapped NEEa tC ha�1 y�1 �2.35 �0.22 0.95 0.03 0.81
Monthly gapped NEEa tC ha�1 month�1 �0.196 �0.018 0.24 0.002 0.22
Oak basal area growthb cm2 m�2 1.1 �0.2 n.a. 0.1 n.a.
Pine basal area growthb cm2 m�2 0.1 �0.1 n.a. �0.1 n.a.
Oak basal area mortalityb cm2 m�2 5.6 �0.2 n.a. 0.4 n.a.
Pine basal area mortalityb cm2 m�2 0.0 0.9 n.a. 0.5 n.a.

aIncludes years 2005–2011.
bDifference between autumn 2009 and autumn 2005.

Figure 3. Evaluation of model performance over 2005–2011 at SLEF. Panel (a): Time series of gapped
monthly NEE from the observations and the ensemble means from SPC-OFF-EVAL and SPC-ON-EVAL.
Error bars denote the 95% confidence interval for the observations. Panel (b): Ensemble-mean model bias,
conditional on month. Panel (c): Ensemble-mean model RMSE, conditional on month.

MEDVIGY ET AL.: SEASONALITY OF PHOTOSYNTHETIC CAPACITY

5



than in SPC-OFF-EVAL in June, September, and October, but
are slightly larger in August (Figure 3c). Tree basal area growth
and mortality for 2005–2009 were simulated comparably well
by both model configurations, including the large amount of
mortality in the years following defoliation (Table 4).

3.2. Direct Effects of Seasonal Variation of
Photosynthetic Capacity

[26] Annual GPP is shown in Figure 4 for SPC-ON-LONG
and SPC-OFF-LONG. In both ensembles, annual GPP
steadily increased over the first 10–15 years and then stabi-
lized at values that were about 10% greater than those at
the beginning of the simulation. There was a 7 year periodic-
ity in annual GPP associated with the periodicity of the mete-
orological forcing. In each year, the ensemble mean GPP
from SPC-ON-LONG exceeded that of SPC-OFF-LONG.
The percent differences were initially about 4% and were
generally separated by more than 1 ensemble standard devi-
ation. By the end of the simulation, the difference between
the ensemble means was reduced to about 2% and there were
more and more years in which the ensemble standard
deviations overlapped.

[27] We computed the average annual cycle to determine
the months when SPC-ON-LONG had greater GPP than
SPC-OFF-LONG (Figure 5). The largest differences were in
early summer and in fall. In June and July, SPC-ON-LONG
had about 12% greater GPP than SPC-OFF-LONG. These
are months with long photoperiod, and photosynthetic
capacities in SPC-ON-LONG are larger than those in SPC-
OFF-LONG (Figure 1). Conversely, in September and October,
photoperiods are relatively short, and SPC-OFF-LONG has
a larger photosynthetic capacity and 15% greater GPP
than SPC-ON-LONG. In May and August, photosynthetic ca-
pacities in the two model configurations are nearly equal, and
GPP differences are small. GPP differences are also small
from November through April, when deciduous trees do not
have leaves.
[28] In June, there was a statistically significant positive

correlation between solar radiation and the “SPC-ON-
LONG minus SPC-OFF-LONG” GPP difference (Table 5).
In September, there was a statistically significant negative
correlation between these variables (Table 5). These results
are consistent with our expectation that positive radiation
anomalies would have a stronger impact when there are
larger photosynthetic capacities. Positive temperature anom-
alies also favored SPC-ON-LONG over SPC-OFF-LONG in
May and June (Table 5). Vcmax is an increasing function of
temperature for typical May–June temperatures at SLEF
(equation (1)), and so photosynthesis should be positively cor-
related with temperature during these months. Because Vcmax

is larger in SPC-ON-LONG than in SPC-OFF-LONG during
these months (Figure 1), SPC-ON-LONG showed a greater in-
crease in GPP during positive temperature anomalies.
[29] In December–January–February, positive temperature

anomalies favored the GPP in SPC-OFF-LONG over SPC-
ON-LONG (Table 5). This GPP difference was due to the
small amount of pines present in both simulations. Averaged
over the simulations, pine leaf area index (LAI) was 14%
larger in SPC-OFF-LONG than in SPC-ON-LONG. Because
of this difference in pine LAI, SPC-OFF-LONG was able to
have a larger response to winter temperature anomalies than
SPC-ON-LONG. However, absolute values of GPP were very
small in both simulations during these months (Figure 5). We
did not find a statistically significant correlation between GPP
difference and soil water in any month.

3.3. Interaction With Defoliation

[30] The simulated impact of a single complete defoliation
event on annual GPP is shown in Figure 6a. In the year of
defoliation itself, annual GPP in SPC-OFF-DEF was only
about 50% that of SPC-OFF-LONG. Annual GPP in SPC-

Figure 4. Annual mean gross primary productivity (GPP)
from our simulations with seasonal variation of photosyn-
thetic capacity (SPC-ON-LONG) and without seasonal vari-
ation of photosynthetic capacity (SPC-OFF-LONG). The
solid lines show the ensemble means and the errors bars show
plus and minus 1 ensemble standard deviation.

Figure 5. Average annual cycle of gross primary productiv-
ity (GPP) from our simulations with seasonal variation of pho-
tosynthetic capacity (SPC-ON-LONG) and without seasonal
variation of photosynthetic capacity (SPC-OFF-LONG). The
solid lines show the ensemble means and the errors bars show
plus and minus 1 ensemble standard deviation.

Table 5. Statistically Significant (p< 0.05) Correlations Between
Monthly “SPC-ON-LONG Minus SPC-OFF-LONG” GPP Difference
and Monthly Climate Drivers

Climate Driver Month Spearman’s ρ p-Value

Solar radiation June 0.96 0.003
Solar radiation September �0.96 0.003
Temperature January �0.96 0.003
Temperature February �0.93 0.007
Temperature May 0.86 0.02
Temperature June 0.89 0.01
Temperature December �0.96 0.003
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OFF-DEF recovered over the next 15 years and eventually
reached levels similar to SPC-OFF-LONG. There were also
years in which the interaction term (equation (3c)) was im-
portant. In the year of defoliation (simulation year 3), its
magnitude was about half that of the pure effect of defolia-
tion. This was consistent with our expectation that distur-
bances taking place in early summer would impact the
SPC-ON configuration more strongly than the SPC-OFF
configuration. However, this effect was not long lasting,
and the interaction term approached zero within just a few
years. The cumulative effects of defoliation and seasonal var-
iation of photosynthetic capacity are illustrated in Figure 6b.
At the end of the 42 years, the SPC-ON configuration would
have had a 3.1% larger cumulative GPP than the SPC-OFF
configuration in the absence of defoliation. However, with
defoliation, it realized a 2.3% smaller cumulative GPP than
the SPC-OFF configuration.

3.4. Interaction With Warming

[31] The pure effect of 4°C warming on GPP was positive
in all years, and was about 3 times larger than the pure effect
of seasonal variation of photosynthetic capacity (Figure 7a).
Seasonally, the largest impacts (both positive) were in May
and October (Figure 7b). These changes resulted from large
increases in LAI (Figure 7c), and are consistent with ED2’s
phenology scheme (Appendix A) in that warmer tempera-
tures are expected to lead to earlier leaf emergence in the
spring and delayed leaf coloring in the fall. In June through
September, higher temperatures led to slight increases in

Figure 6. Impacts of insect defoliation and seasonal varia-
tion of photosynthetic capacity. Panel a: Impacts on annual
gross primary productivity (GPP). Panel b: Cumulative im-
pacts on GPP. In both panels, the solid lines show the ensem-
ble means and the errors bars show plus and minus 1
ensemble standard deviation.

Figure 7. Impacts of 4°C warming and seasonal variation of photosynthetic capacity. Panel a: Impacts on
annual gross primary productivity (GPP). Panel b: Impacts on the average annual cycle of GPP. Panel c:
Impacts on the average annual cycle of leaf area index (LAI). In all panels, the solid lines show the ensem-
ble means and the errors bars show plus and minus 1 ensemble standard deviation.
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ED2’s water limitation factor, and this acted to decrease
GPP. The interaction term (equation (3c)) was nearly zero
in most years because positive impacts in May were nearly
balanced by negative impacts in October and November
(Figure 7b). In May, photoperiods are relatively long, and
the SPC-ON configuration has a larger photosynthetic capac-
ity than the SPC-OFF configuration. SPC-ON is thus more
sensitive to warming. The situation is reversed in the fall,
when photoperiods are relatively short and SPC-ON has the
smaller photosynthetic capacity (Figure 1).

4. Discussion

4.1. Model Optimization and Evaluation

[32] The estimates of Vcmax,s obtained here (Table 3) are
smaller than those reported by Wullschleger [1993] for
Quercus spp. However, none of the dominant oak species at
SLEF (Q. coccinea, Q. velutina, Q. prinus) were represented
in that study. Ashton and Berlyn [1994] reported rates of net
leaf-level photosynthesis for Q. coccinea and Q. velutina of
4.6–5.7 μmol (m2 leaf s)�1 under saturating light conditions
at 25°C. Using the standard equation for Rubisco-limited pho-
tosynthesis (equation (40) of Farquhar et al. [1980]), this
would imply a Vcmax value of about 16 μmol (m2 leaf s)�1.
When we used an estimate of 13 μmol (m2 leaf s)�1 for
Vcmax,s (Table 3) and used the temperature dependence given
in equation (1), we obtained a Vcmax value of about 18 μmol
(m2 leaf s)�1 at 25°C, which is slightly larger than the estimate
based on Ashton and Berlyn [1994].
[33] Overall, the SPC-ON model configuration fit NEE

data collected from 2005 to 2011 at SLEF more closely than
the SPC-OFF model configuration. The most pronounced
differences between the model configurations occurred for
gapped monthly NEE in early summer and fall (Table 4
and Figures 3b–3c). These results support the notion that
Vcmax should be sensitive to photoperiod [Bauerle et al.,
2012; Stoy et al., 2013]. Methods exist for quantifying the
levels of support that should be associated with different
model formulations [Jeong et al., 2012], but we did not pur-
sue this here because these methods can be computationally
expensive and the preference for SPC-ON seemed unambig-
uous (Table 4). However, these methods may be useful if fu-
ture analyses consider models of Vcmax seasonality with more
subtle differences than those considered here.

4.2. Comparison to Other Models With Seasonal
Variation of Photosynthetic Capacity

[34] Models of leaf-gas exchange have shown that including
seasonal variation of photosynthetic capacity greatly improves
seasonal simulations of leaf-level CO2 flux [Wilson et al.,
2001; Kosugi et al., 2003; Wang et al., 2003]. Process-based
models of grassland CO2 exchange have also been shown to
require seasonal variation of photosynthetic capacity [Wolf
et al., 2006]. Our work explores the longer-term implications
of these findings by using a comprehensive terrestrial bio-
sphere model capable of simulating changes in temperate for-
est ecosystem structure, composition, and functioning.
[35] Seasonal variation of photosynthetic capacity for

broadleaf deciduous plant functional types has recently been
incorporated in the Community Land Model (CLM) [Oleson
et al., 2010]. Bonan et al. [2011] used CLM to compare
global simulations with and without seasonal variation of

photosynthetic capacity. In these simulations, they used the
same summer solstice value of Vcmax (Vcmax,s in our notation).
Thus, their simulation without seasonal variation of photo-
synthetic capacity always had a photosynthetic capacity that
was greater than or equal to their simulation that included
seasonal variation of photosynthetic capacity. Including sea-
sonal reductions in photosynthetic capacity reduced their
simulated global GPP by about 8%. In another study using
CLM, Bauerle et al. [2012] also simulated reductions in
GPP owing to seasonal variation of photosynthetic capacity.
We found the opposite response: in our simulations of SLEF,
seasonal variation of photosynthetic capacity caused GPP to
increase by about 3%. Our simulations were different be-
cause our estimates for Vcmax,s were conditional on model
configuration. Consequently, our SPC-ON configuration
had a larger photosynthetic capacity than our SPC-OFF
configuration in late spring/early summer, and vice versa in
the fall (Figure 1).

4.3. Implications for Ecosystem Carbon Budgets

[36] It is not possible to completely “tune away” the impacts
of seasonal variation of photosynthetic capacity, especially if
there is temporal correlation between photosynthetic capacity
and climate anomalies or disturbances. We simulated a dispro-
portionate effect of gypsy moth defoliation on the SPC-ON
configuration because the defoliation peaked in June, when
SPC-ON has its largest photosynthetic capacity (at a given
temperature). The interaction term between seasonal variation
of photosynthetic capacity and defoliation attained its largest
values in the few years following defoliation (Figure 6).
Although our simulations highlight the recovery from a single
defoliation event, it would also be of interest in future work to
investigate how this interaction term would respond to re-
peated defoliations. Gypsy moth outbreaks in North America
are cyclical with primary periodicities of about 5 and 10 years
[Johnson et al., 2006], and a previous modeling study pointed
out nonlinear ecosystem responses to changes in defoliation
periodicity and intensity [Medvigy et al., 2012].
[37] Although our results were based on a single site, gypsy

moth is now ubiquitous in forests of the Mid-Atlantic region.
Approximately 24% of forests in the region are classified as
highly susceptible to gypsy moth, and 7% are classified as ex-
tremely susceptible [Liebhold et al., 1992; USDA Forest
Service, 2009]. In New Jersey, 36% of forests are classified
as highly susceptible to gypsy moth defoliation and 15% are
classified as extremely susceptible.
[38] Our results can also help inform how defoliation by

other insects interacts with seasonal variation of photosynthetic
capacity. For example, forest tent caterpillar (Malacosoma
disstria Hubner) is another major defoliator of deciduous tree
species in North America [Churchill et al., 1964; Man and
Rice, 2010], and also defoliates in the beginning of the grow-
ing season when the SPC-ON configuration has its largest
photosynthetic capacity. Understanding the interplay between
seasonal variation of photosynthetic capacity (and phenology
in general) and insect disturbances will become increasingly
important if insect disturbances become more frequent with
climate change, as some studies have suggested [Kurz et al.,
2008; Bentz et al., 2010; Sturrock et al., 2011].
[39] Seasonal variation of photosynthetic capacity may also

modulate the effect of global warming on ecosystem func-
tioning. Over the past few decades, spring and autumn
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temperatures have risen by 1.1°C and 0.8°C, respectively, over
northern latitudes worldwide [Mitchell and Jones, 2005].
Analyzing atmospheric CO2 records and eddy-flux measure-
ments for the same northern latitudes, Piao et al. [2008] found
that warming increased respiration more than photosynthesis
in the fall, but not in the spring. As they argued, part of the ex-
planation for this is likely due to the different temperature sen-
sitivities of respiration and photosynthesis. However, seasonal
variation of photosynthetic capacity may also be playing a
role, causing a larger enhancement of GPP in the spring and
a smaller enhancement of GPP in the fall.
[40] Different amounts of warming in the spring and fall

have occurred on continental and smaller scales [Mitchell
and Jones, 2005]. Eurasia in particular has warmed more in
the spring than in the fall, and North America has warmed
more in the fall than in the spring. Other things being equal,
our results suggest that seasonal variation of photosynthetic
capacity would have caused Eurasia to have the stronger
GPP response to warming. Interestingly, the enhanced green-
ing pattern seen in remote sensing data has been more signif-
icant and coherent in Eurasia than in North America [Zhou
et al., 2001].

4.4. Uncertainties and Areas for Future Work

[41] The primary purpose of this study was to identify con-
ditions under which seasonal variation of photosynthetic ca-
pacity is likely to be important. To first order, this can be
done with any prescription that gives a relatively larger
Vcmax at the beginning of the growing season and relatively
smaller Vcmax at the end of the growing season (Figure 1).
We selected the particular functional form given by equation
(2) because it is simple, scalable to other sites, and has some
support from previous observations [Bauerle et al., 2012].
Other approaches to parameterizing the seasonality of Vcmax

could have been taken, though all would have their own ad-
vantages and disadvantages. For example, we could have
taken a semi-empirical approach, dispensing with equation
(2) altogether and instead estimating a different Vcmax for
each month of the year [Wolf et al., 2006]. This may provide
a finer temporal resolution of the seasonal cycle of Vcmax

(provided parameter uncertainties are not too large), but it
would also increase the number of estimated parameters, in-
creasing the complexity of the model and of the optimization
process. Furthermore, there would be no obvious way to
scale to other sites (whereas equation (2) scales using photo-
period). We therefore advocate for the development in future
studies of more mechanistic models of seasonality in Vcmax

with relatively small numbers of parameters. Testing such
models across temperate and boreal biomes may now be pos-
sible using the FLUXNET database [Stoy et al., 2013].
[42] Bonan et al. [2011] pointed out the importance of the

Vcmax parameter for simulating GPP, and argued that model
structural errors can be partially compensated for by
adjusting this parameter. This is manifest in our results. Use
of a larger value of Vcmax,s in our SPC-ON configuration than
in our SPC-OFF configuration allows the two configurations
to simulate similar annual GPP. However, on subannual time
scales the differences between these model configurations are
more apparent. This partial compensation in annual GPP
would not have been obtained if we had not included annual
data as a constraint on the model. Our decision to weight both
monthly and annual observations in parameterizing the

model (Appendix A) is consistent with our intention that
ED2 be capable of simulating multiple time scales.
[43] This study considered a single stand in the New Jersey

Pinelands. This highly instrumented, intermediate-aged
stand is representative of oak/pine communities on the east-
ern US Atlantic coastal plain [McCormick and Jones, 1973;
Lathrop and Kaplan, 2004; Skowronski et al., 2007]. Other
typical upland forest communities on the Atlantic coastal
plain include mixed pine/oak stands with pitch pine and
mixed oaks in the overstory, and pine/scrub oak stands dom-
inated by pitch pine with scrub oaks in the understory
[Skowronski et al., 2007]. Because pines are an important
component of these other community types, assessment of
the ecosystem-level effects of seasonal variation of photo-
synthetic capacity would require understanding of seasonal
variation of pine photosynthetic capacity. This represents
an interesting challenge for future modeling studies. Pitch
pine flushes one cohort of needles per year, but holds two co-
horts through the peak of the growing season. It would thus
be important to track the photosynthetic capacity of multiple
cohorts of needles. Only a few terrestrial biosphere models
currently have this functionality [e.g., Ogée et al., 2003].
An additional complicating factor is the seasonal variation
of LAI. In pine stands in the New Jersey Pine Barrens, the
LAI of evergreen needleleaf trees is typically twice as large
in the summer as in the winter [Clark et al., 2012].
Seasonal variations in LAI have also been reported for tem-
perate evergreen needleleaf stands from Oregon [Spanner
et al., 1994] to Florida [Powell et al., 2005]. However, this
variation has seldom been represented in models.
[44] Finally, it would also be interesting to consider the in-

terplay between seasonal variation of photosynthetic capac-
ity and nutrient dynamics. Implementation of nitrogen and
phosphorus cycles in ED2 is currently a work in progress.

5. Conclusions

[45] We used model simulations to understand how sea-
sonal variation of photosynthetic capacity affected gross pri-
mary productivity on monthly to multidecadal time scales at
a representative oak/pine forest on the Atlantic coastal plain
of the eastern US. Including this variation had a large impact
on model simulations of subannual time scales. It also affected
the simulation of processes that are linked to the annual cycle,
including defoliation, budburst, and leaf coloration.While sea-
sonal variation of photosynthetic capacity should be included
in models, care is required because models may require
reparameterization to ensure that their ability to simulate an-
nual and longer time scales is not degraded. Continued assess-
ment of the impacts of seasonal variation of photosynthetic
capacity on ecosystem composition, structure, and functioning
remains an important task for our understanding of short- and
long-term behavior of these systems, their responses to envi-
ronmental variability, and their responses to disturbances.

Appendix A: Model Configuration

[46] Before carrying out the Markov chain Monte Carlo, we
applied three changes in model structure affecting leaf area
dynamics, allometries, and heterotrophic respiration. Leaf
emergence in the spring was parameterized according to
Jeong et al. [2013]. This parameterization was developed
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using a ~20 year record of observations at Harvard Forest
[O’Keefe, 2000] and a ~3 year record of observations from
196 measurement sites located throughout the US from
the USA National Phenology Network [USA National
Phenology Network, 2011]. A parameterization for leaf color-
ation in the fall using Harvard Forest and USA National
Phenology Network data has also been recently developed
(S.-J. Jeong, manuscript in preparation, 2013) and has been
implemented here. Allometries for our oak and pine PFTs
were taken from Whittaker and Woodwell [1968], who deter-
mined allometric relationships for the species characteristic
of the northeastern US Atlantic coastal plain. Specifically, we
used their Quercus coccinea allometry for our oak PFT and
their Pinus rigida allometry for our pine PFT. Finally, to
simulate heterotrophic respiration, we replaced the empirical
scheme that has previously been used in ED2 [Medvigy
et al., 2009] with the more mechanistic Dual Arrhenius and
Michaelis-Menten kinetics (DAMM) scheme introduced by
Davidson et al. [2012].
[47] Although previous ED2 simulations have successfully

simulated many mesic sites in the eastern US [Medvigy et al.,
2009; Medvigy and Moorcroft, 2012], we found that SLEF,
with its relatively xeric soils, was poorly simulated for all
choices of Vcmax,s. In particular, we were unable to simulta-
neously simulate the observed maximum summer drawdown
of NEE, the diurnal cycle of NEE, overall tree growth, and
overall tree mortality. We therefore broadened the scope
of our model optimization to include four parameters: oak
Vcmax,s (a control on photosynthesis), oak fine root turnover
rate (Troot; a control on net primary production), the baseline
heterotrophic respiration rate (a control on heterotrophic res-
piration; the actual parameter is denoted αsx in Davidson
et al. [2012]), and the slope of the relationship between
leaf-level stomatal conductance and CO2 flux (M; a control
on the diurnal cycle of photosynthesis; see equation (B15)
of Medvigy et al. [2009]). Pine-specific parameters were not
selected because there is only a small amount of pine in the
stand (Figure 2). We did not wish to express an a priori pref-
erence for either of the SPC-ON or SPC-OFF model config-
urations, and so the four-parameter Markov chain Monte
Carlo was carried out for both configurations.
[48] Prior probability density functions for the parameters

were assumed to be independent and were taken to be gamma
distributions because all parameters are positive definite.
Expected values of the prior distributions were taken from
the standard parameterizations of ED2 [Medvigy et al.,
2009] and DAMM [Davidson et al., 2012]. Standard devia-
tions of the prior distributions were taken to be about 10
times the parameter uncertainties reported in Medvigy et al.
[2009] in order to generate noncommittal priors. In our anal-
ysis, the main function of the prior was to keep the parame-
ters from becoming negative.
[49] The model parameterizations were developed using

data only from 2006. We used the following data sets to
parameterize the model: (i) half-hourly gapped NEE, (ii)
monthly gapped net ecosystem exchange, (iii) monthly
gapped nighttime-only NEE, (iv) annual gapped NEE, (v)
annual gapped nighttime NEE, (vi) total annual basal area in-
crement (BAI) of all hardwood trees in the measurement plot,
(vii) total annual BAI of all conifer trees in the measurement
plot, (viii) total annual mortality of all hardwood trees in the
measurement plot, and (ix) total annual mortality of all conifer

trees in the measurement plot. The gapped NEE includes only
the NEE values that were actually observed and passed quality
control. They do not represent the total ecosystem-atmosphere
exchanges because there are missing values in the time series
of measurements; consequently, these sums differ from those
reported previously [Clark et al., 2010]. The advantage of this
approach is that it eliminates uncertainties that may be present
in gap-filling algorithms [Falge et al., 2001]. Taken together,
these data sets represent a range of time scales. This is impor-
tant because previous work has shown that it is possible for
models to perform reasonably well at one time scale while
performing poorly at other time scales [Braswell et al., 2005;
Medvigy et al., 2009]. Our approach allows for simultaneous
constraints on all time scales.
[50] The likelihood function quantifies the model-data

mismatch. For the half-hourly NEE, we took the double-
exponential distribution of Hollinger and Richardson [2005]
to describe observational errors. We then repeatedly sampled
from this distribution to estimate errors associated with
monthly and yearly gapped NEE. We estimated errors for
the tree growth and mortality data sets by bootstrapping. We
computed an overall log likelihood (LL) by combining
the log likelihoods corresponding to individual data sets
[Medvigy et al., 2009; Kim et al., 2012]:

LL ¼ ∑
9

i¼1
wiLLi: (A1)

[51] Here, LLi is the log likelihood of one of the nine data
sets and wi is a weighting factor. Weighted log likelihood
values that are closer to 0 represent a closer match to the obser-
vations. Because the ED2 model is intended to generate pre-
dictions across a wide range of time scales, we decided to
give equal weighting to the half-hourly, monthly, and yearly
data. WithNhh representing the total number of elements in data
set (i), Nm representing the total number of elements in data sets
(ii) and (iii) combined, andNy representing the total number of
elements in data sets (iv)–(ix) combined, we chose:

wi¼

Ny

Nhh
i ¼ 1

Ny

Nm
i ¼ 2; 3

1 i > 3

8>>>><
>>>>:

ðA2Þ

[52] We carried out over 400,000 simulations of the period
2005–2006 by running 20 parallel runs, each of at least
20,000 iterations. Data from 2005 were discarded as spin-up
and data from 2006 were used to constrain the model. To ensure
a consistent comparison with gapped observations, we com-
puted the corresponding gapped fluxes from the simulations.
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