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Abstract We investigated the predictive strength of forest-
ed wetland maps produced using digital elevation models
(DEMs) derived from Light Detection and Ranging
(LiDAR) data and multiple topographic metrics, including
multiple topographic wetness indices (TWIs), a TWI en-
hanced to incorporate information on water outlets, normal-
ized relief, and hybrid TWI/relief in the Coastal Plain of
Maryland. LiDAR DEM based wetland maps were com-
pared to maps of inundation and existing wetland maps.
TWIs based on the most distributed FD8 (8 cells) and
somewhat distributed D∞ (1–2 cells) flow routing algo-
rithms were better correlated with inundation than a TWI
based on a non-distributed D8 (1 cell) flow routing algo-
rithm, but D∞ TWI class boundaries appeared artificial. The
enhanced FD8 TWI provided good prediction of wetland
location but could not predict periodicity of inundation.
Normalized relief provided good prediction of inundation
periodicity but was less able to map wetland boundaries. A
hybrid of these metrics provided good measurement of
wetland location and inundation periodicity. Wetland maps
based on topographic metrics included areas of flooded

forest that were similar to an aerial photography based
wetland map. These results indicate that LiDAR based to-
pographic metrics have potential to improve accuracy and
automation of wetland mapping.
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Introduction

To best preserve wetlands and associated ecosystem services
in the face of climate and land-use change, wetlands must be
monitored routinely. Wetland mapping is an essential part of
this monitoring program. Remote observation of wetlands is
necessary because they are often difficult to access on the
ground, and on-site mapping at the landscape scale is cost-
prohibitive. One of the most common wetland mapping
methods uses optical images, such as aerial photography,
in conjunction with field data. The U.S. Fish and Wildlife
Service National Wetland Inventory (NWI) is one of the
earliest and most commonly relied upon U.S. wetland maps.
NWI maps are primarily produced using aerial photographs,
photointerpretation techniques, and field verification (Tiner
1990). Although great care has been taken in the production
of these maps and they are relied upon by numerous scien-
tists and managers (Kudray and Gale 2000), challenges to
the cartographic process remain. This is especially true in
forested areas where errors vary widely but can be substantial
(Stolt and Baker 1995; Kudray and Gale 2000). Furthermore,
the photointerpretation process is not automated, and is there-
fore time and resource intensive and somewhat subjective.

One of the most difficult types of wetlands to map is
palustrine forested wetlands (Tiner 1990). This is especially
true in areas of low topographic relief, such as the outer
Coastal Plain of the Mid-Atlantic U.S. Palustrine forested
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wetlands are difficult to map because the forest canopy often
prevents viewing of the ground’s surface. Furthermore, trees
found in this type of wetland are often identical or spectrally
similar to those found in upland forests, and the expression
of wetland hydrology is often intermittent. Moreover, rela-
tively small variations in topography are capable of forming
these types of wetlands. As a result, all forested wetlands,
but especially smaller, drier wetlands, are difficult to detect.

Recently developed remote sensing technologies and
techniques have the potential to improve the detail and
reliability of wetland maps. One of these relatively new
and rapidly developing technologies is discrete point return
imaging light detection and ranging (LiDAR). LiDAR data
can be used to calculate precise x,y,z locations by recording
the amount of time it takes for an emitted pulse, or a portion
of that pulse, to return to the sensor (Vierling et al. 2008).
LiDAR x,y,z points can be used to make digital elevation
models (DEMs). Although topographic information is com-
monly available for the United States, the spatial resolution
of these data is often not sufficient for wetland identifica-
tion, especially in areas of subtle topographic change, like
the Mid-Atlantic Coastal Plain. In general, conventional,
non-LiDAR derived DEMs have much coarser vertical
accuracies (1 – 10 m) than those derived from LiDAR
(~ 10 cm; Coren and Sterzai 2006). LiDAR derived DEMs
also have relatively fine horizontal resolution (~ 100 cm;
Coren and Sterzai 2006). While return time provides informa-
tion on location, LiDAR intensity, or the strength of the
returned LiDAR signal relative to the amount of energy trans-
mitted by the sensor per laser pulse (Chust et al. 2008),
provides information regarding the identity of materials off
which the LiDAR signal reflects before returning to the
sensor.

LiDAR-derived DEMs are often used to derive primary
topographic metrics, such as slope and aspect, and com-
pound or secondary metrics, which are based on the rela-
tionship between multiple primary metrics. Secondary
topographic metrics, like topographic wetness indices, have
been used to determine the spatial distribution of key wet-
land processes (Moore et al. 1991; Bohner and Selige 2006),
such as soil saturation. The topographic wetness index
(TWI), which is based on slope and contributing area, is
expressed as ln(α/tanβ), where α is the upslope contributing
area per unit contour and tanβ is the local topographic
gradient (Beven and Kirkby 1979). Soil transmissivity is
assumed to be constant (Moore et al. 1991). Areas with
higher topographic wetness index values are likely to be
wetter relative to areas with lower values.

The TWI is commonly used to characterize soils (e.g.,
Bohner and Selige 2006), but can also be used to map
vegetation (Kopecky and Cizkova 2010). However, the use
of TWI to map wetlands has been limited (Rohde and
Seibert 1999; Curie et al. 2007; Murphy et al. 2009 [index

similar to TWI]; Walker et al. 2012). Furthermore, although
a number of studies have tested the behavior of flow routing
algorithms in generalized landscapes, few studies have test-
ed the influence of flow routing algorithms on TWI perfor-
mance using spatially distributed reference data (Sorensen et
al. 2006) or investigated algorithm performance in areas of
low topographic relief where wetlands are most common.
Wilson et al. (2007) call for the investigation of different
flow routing algorithms for different landscapes (i.e., flat)
and applications.

When using raster DEMs to generate inputs for the TWI,
β is usually measured using the same procedure (i.e., a 3
kernel area centered on the pixel of interest; Bohner et al.
2001). However, the procedures used to generate α vary
considerably with different flow routing algorithms. These
flow routing algorithms are often divided into single and
multiple flow routing algorithms with single flow routing
algorithms routing water from a target cell to one adjoining
cell and multiple flow routing algorithms routing water to
multiple adjoining cells, thus allowing for more distributed
flow (Arnold 2010; Kopecky and Cizkova 2010). The D8
flow routing algorithm (O’Callaghan and Mark 1984) is a
single flow routing algorithm that determines which of eight
directions water should flow (e.g., north, northeast, east,
etc.) based on the steepest downslope neighboring pixel.
This is the algorithm most commonly used by GIS programs
(Arnold 2010; Kopecky and Cizkova 2010), including Arc-
GIS (ESRI; Redlands, California). A number of multiple
flow routing algorithms have been proposed which distrib-
ute water to neighboring cells based on more complex
decision rules. These algorithms include the deterministic
infinity (D∞) algorithm proposed by Tarboton (1997) and
FD8 algorithm proposed by multiple authors including
Freeman (1991). The D∞ algorithm routes water to one
or two neighboring cells determined by greatest slope. If
the flow angle of greatest descent leads directly to a single
pixel, water is routed to that pixel but if the angle is situated
between pixels water is proportioned between the two pixels
based on how close the angle is to the adjoining pixels
(Tarboton 1997). The FD8 algorithm routes water to all eight
neighboring cells with the amount of flow determined by
slope, with steeper slopes between the target and neighboring
cells causing more water to be routed than shallower slopes
(Freeman 1991).

The strong potential of LiDAR for ecologic applications
has been recognized by both scientists and managers (Lefsky
et al. 2002), but the methods necessary to apply these data for
improved wetland mapping have not been fully explored.
The research described herein supports the development of
more rapid and reliable operational wetland mapping within
forested environments. We investigated the predictive
strength of forested wetland maps produced using DEMs
derived from LiDAR and multiple topographic metrics,
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including previously published and newly established met-
rics, in Maryland’s Coastal Plain. LiDAR based mapping
products were compared to highly accurate maps of inunda-
tion derived from LiDAR intensity (Lang and McCarty
2009) and the most accurate wetland map currently available
for the study site.

Methods

Study Site

The 33 km2 study site is located within the Choptank River
Watershed (Fig. 1), and focused primarily on the 690 km2

Tuckahoe CreekWatershed, a sub-watershed of the Choptank.
The Choptank River, a major tributary of the Chesapeake Bay,
originates in Kent County, Delaware and flows southwest
towards its outlet near Cambridge, Maryland. The
1,756 km2 Choptank River Watershed is located on the Del-
marva Peninsula within the Coastal Plain Physiographic Prov-
ince. The area is characterized by a humid, temperate climate
with average annual precipitation of 120 cm/yr (Ator et al.
2005). Approximately 50 % of annual precipitation is lost to
the atmosphere via evapotranspiration while the remainder
recharges ground water or enters streams via surface flow
(Ator et al. 2005). The area is relatively flat (max elevation
<30 m above sea level) and land cover is dominated by
agriculture (~60 %) with smaller amounts of forest (33 %)
and urban/suburban area (7 %; McCarty et al. 2008).

A significant percent of forested area within the Chop-
tank River Watershed is wetland. The primary soil types
within forested areas at the study site are Hammonton-
Fallsington-Corsica complex (predominantly moderately
well drained), Corsica mucky loam (predominantly very
poorly drained), and Fallsington sandy loam (predomi-
nantly poorly drained) in order from most to least com-
mon. The spatial distribution of hydric soils across the
study area can be seen in Fig. 2. The primary types of
wetlands found within the study area are wetland depres-
sions (e.g., Delmarva bays) and wetland flats, with smaller
amounts of riparian wetlands. Most wetlands are inundat-
ed or saturated for a relatively short period of time within
the growing season, usually in early spring after snowmelt
and before leaf-out. The period of maximum hydrologic
expression (i.e., highest groundwater levels and most area
inundated) varies with fluctuations in weather, but is typ-
ically in or around March when evapotranspiration has
been relatively low for the longest period of time and
before evapotranspiration increases markedly with rising
temperatures and leaf-out. Although a significant amount
of forested wetlands remain, many have been lost to
drainage or fill.

Geospatial Data

The topographic metrics were developed using a DEM
derived from LiDAR data that were collected when very
little flooding of any type was present in wetlands. Data

Fig. 1 The Tuckahoe Creek
Watershed which is located in
the headwaters of the Choptank
River Network, Maryland
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were collected using a Leica ALS50-II sensor on December
24, 2007 using a scan angle of +/− 25o at a height of
1,829 m above the Earth’s surface with a pulse rate of
126,000 Hz and scan frequency of 50 Hz. Raw data were
converted to LAS files, a commonly used LiDAR data
exchange format, containing x, y, z, and intensity data. Bare
earth points (i.e., points originating from the Earth’s surface
instead of structural components above the Earth’s surface
[e.g., trees]) were classified by the data provider using
Terrascan (v. 7.0; Terrasolid Limited, Helsinki, Finland)
and Fugro EarthData proprietary software. The data were
validated using over 100 precision GPS points collected at
areas of stable elevation (e.g., road intersections) using a
Trimble RTK 4700 GPS/base station combination and a
surveyed benchmark provided by the Maryland State High-
way Administration. The end product had a vertical accura-
cy of ≤ 0.15 m and a pulse density of~2.8 pts/m2 (~ 0.35 m
post spacing). It should be noted that vertical accuracy is

likely to be somewhat reduced within forested areas, relative
to areas without vegetation or other vertical structures that
can obscure the ground’s surface (Hogg and Holland 2008).

In order to help gauge relative predicative strength, LiDAR
intensity data were collected over the study area on March 27,
2007 and March 24, 2009. These dates were selected to
represent both average (2007) and moderate drought (2009)
conditions according to the Palmer Z Index as calculated over
a 3 month time period (National Oceanic and Atmospheric
Administration National Climate Data Center: http://
cdo.ncdc.noaa.gov). The dates also correspond with the ap-
proximate average period of maximum hydrologic expression
and were at the beginning of the local growing season as it
relates to the definition of wetlands (last −2.22o C or lower
freeze at the 50 % probability level for Dover, Delaware is
March 28; National Oceanic and Atmospheric Administration
National Climate Data Center: http://cdo.ncdc.noaa.gov). Pre-
cipitation did not occur for at least 4 days before theMarch 27,

Fig. 2 The spatial distribution of hydric soils, partially hydric soils,
and non-hydric soils across the study area. Note that wetland bound-
aries as mapped by MD DNR are more spatially explicit than hydric

soils boundaries within the selected forested area. This is generally true
across the study area
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2007 and March 24, 2009 acquisitions. Data were collected
using an Optech ALTM 3100 LiDAR sensor on March 27,
2007 with a scan angle of +/−20o at a height of 610 m above
the Earth’s surface with a pulse rate of 100,000 Hz and a scan
frequency of 50 Hz. Data were collected on March 24, 2009
using the same sensor with a scan angle of +/−10o at a height
of 610 m above the Earth’s surface with a pulse rate of
100,000 Hz and scan frequency of 70 Hz. LiDAR points were
validated using the same 100 precision GPS points described
above. Raw data were converted to LAS files containing x, y,
z, and intensity data and bare earth points were classified by
the data provider using Terrascan v 7.0 software. The resultant
data had a vertical accuracy of ≤ 0.15 m and an average point
density of ~2.5 pts/m2 (0.40 m post spacing) or ~11 pts/m2

(0.09 m post spacing), for the 2007 and 2009 datasets, respec-
tively. The ALTM 3100 sensor was coupled with a digital
camera to capture coincident 12 cm spatial resolution aerial
photography in the near-infrared (720–920 nm), red (600–
720), and green (510–600) bands.

The Maryland Department of Natural Resources (MD
DNR) wetland map was the most current fine resolution
(1:12,000) wetland map available for the study area. The
MD DNR wetland map was generated using the same classi-
fication system (i.e., Cowardin et al. [1979]) and basic method
utilized to create NWI maps except that the MDDNRwetland
map was based on more recently collected, finer resolution
aerial photographs (late 1980s – early 1990s; metadata located
at: ftp://dnrftp.dnr.state.md.us/public/SpatialData/Wetlands/
WetlandsDNR/County/dnrwet.htm; last accessed July 2012).

Analysis

The methods used to preprocess the DEM and create the
topographic metric based wetland maps are described be-
low, and summarized in Fig. 3.

LiDAR Preprocessing

LP360 software (v. 2.0; QCoherent Software, LLC; Colo-
rado Springs, CO) was used to import tiled bare earth LAS
files. Bridges, and other obstructions to modeled two-
dimensional flow that can lead to inaccurate water routing,
were manually identified and LP360 software was then used
to lower the December 24, 2007 bare earth point elevations
to the level of flowing water at those locations. Although
such impediments to modeled two dimensional flow were
rare within the forested study site, this was done to eliminate
the potential effect of these impediments on study results.
Inverse distance weighted (IDW) interpolation was used to
produce a 3 m gridded DEM for the December date and 1 m
intensity images for the March dates (March 27, 2007 and
March 24, 2009). Similar to other interpolation methods, the
use of IDW and the nature of LiDAR data can lead to local
variation in values and filtering is used to suppress sudden
increases or decreases in pixel values that may result from
noise (Yu et al. 2002). The DEM was iteratively filtered
using a 3 kernel and then a 9 kernel low pass filter. The early
spring intensity images were passed through an enhanced
Lee filter (Lopes et al. 1990) five times with increasing
kernel sizes of 3 (twice), 5, 7, and 9.

Topographic Metrics

The filtered 3 m DEM, collected on December 24, 2007, was
used to parameterize three different topographic wetness in-
dex algorithms including those based on D8, D∞, and FD8
flow routing algorithms. Sinks were not filled before running
the flow routing algorithms. The D8 flow routing algorithm
was calculated using the System for Automated Geoscientific
Analysis (SAGA) v. 2.0.8, free open source software designed
for the analysis of spatial data (D8 flow analysis module;

Fig. 3 A flow-chart illustrating
DEM preprocessing and topo-
graphic metric creation. Initial
data are indicated with ovals,
processing steps are indicated
by pentagons, preliminary
products are indicate by round-
ed rectangles, and final prod-
ucts, which were compared
with in situ data, are indicated
by rectangles
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Conrad 2006) and the resultant data were used to calculate the
D8 TWI in ArcGIS (v. 9.3) according to the equation devel-
oped by Beven and Kirkby (1979). The FD8 TWI was calcu-
lated using the SAGA Wetness Index module (Bohner and
Selige 2006). Terrain Analysis Using Digital Elevation Mod-
els (TAUDEM) v. 5.0 software was used to calculate specific
catchment area based on the D∞ algorithm and the resultant
dataset was used in ArcGIS to calculate a TWI according to
the equation developed by Beven and Kirkby (1979).

A local terrain normalized relief (LTNR) map was created
and existing topographic metrics were modified to better
represent drivers of wetland water budgets (i.e., water inputs
and outputs). To create the LTNR map (Fig. 4a), ArcGIS
was used to create a continuous surface of maximum eleva-
tion per 200 m2 area. The original (unfiltered) 3 m DEM
was filtered twice using a 3 kernel low pass filter and the
maximum elevation dataset was subtracted from the filtered
3 m DEM to create the LTNR map. An enhanced topograph-
ic wetness index (ETWI) was created (Fig. 4b) by increasing
FD8 based wetness index values within depressions (i.e.,
pits or sinks) by 10 %. The range of pixel values within each
topographic metric was assessed by noting the highest and
lowest values included within 99 % of all pixels. The high-
est and lowest 0.5 % of pixel values were excluded to reduce
potential error which might bias the range.

The continuous values within all LiDAR derived topo-
graphic metrics (i.e., D8, D∞, FD8, LTNR, and ETWI) were
then thresholded to create four classes: 1) very likely to be
upland, 2) likely to be upland, 3) likely to be wetland, and 4)
very likely to be wetland. The thresholds were created
qualitatively based on best professional judgment and re-
view of ancillary data including multiple dates of leaf-off
aerial photography and existing wetland maps including the
MD DNR wetland map and the NWI (all datasets that are
commonly available throughout the US). Normalizing the
LTNR and ETWI through thresholding allowed the LTNR
and ETWI products to be added together to create the relief
enhanced topographic wetness index (RETWI; Fig. 4c),
with values from 2 to 8 (higher values indicating greater
likelihood of wetlands; e.g., 8 means LTNR and ETWI
agree area is very likely to be a wetland).

Predictive Strength

Topographic metric based wetland maps were compared
with LiDAR intensity derived maps of inundation created
for March 27, 2007 (average weather conditions) and March
24, 2009 (drought conditions) to gauge relative predictive
strength of products and potential of mapping techniques to
support future operational wetland mapping efforts. The

Fig. 4 Topographic index
products including the local
terrain normalized relief (a),
enhanced topographic wetness
index (b), and the relief
enhance topographic wetness
index (c), LiDAR intensity
during a dry (d) and average
spring (e), and false color near-
infrared aerial photograph (f;
collected coincident to e) of a
forested wetland complex with-
in the study area. All images
have been overlaid with a wet-
land map generated by the
Maryland Department of Natu-
ral Resources. On the topo-
graphic index products, wetter
areas are blue (more likely to be
wetlands) while drier areas are
red (less likely to be wetlands).
Inundated areas are black on the
LiDAR intensity images
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LiDAR intensity based inundation maps were created using
a simple thresholding technique that separated inundated
and non-inundated areas (Lang and McCarty 2009). The
LiDAR intensity threshold between inundated and non-
inundated areas was determined using over one thousand
ground-based control points collected coincident with the
LiDAR intensity data collected for each date (see Lang and
McCarty 2009 for further details). The topographic metric
and inundation map comparison was an iterative process
designed to test the products for different applications and
compare the topographic metric based wetland maps to a
related dataset, a wetland map based on aerial photography.
First, all topographic metric based wetland maps were com-
pared with the March 27, 2007 LiDAR intensity based
inundation map to examine their ability to predict inunda-
tion patterns during average peak hydrologic expression (an
indicator of wetland extent) since wetland maps are most
frequently created to depict average conditions. Next, binary
wetland-upland classified topographic metric based maps
were compared with the March 27, 2007 LiDAR intensity
based inundation map and an aerial photography derived
wetland map to compare the relative ability of topographic
metric and aerial photography derived wetland maps to
predict inundation during peak hydrologic expression, an
indicator of wetland extent. Finally, the March 24, 2009
LiDAR intensity based inundation map, as well as the
March 27, 2007 LiDAR intensity based inundation map,
were used to examine the ability of topographic metric
based wetland maps to infer inundation under varying
weather conditions. A more detailed description of these
analysis steps can be found below.

All map products were compared with the March 27,
2007 LiDAR intensity derived map of inundation/non-inun-
dation near average peak hydrologic expression that was
found to be ~97 % accurate based on comparison with
ground data (Lang and McCarty 2009). Since inundation
status does not directly account for soil moisture (another
physical manifestation of wetness), inundation status is not
the same as wetland status and since the TWI maps are a
continuous indicator of potential wetness and not a binary
indicator of flooding for a particular date, the relationship
between topographic metrics and the LiDAR intensity de-
rived dataset will be referred to as predictive strength instead
of accuracy.

A stratified random sampling approach was used to select
over 2,000 reference points approximately evenly divided
between inundated and non-inundated forest areas that were
at least 10 m away from each other and 25 m away from the
forest edge. Evergreen areas were avoided even though they
represent a very small portion of the study area (<5 % of
forested area or<.78 km2) because reference data were
likely be less reliable within these areas. This was accom-
plished using the 3 band visible/near-infrared digital image

collected coincident with the March 2007 LiDAR data
(Lang and McCarty 2009). Although much of the study area
contains relatively shallow, hand dug ditches that were
created in the early to mid – 1900s, a smaller portion of
the study area contains deeper (>1.5 m) ditches that are
currently maintained. Areas that were directly drained by
these deeper ditches were identified and an all forest and
non-drained forest reference dataset were created. The topo-
graphic metric values closest to each reference point were
extracted using bilinear interpolation (vector data) or a spa-
tial join (raster data).

The reference data were then used to compute percent
reference points inundated or not inundated within each of
the four (D8 TWI, D∞ TWI, FD8 TWI, LTNR, and ETWI)
or seven (RETWI) topographic metric classes as an indica-
tion of predictive strength. Subsequently, the D8 and D∞
TWIs were excluded from further analysis (see results sec-
tion). Percent of total forested area within the study site
represented by each class (e.g., very likely to be upland)
was then calculated for all topographic metric based wetland
maps so that percent of total study area mapped with differ-
ent levels of predictive strength could be computed. Total
area of forest was determined using the 3 band visible/near-
infrared digital image collected coincident with the March
2007 LiDAR data (Lang and McCarty 2009).

Each topographic metric based wetland map was then
divided into binary wetland and upland classes to facilitate
comparison with the MD DNR wetland map. For FD8 TWI,
LTNR, and ETWI classes 1 and 2 (i.e., very likely to be
upland and likely to be upland) were considered to be
upland and classes 3 and 4 (i.e., likely to be wetland and
very likely to be wetland) were considered to be wetland.
Classes 2, 3, and 4 of the RETWI were considered to be
upland while classes 5, 6, 7, and 8 were considered to be
wetland. Although class 5 contained more non-inundated
areas than inundated areas, it was considered a wetland class
to better account for saturated areas. In theory, doing so
operationally would produce a map with fewer omission
errors. Percent reference points found to be inundated within
wetlands and non-inundated within uplands were then cal-
culated for each topographic metric based wetland map and
the MD DNR wetland map. The binary wetland map based
on the thresholded RETWI was overlaid on the MD DNR
wetland map to determine degree of spatial agreement.

The LiDAR intensity image collected on March 24, 2009
was used to determine whether or not the existing non-
ditched reference points were inundated during a spring of
low water levels (i.e., drought). Approximately 6 % of the
existing reference points (122 of 2000) were located at the
transition between inundated and non-inundated areas on
the 2009 inundation map and were therefore excluded from
the analysis. The remaining 1,878 reference points were
grouped into the following categories: 1) not inundated
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during an average or drought spring (0 Y; 1000 points), 2)
inundated only during an average spring (1 Y; 482 points), 3)
inundated during average and drought springs (2 Y; 396
points), and 4) inundated during an average spring or inun-
dated during an average and drought spring (1Y+2Y; 878
points).

Percent reference points within each of the four inundation
categories were calculated for each class of the FD8 TWI,
ETWI, LTNR, and RETWI topographic metrics. To normalize
index values across all algorithms, the RETWI index was
modified by dividing each index value by 2. A similar calcu-
lation was performed for MD DNR by dividing the wetland
map into categories based on wetland status and hydroperiod
as indicated by Cowardin classification (Cowardin et al. 1979)
hydrologic modifier: 1) upland, 2) temporarily flooded wet-
lands, 3) seasonally flooded, 4) permanently flooded, semi-
permanently flooded, and intermittently exposed wetlands.
Categorizing the MD DNR polygons in this fashion places
the map units in order from shortest to longest duration of
inundation or saturation as indicated by wetland status and
hydrologic modifier.

Statistical analyses were performed to assess the ability
of the different topographic metric based wetland maps to
discern inundation location and frequency as classified into
the likelihood categories defined above (e.g., very likely to
be wetland). In general, a larger significant difference in
mean values across inundation categories was considered
to be indicative of greater ability of the map to differentiate
between categories. We treated data within each map as
being interval data subject to parametric statistics to test if
the differences in mean values for various categories were
equal to zero (t test, P0< 0.1, 0.01, or 0.001). The category
data were found to have non-normal distributions. However,
according to central limit theorem (Snedecor and Cochran
1989) the sample means become normally distributed in
sufficiently large populations with non-normal distribution
of values. Sample populations analyzed in this study were
large (n0396 to 1,000); therefore we used standard analysis.

Results

The ability of different topographic metric based wetland
maps to differentiate between inundated and non-inundated
areas varied between topographic metrics and map classes
(Table 1). Of the three TWIs that were examined, the D8
TWI (99 % of pixels with D8 TWI values between 0 and 21)
offered the least predictive strength. The D∞ (99 % of pixels
with D∞ TWI values between 3 and 13) and FD8 (99 % of
pixels with FD8 TWI values between 7 and 14) TWIs pro-
vided relatively similar levels of predictive strength (i.e.,
greatest ability to isolate inundated from non-inundated
areas) but D∞ TWI map class boundaries appeared relatively

Table 1 Number and percent of reference points found to be inundat-
ed (Inun) or non-inundated (Not) for all classes of the enhanced TWI,
local terrain normalized relief, relief enhanced TWI, D8 TWI, D∞
TWI, and FD8 TWI in all (no shading) or non-drained (bold) forests

Class Inun Not %Inun %Not

DEVELOPED TOPO METRICS

Enhanced TWI

1 0 117 0.0 % 100.0 %

2 7 529 1.3 % 98.7 %

3 314 355 46.9 % 53.1 %

4 698 19 97.4 % 2.6 %

1 0 165 0.0 % 100.0 %

2 7 517 1.3 % 98.7 %

3 309 286 51.9 % 48.1 %

4 684 32 95.5 % 4.5 %

Local Terrain Normalized Relief

1 16 309 4.9 % 95.1 %

2 362 481 42.9 % 57.1 %

3 383 172 69.0 % 31.0 %

4 258 58 81.6 % 18.4 %

1 17 423 3.9 % 96.1 %

2 354 466 43.2 % 56.8 %

3 380 98 79.5 % 20.5 %

4 249 13 95.0 % 5.0 %

Relief Enhanced TWI

2 0 71 0.0 % 100.0 %

3 0 216 0.0 % 100.0 %

4 15 297 4.8 % 95.2 %

5 114 300 27.5 % 72.5 %

6 367 100 78.6 % 21.4 %

7 347 31 91.8 % 8.2 %

8 176 5 97.2 % 2.8 %

2 0 105 0.0 % 100.0 %

3 0 308 0.0 % 100.0 %

4 15 282 5.1 % 94.9 %

5 114 224 33.7 % 66.3 %

6 357 66 84.4 % 15.6 %

7 342 12 96.6 % 3.4 %

8 172 3 98.3 % 1.7 %

ORIGINAL TOPO METRICS

D8 TWI

1 30 69 30.3 % 69.7 %

2 198 410 32.6 % 67.4 %

3 462 459 50.2 % 49.8 %

4 329 82 80.0 % 20.0 %

1 29 76 27.6 % 72.4 %

2 199 461 30.2 % 69.8 %

3 453 395 53.4 % 46.6 %

4 319 68 82.4 % 17.6 %

D∞ TWI

1 0 125 0.0 % 100.0 %
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artificial (i.e., narrow, linear) with the boundary between
classes 3 and 4 being especially non-intuitive (extensive
spurious linear features through flat areas; Fig. 5). Predictive
strength of the FD8 TWI map was improved overall by
increasing map values within areas without a surface water
outlet to create the ETWI (99 % of pixels with ETWI values
between 7 and 15; Table 1). Although all topographic metrics
demonstrated some sensitivity to drainage as exhibited by
differences in predictive strength as calculated using all
forest (total area of 15.5 km2 at study site) and only non-
drained forest (total area of 11.4 km2 at study site) reference
datasets, LTNR (99 % of pixels with LTNR values between 0
and 6) was most sensitive to drainage condition. Predictive
strength of LTNR class 4 (very likely wetland) increased
~14 % when only non-drained forests were considered. Par-
ticularly within non-drained forests, the LTNR performed

well considering the simplicity of the index. Combining the
ETWI and LTNR to create the RETWI further increased
predictive strength. As expected, ETWI, LTNR, and RETWI
map classes with the greatest predictive strength were those at
either extreme of wetness condition (e.g., very likely to be
upland or very likely to be wetland), although in general
upland classes (e.g., 1 and 2) were mapped with greater
certainty than wetland map classes (e.g., 3 and 4). The ETWI
predicted inundation status over slightly less than 65 % of the
forested landscape with predictive strength of over 95 %
(Table 2). Although the RETWI mapped a smaller area than
the ETWI at the 95 % performance level, it predicted inun-
dation status over the entire forested landscape with a predic-
tive strength of greater than 70 %. The area mapped with
similar predictive strength by the FD8 TWI and LTNR maps
was smaller.

The creation of binary wetland/upland maps based on
topographic metrics allowed direct comparison with the
MD DNR wetland map. Wetlands mapped using aerial
photographs (MD DNR) and LiDAR derived DEMs (FD8
TWI, LTNR, ETWI, and RETWI) contained a similar
amount of inundated area when the entire forested area
was considered (Table 3). Understandably, percent inunda-
tion was higher for the topographic metric based maps when
only non-drained forests were considered. The RETWI and
ETWI mapped fewer (6–7 % all forests and non-drained
forests) inundated areas as uplands than the MD DNR.

The MD DNR wetland map and RETWI binary wetland
map agreed over approximately 65 % of the mapped area
(Fig. 6). The MD DNR and RETWI wetland maps both
mapped wetlands over 32 % of the total forest area (34 %
non-drained forests) and both mapped uplands over 35 % of
the total forest area (36 % non-drained forests). The MD
DNR wetland map indicated wetlands while the RETWI
binary wetland map indicated uplands over 11 % of the total
forest area (12 % non-drained forests) and the RETWI
binary map indicated wetlands while the MD DNR wetland

Table 1 (continued)

Class Inun Not %Inun %Not

2 13 310 4.0 % 96.0 %

3 528 514 50.7 % 49.3 %

4 478 71 87.1 % 12.9 %

1 0 155 0.0 % 100.0 %

2 13 347 3.6 % 96.4 %

3 520 430 54.7 % 45.3 %

4 467 68 87.3 % 12.7 %

FD8 TWI

1 0 98 0.0 % 100.0 %

2 79 472 14.3 % 85.7 %

3 426 375 53.2 % 46.8 %

4 514 75 87.3 % 12.7 %

1 0 139 0.0 % 100.0 %

2 77 480 13.8 % 86.2 %

3 419 306 57.8 % 42.2 %

4 504 75 87.0 % 13.0 %

Fig. 5 Topographic wetness
indices including those derived
using the D8 (a), D∞ (b), and
FD8 (c) flow routing algorithms
overlaid with inundation
boundaries from an average
spring (March 2007) outlined in
black. Non-forested areas are
solid black and only appear in
the northwest corner
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map indicated uplands over 21 % of the total forest area
(18 % non-drained forests). The RETWI map found 54 % of
total forested area to be wetland while the MD DNR map
found 44 % to be wetland.

A general trend of decreasing percent reference points
not inundated either year (0 Y) and increasing percent
reference points inundated both years (2 Y) was evident as
classes increased from 1 to 4 (ETWI, LTNR, MD DNR) or 2
to 8 (RETWI; Fig. 7). Statistical analysis of the differences
in mean values generated by the topographic algorithms
across four categories of inundation (Table 4) showed that
all metrics produced statistically significant differences in
mean values when differentiating non-inundated locations
(0 Y) from locations subject to 1 or 2 years inundation (i.e.,
0 Y vs. 2 Y; 0 Y vs. 2 Y; 0 Y vs. 1 Y+2 Y). The maps based
primarily on topographic wetness indices (FD8 TWI and
ETWI) did not produce significant mean differences for the
category differentiating locations with 1 year and 2 years

inundation (1 Y vs. 2 Y) but the indices that included local
relief (LTNR and RETWI) produced significant differences
for this category.

Discussion

Although inundation status is not the same as wetland
status, areas that are inundated just prior to the growing
season are very likely to meet the hydrologic definition of
a wetland (i.e., inundated or saturated in the root zone for
2 weeks within the growing season). On the other hand,
areas that are not inundated at this time may still meet the
hydrologic definition of a wetland but the majority of these
areas are not likely to do so in this landscape. Therefore the
use of the reference data described above provides a con-
servative estimate of wetland location and results should be
judged within this context. However, LiDAR intensity data
have been found to map inundation approximately 30 %
more accurately than 1 m false color near-infrared aerial
photographs at this study site (Lang and McCarty 2009;
results based on ground data). Therefore this method is a
significant improvement upon using aerial photographs to
infer accuracy, and provides many more reference points
than is practical using ground-based wetland delineation.

A number of flow routing algorithms have been proposed
to best suit different needs and applications. Although none
appear to be ideal for all applications (Arnold 2010;
Kopecky and Cizkova 2010), the results of this paper sup-
port the use of more distributed (multiple flow direction;
e.g., FD8) flow routing algorithms over algorithms that
encourage greater flow convergence (e.g., D8 and D∞) for
the mapping of forested palustrine wetlands. Evidence of
varying levels of flow convergence between flow routing
algorithms is provided by the different ranges of pixel
values within TWIs based on different flow routing algo-
rithms (i.e., greater range indicates greater convergence).

Table 2 Percent study area cor-
rectly mapped as flooded or non-
flooded at specified levels of
predictive strength using the re-
lief enhanced topographic wet-
ness index (RETWI), enhanced
topographic Wetness index
(ETWI), FD8 TWI, and local
terrain normalized relief (LTNR)
maps for all forests (top) and
only non-drained forests (below)

Levels of predictive strength

≥70 % ≥75 % ≥80 % ≥85 % ≥90 % ≥95 %

Drained and Non-Drained Forests

RETWI 100 70.1 53.8 53.8 53.8 47.59

ETWI 63.6 63.6 63.6 63.6 63.6 63.56

FD8 TWI 64.8 64.8 64.8 64.8 11.2 11.24

LTNR 29.8 29.8 29.8 21.7 21.7 21.71

Non-Drained Forests

RETWI 71.7 71.7 71.7 55.9 55.8 55.9

ETWI 63.7 63.7 63.7 63.7 63.7 63.7

FD8 TWI 65.6 65.6 65.6 65.6 11.6 11.6

LTNR 53.0 53.0 53.0 31.7 31.7 31.7

Table 3 Percent wetland class found to be inundated and upland class
found to be non-inundated. Upland areas that are flooded are likely to
be wetland errors of omission. Wetland areas that are not flooded may
still be saturated within the root zone and considered to be wetlands.
Therefore predictive strength is likely to be higher than indicated by
percent wetland area inundated and the difference between these values
and one hundred do not simply represent errors of commission. It is
notable that RETWI and ETWI contain fewer hypothetical upland
errors of commission than MD DNR and all maps contain similar
percentages of wetland classes that are inundated

All forest Non-drained forest

% Wet % Up % Wet % Up

RETWI 69.7 97.5 76.3 97.9

ETWI 73.0 98.9 75.7 99.0

LTNR 73.6 67.7 85.0 70.6

FD8 TWI 67.6 87.8 70.8 88.9

MD DNR 72.0 91.6 72.8 92.1
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The use of multiple flow direction algorithms to best char-
acterize gradual ecologic transitions based on soil moisture
gradients has been endorsed by other studies (Wolock and
McCabe 1995; Kopecky and Cizkova 2010), especially on
hill slopes (Quinn et al. 1991). This may be especially true
in areas of low topographic relief where slopes are more
gradual and flow is less channelized. Conversely, the use of
algorithms with greater flow convergence (e.g., D8 and D∞)
has been suggested for applications involving the mapping

of flow channels (Tarboton 1997; Bohner et al. 2001) and
watershed boundaries (Arnold 2010). These algorithms tend
to represent the distribution of flow (wetness) as narrow,
linear pathways (Arnold 2010; Quinn et al. 1991; Wolock
and McCabe 1995) instead of the smoother, broader wet
zones that are more typical of wetland distribution. These
trends were clearly evident when visually comparing TWIs
based on different flow routing algorithms at our study site
(Fig. 5).

Fig. 6 Map showing the spatial
relationship between MD DNR
and RETWI wetland maps for
one location within the study
area (left) and an average spring
LiDAR intensity image for the
same area (right)

Fig. 7 Percent of wetland map
classes found to be flooded
during both average and dry
years (2 Y), only average years
(1 Y), and neither average or
dry years (0 Y) for the relief
enhanced topographic wetness
index (RETWI; top left), the
enhanced topographic wetness
index (ETWI; bottom left), local
terrain normalized relief
(LTNR; top right), and the
Maryland Department of
Natural Resources wetland map
(MD DNR; bottom right).
Lower classes (horizontal axis)
are more likely to be uplands
while higher classes are more
likely to be wetlands
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It is hypothesized that the enhancement of the FD8 algo-
rithm through the incorporation of information on surface
water flow outlets to create the ETWI map more completely
represented the output of surface water (i.e., presence of
surface water outlets) from a given area to compliment the
input of surface water (i.e., specific catchment area). By
definition, a pit or sink is an area of one or more pixels that
is surrounded by areas of higher elevation so that flow
direction cannot be assigned. Therefore, areas that are pits/
sinks do not have a surface water outlet. In areas of low
topographic relief and numerous depressions, it is likely that
slope is less indicative of water leaving the target area.
Grabs et al. (2009) state that in areas of low topographic
relief, slope can overestimate the downslope hydraulic gra-
dient due to the presence of downslope water tables. This
may partially explain why the addition of information on the
presence or absence of surface water outlets, which helps to
better determine the ability of water to exit an area, was
helpful.

Information on flow outlets was incorporated into the
mapping process by increasing FD8 TWI values in pits or
closed depressions. In many applications of flow routing,
these closed depressions are filled before flow is routed
across the landscape to avoid trapping flow within these
depressions, most of which were traditionally considered
to be errors in the DEM (Arnold 2010). However, filling
these depressions may not be advisable when mapping
water accumulation in areas with depressional wetlands.
Methods have been proposed to prevent filling wetland
depressions (Gritzner 2006), but these methods depend on
an accurate wetland map, which is often not available,
especially in forested areas. Furthermore, the quality of
LiDAR based DEMs has improved significantly since the
filling of pits was originally recommended as a standard
protocol, making this technique less desirable in general
(Arnold 2010). Running flow routing algorithms without
filling pits can lead to unwanted map artifacts (Fig. 5),

which were present in the D8 derived TWI but not the
FD8 TWI.

Differences in the mean index values generated by the
map products across classes of inundation (i.e., 0 Y, 1 Y and
2 Y) help to quantify the ability of different algorithms to
determine wetland boundaries and temporal fluctuations in
inundation (Table 4). The results of statistical analysis indi-
cate that both FD8 TWI and ETWI algorithms were rela-
tively good at mapping locations with high potential for
inundation during relatively wet periods (i.e., average
spring) but the TWIs had very limited ability to predict
frequency of inundation accounting for drier periods (1 Y
versus 2 Y; Table 4 and Fig. 7). By contrast LTNR per-
formed best for distinguishing areas with expected water
accumulation during drier periods thus better explaining
frequency of inundation through time but was least able to
predict the extent of water accumulation during an average
spring. As may be expected, the hybrid RETWI algorithm
gained traits of both ETWI and LTNR and was able to both
map wetland location and predict inundation frequency
through time accounting for drought. Grayson et al. (1997)
hypothesized that lateral controls (e.g., contributing area)
are most likely to be good predictors of water accumulation
during wet periods and that more local controls (e.g., surface
curvature) tend to control water accumulation during drier
periods. Our findings regarding the relatively poor suitabil-
ity of TWI based metrics during a time of drought relative to
a wetter period support this theory. Furthermore, LTNR
represents a vertical control on water accumulation and as
predicted by Grayson et al. (1997), it was better adapted to
the mapping of inundation during a drier period. To com-
pensate for the limitations of TWI during dry conditions,
Grayson et al. (1997) advocate the use of multiple metrics to
account for both lateral and vertical flow, as implemented in
this study.

The ability of LTNR to predict areas of inundation during
periods of less than average precipitation significantly adds

Table 4 Differences in mean index values generated by topographic
metrics across four classes of inundation in a population of randomly
stratified sampling locations (n01,878). The inundation class for each
location was evaluated using LiDAR intensity derived inundation
maps acquired in March 2007 (average weather) and 2009 (drought).

The sample population included 1,000 locations with no inundation for
both years (0 Y), 482 locations with 1 year inundation (1 Y), 396
locations with 2 years inundation (2 Y) and combined 878 locations
with 1 or 2 years inundation (1 Y+2 Y)

Metric Difference in mean index values across indicated inundation classes

1 Y vs. 0 Y 2 Y vs. 0 Y 1 Y vs. 2 Y 1 Y+2 Y vs. 0 Y

FD8 TWI 1.14*** 1.04*** 0.10* 1.10***

ETWI 1.49*** 1.48*** 0.01 1.49***

LTNR 0.70*** 1.71*** 1.01*** 1.15***

RETWIa 1.03*** 1.56*** 0.54*** 1.05***

*, **, and *** t-test results indicating difference in mean values was significantly different from zero at P0<0.1, 0.01, and 0.001, respectively
a to normalize index values across all algorithms, the RETWI index was modified by dividing each index value by 2
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to the types of applications that can be addressed by the
topographic metrics detailed in this paper. For example,
these areas may provide vital biodiversity support through
the provision of amphibian habitat (i.e., refugia) during
drought years. This finding is relevant to the development
of climate change adaptation strategies since models predict
that periods of drought and/or flood will become more
common in the Mid-Atlantic (Mid-Atlantic Regional As-
sessment Team 2000). The ability of LTNR to predict
weather driven changes in inundation (i.e., drought) may
also be indicative of its ability to predict intra-annual fluc-
tuations in hydroperiod since groundwater level is a primary
driver of both inter- and intra-annual fluctuations in water
levels at this study site. The similarity of the temporal
patterns discerned using the LTNR and MD DNR wetland
maps categorized by hydrologic modifier and the sensitivity
of the LTNR product to ditching which generally lowers
groundwater levels, supports this assertion (Fig. 7). It is
therefore hypothesized that the LTNR map could be used
to map hydroperiod at the study site, similarly to existing
wetland maps (e.g., NWI). This assertion should be tested
more rigorously through subsequent studies.

The ETWI and LTNR maps were combined due to their
sensitivity to two relatively unique drivers of wetland hy-
drology. The ETWI depicts changes in water distribution
across the landscape based on lateral inflows and outflows.
We hypothesize that the LTNR depicts variations due, at
least in part, to the surface expression of groundwater since
in Coastal Plain areas with a surficial aquifer wetlands with
greater relief as judged relative to a small area (e.g., 200 m2)
are more likely to encounter shallow groundwater (Winter
1988). The concentration of water within low areas as
inundation recedes is also a likely contributor to the predic-
tive power of LTNR. By combining the two metrics, areas
that are more likely to support wetland hydrology through
both mechanisms (i.e., lateral and vertical movement of
water) can be identified while areas that could support
wetland hydrology through only one mechanism are deem-
phasized (Fig. 4).

Just as certain levels of wetness are considered to define
wetland boundaries, the continuous topographic metrics
were thresholded to indicate the probability of wetland
presence. Thresholding the topographic metrics served four
purposes: 1) to allow for the incorporation of professional
judgment and the tailoring of the topographic metrics to
different landscapes; 2) to create a classified map product
that would be easier to incorporate into current natural
resource management operational activities that are adapted
to a binary mapping system; 3) to ease the comparison of the
LiDAR derived map products with currently available prod-
ucts (i.e., MD DNR); and 4) to facilitate the combining of
different maps (e.g., LTNR and ETWI) to produce enhanced
end products. However, since a sensitivity analysis was not

performed as part of the thresholding process, it is possible
that the selected thresholds affected the relative performance
of the different indices. Different thresholds should be set
based on the drivers of water distribution at individual study
sites and the goal of the mapping exercise. A sensitivity
analysis could help optimize threshold selection.

The topographic metrics and the methods described in
this paper should not be assumed to provide the same value
in all landscapes. For example, these metrics should be
applied with caution in areas with insignificant topographic
relief, where groundwater interactions cannot be reasonably
predicted using topographic metrics, with highly permeable
soils where vertical movement of water will dominate lateral
movement of water, and that have been highly engineered to
modify water distribution across the landscape. These met-
rics provide the operational wetland mapper with some
degree of flexibility to best represent wetland distribution
and boundaries within different study sites. In areas where
lateral redistribution of water is the dominant control on the
formation of wetlands and expression of groundwater is less
so (e.g., areas with a confining soil layer), the use of TWIs
could be emphasized over relief. In addition, the operational
wetland mapper could decide whether to use the topograph-
ic metrics as a guide while manually delineating boundaries
or to automatically incorporate topographic metric based
classes with acceptable levels of certainty (Table 2). More
research is needed to test the applicability of the topographic
metrics described in this paper to other areas and to deter-
mine the best way to incorporate topographic metric data
into operational wetland mapping. However, the strong per-
formance of these metrics in an area of relatively low
topographic relief is promising since it is generally consid-
ered to be difficult to determine flow paths in these areas
(Wilson et al. 2007).

Spatial scale (i.e., resolution) and map extent should be
appropriate to the primary drivers of water distribution
across the landscape. For this reason, care should be taken
to match the resolution of input DEMs to the size of topo-
graphic variations leading to differences in water accumu-
lation pertinent to the formation of wetlands. Although
LiDAR sensors are capable of producing extremely fine
resolution DEMs (e.g., < 0.5 m pixels), it is not always
advantageous to use such fine resolution datasets to map
wetlands. Similarly, coarse resolution DEMs (50 m) have
been found to not be ideal for the mapping of wetlands
(Rohde and Seibert 1999). The resampling and filtering
performed as part of this analysis served the dual function
of reducing possible DEM errors and decreasing microto-
pography that could lead to unduly complicated and unre-
alistic wetland boundaries. Care should be taken to limit the
extent of analysis to landscapes with similar uncompensated
controls on distribution of inundation and near surface soil
saturation (e.g., weather). For this reason and due to the
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varying quality of DEMs across political boundaries (e.g.,
states), the application of a uniform topographic metric to
regional and larger scales is not recommended (Kopecky
and Cizkova 2010). Instead, tailoring topographic metrics to
more local areas should increase their predictive power.
Additional research is necessary to discern the most advan-
tageous indices and appropriate spatial scales for use in
different landscapes.

It should be noted that accuracy of topographic metrics,
such as TWIs, is largely dependent on the accuracy and
spatial resolution of the input DEM. Furthermore, LiDAR
data should be collected to different specifications based on
their intended application and data collected for one appli-
cation may not be suitable for another. For example, vege-
tation cover is known to reduce bare earth LiDAR resolution
but bare earth spatial resolution (i.e., point density) can be
optimized in forests by collecting LiDAR data during the
leaf-off phenological period and modifying sensor parame-
ters (e.g., decreasing scan angle). When using LiDAR based
DEMs to map wetlands it is important not only that the
DEM be relatively free of errors, but that inundation not
have been present during LiDAR collection since the pres-
ence of an inundated surface is likely to decrease returns
from the inundated area and raise bare earth elevation above
the true land surface. Both the presence of a vegetative
canopy, especially a leaf-on canopy, and inundation will
also reduce vertical accuracy (Hogg and Holland 2008).
For this reason LiDAR data were collected during the leaf-
off season when forested wetlands in the study area were
generally not inundated. However, decreased vertical accu-
racy within forested areas relative to open areas is still likely
(Hodgson and Bresnahan 2004; 26 cm RMSE) but it should
be noted that even with this decrease in accuracy, LiDAR
derived DEMS are still much more accurate than non-
LiDAR derived DEMs (1 – 10 m). If necessary, this reduc-
tion in accuracy could be quantified using a dual GPS and
total station approach (Hodgson and Bresnahan 2004).

Conclusions

We demonstrated that the predictive power and efficiency of
wetland mapping efforts could be improved through the
incorporation of LiDAR derived DEMs into the wetland
mapping process. This advancement should be supported
by increasing LiDAR data availability and consistency,
more robust and accessible software processing capabilities,
further development of applications, and increased integra-
tion of LiDAR data into the operational geospatial data-
processing chain. The use of LiDAR data will be especially
vital in areas with low topographic variation or when ap-
plied to mapping or monitoring wetlands that have previ-
ously been difficult to detect, such as forested wetlands.

Steps are currently being taken by the NWI (personal
communication Ralph Tiner, US Fish and Wildlife Service,
2011) and other environmental resource agencies (Hogg and
Holland 2008) to investigate the integration of LiDAR data
into the operational wetland mapping process. Optical (e.g.,
aerial photography) and LiDAR data are distinct remotely
sensed datasets which offer unique benefits and limitations.
The synergistic combination of these datasets has the poten-
tial to significantly improve the mapping of forested wet-
lands which are difficult to map using optical data alone and
extremely time consuming to map from the ground.
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