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Abstract Researchers and natural resource manag-

ers need predictions of how multiple global changes

(e.g., climate change, rising levels of air pollutants,

exotic invasions) will affect landscape composition

and ecosystem function. Ecological predictive models

used for this purpose are constructed using either a

mechanistic (process-based) or a phenomenological

(empirical) approach, or combination. Given the

accelerating pace of global changes, it is becoming

increasingly difficult to trust future projections made

by phenomenological models estimated under past

conditions. Using forest landscape models as an

example, I review current modeling approaches and

propose principles for developing the next generation

of landscape models. First, modelers should increase

the use of mechanistic components based on appro-

priately scaled ‘‘first principles’’ even though such an

approach is not without cost and limitations. Second,

the interaction of processes within a model should be

designed to minimize a priori constraints on process

interactions and mimic how interactions play out in

real life. Third, when a model is expected to make

accurate projections of future system states it must

include all of the major ecological processes that

structure the system. A completely mechanistic

approach to the molecular level is not tractable or

desirable at landscape scales. I submit that the best

solution is to blend mechanistic and phenomenolog-

ical approaches in a way that maximizes the use of

mechanisms where novel driver conditions are

expected while keeping the model tractable. There

may be other ways. I challenge landscape ecosystem

modelers to seek new ways to make their models more

robust to the multiple global changes occurring today.
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Introduction

Researchers and natural resource managers need to be

able to predict how multiple global changes such as

climate change, rising levels of air pollutants and

enhanced migrations (invasions) will affect landscape

composition and ecosystem function. There is a vast

body of literature documenting individual studies that

have added to our understanding of relationships

between environmental conditions and ecological

response. Other papers have synthesized these results

into a corpus of theory and systems knowledge that

provides a sound basis for assessments of future
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ecosystem and landscape functioning. However, to

make predictions about future landscape dynamics

under specific scenarios of climate or management,

some type of formal model is usually required because

most ecosystems have such a complex web of

interacting environmental drivers and ecological pro-

cesses that they exceed the capacity of a mental model.

Since the invention of the digital computer a large

number of ecological predictive models have been

developed for a similarly large number of purposes

(Mladenoff and Baker 1999). Many of these have

recently been called upon to make predictions about

the impact of climate and other global changes on

ecosystem properties and function across space and

time. Because these global changes are expected to

produce environmental conditions that have not been

empirically studied at any time in recorded history, it

is prudent to ask how robust the predictions of these

ecological models might be to such markedly novel

conditions. The purpose of this essay is to raise this

question and explore options that may improve the

current situation. My own expertise is with forest

landscape models (FLMs), and this class of ecological

models is currently particularly suspect in projecting

forest dynamics under global change. Similar models

operating at finer and coarser spatial and temporal

scales (e.g., ‘‘gap’’ models and Dynamic Global

Vegetation Models (DGVM), respectively) have

design characteristics that avoid some of the weak-

nesses seen in FLMs. Although my exploration will

focus on FLMs, I believe the principles I discuss apply

widely to ecological and landscape models regardless

of scale.

FLMs are a class of predictive stochastic simulation

models that model forest generative (establishment,

development, aging) and degenerative (disturbance,

senescence) processes over broad spatial and temporal

scales. Their particular strength is in their ability to

explicitly model spatial processes such as seed

dispersal and disturbance spread, and to account for

interactions in both time and space, which are

important determinants of future landscape composi-

tion and spatial pattern. They simulate distinct

ecological processes, defined as a sequence of events

within a sub-system domain having causal drivers and

producing effects on the system (i.e., possibly result-

ing in a change in some system property). Processes

can be represented in a model either mechanistically

or phenomenologically, as discussed below. These

models have a distinct and interesting genealogy that

has been reviewed by Mladenoff and Baker (1999) and

He (2008). They are used to study how abiotic

environmental factors, disturbances and management

activities interact to affect forest dynamics in terms of

tree species and age composition, spatial pattern and

other ecosystem attributes (e.g., wildlife habitat, tree

biomass).

FLMs have been designed using one of three

fundamental approaches (Suffling and Perera 2004).

(1) Mechanistic (sometimes called process-based)

models take a reductionist approach in which the

mechanisms by which causes produce effects within a

process are explicitly modeled. Model parameters

typically have direct ecological meaning and can be

measured in the real-world. Thus, a system is repre-

sented as a set of mechanistic processes that each

describe cause and effect relationships between sys-

tem variables. (2) Phenomenological (sometimes

called empirical or statistical) models take a more

holistic approach where the causes of a process

produce effects (phenomena) according to how the

system has typically behaved in the past. That is, the

effect of the process is predicted using various types of

surrogates for the mechanism, thus mimicking the

effect of the mechanism on the system. Model

parameters are often statistical equation coefficients

or probabilities. For example, forest growth may be

represented by statistical relationships between a

readily measured environmental attribute (site index)

and system response (growth) instead of simulating

the mechanisms (e.g., tree physiology) that determine

the system response. Other processes are modeled

stochastically with the necessary probabilities typi-

cally estimated using empirical data. Still other

processes may be handled by way of assumptions,

and these can be based on past behavior or on

theoretical expectations of future behavior. (3) In

reality, most FLMs (and most ecosystem models) are a

hybrid of these two approaches. Primarily phenome-

nological models usually have some mechanisms that

are simulated explicitly (e.g., fire spread), and primar-

ily mechanistic models usually avoid simulating

particularly difficult or time-consuming processes

(e.g., insect pest population outbreaks) using a simpler

phenomenological approach.

Mechanistic FLMs are rarely favored because they

tend to be complex, difficult to run and parameter-

hungry compared to phenomenological models.
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Phenomenological models avoid the computational

overhead of simulating a process by using surrogates

for the mechanism, usually based on past system

behavior. Even the most mechanistic FLMs contain a

number of phenomenological components to keep them

tractable. However, given the accelerating pace of

multiple global changes, it is becoming increasingly

difficult to trust projections of the future made by

phenomenological models estimated under the condi-

tions in the past (Cuddington et al. 2013). Here, the old

adage is true: past performance is not necessarily

indicative of future results. For example, will succes-

sional pathways (sequence, timing and likelihood)

remain the same as the climate changes? Will commu-

nity assemblages change? How will CO2-fertilization,

increased temperatures, physiological changes in water

use efficiency of trees and changes in cloudiness and

solar radiation flux interact to affect tree species growth

rates and species competition? How will disturbance

regimes (rotation intervals, event size, severity and

frequency) change? Will the effect of increased stress-

ors (e.g., drought, ozone pollution) be linear or non-

linear and/or synergistic? Will the interactions among

ecological processes change? Will exotic invaders

change the interactions among the native species in an

ecosystem? There is really no way to confidently

answer these questions by looking at how systems

behaved in the past. Consequently, although there are

many sound reasons for modeling forest ecosystem

dynamics using a phenomenological approach, the

realities of global change and the critical need to

evaluate management options to respond to those

changes require a more robust approach.

What might a more robust approach look like? (1)

Ideally, it should explicitly link all aspects of system

behavior to variation in the fundamental drivers (e.g.,

temperature, moisture, light, CO2 concentration, lim-

iting factors such as pollutants and invaders) that are

changing. Such links can be direct (simulation of

processes based on ‘‘first principles’’ of physiology

and biophysics) or indirect (simplification of a process

or a defensible extrapolation of empirical relation-

ships). Obviously, direct links are more robust. It is

probably not feasible to expect every aspect of

modeled system behavior to be linked explicitly to

fundamental drivers, but the more these links can be

made, the more robust the predictions will be under

novel conditions. It may be possible to develop these

links empirically where the driver variables have been

studied across a range that nearly includes the values

expected in the future, but given the magnitude of

many expected global changes, this seems unlikely.

(2) Interactions among ecological processes should

rarely be specified based on expectations derived from

the past. Because the nature of interactions is usually a

big unknown under any conditions, models should be

designed so that processes can interact based on

system drivers and system state, and that the system

outcome is an emergent property of mechanistic

interactions. (3) All the ecological processes necessary

to ensure that model projections are realistic and

reliable should be included (Kimmins and Blanco

2011). Many FLMs were developed to answer focused

research questions. Thus, specific processes of interest

were included so that variability in their drivers and

behavior could be studied and all the other processes

were assumed to be held constant and were often not

included in the model. This is valid for research

purposes, but can be problematic when such models

are applied to make projections of actual future forest

conditions (dynamics) to inform management deci-

sions. For example, a FLM run for Alberta Canada in

(for example) the year 2000 that did not include

mountain pine beetle as a disturbance, nor the link to

temperature as a limiting factor of beetle populations,

would have completely botched projections of forest

composition even just a few decades into the future

given the fact that the beetle population recently

invaded the east side of the Rockies because of warmer

winters (Cullingham et al. 2011). Similarly, a FLM

that does not include windthrow as a disturbance

cannot account for a major factor structuring forests in

the upper Midwest US (Schulte and Mladenoff 2005),

New England US (Boose et al. 2001) or Siberian

Russia (Gustafson et al. 2010).

Currently, no FLM achieves the ideals enumerated

above. (1) Most FLMs have at least some mechanistic

components, but the state-of-the-art does not yet

solidly link the fundamental drivers of climate, CO2

concentration, etc. with tree physiology, life history

attributes and mechanisms of disturbance and succes-

sion throughout their implementation. Most FLMs are

being updated to include environmental drivers that

are changing, although most such modifications are

thus far crude and do not take the plunge into the ‘‘first

principles’’ mechanistic approach. Drivers such as

temperature and precipitation are being added, but

others such as relative humidity, PAR and CO2 and
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ozone concentrations are lagging. Simulation of bio-

logical invaders that are competitors rather than

disturbance agents is very rare. Climate and atmo-

spheric scientists are now able to forecast future

dynamics of many of these drivers (IPCC 2007), which

allows a mechanistic landscape model to explicitly

link forecasts of the drivers to various biological and

physical mechanisms to make projections of future

forest dynamics. Nevertheless, the modeled processes

that respond to those drivers are not yet adequately

robust. (2) Most FLMs currently simulate forest

dynamics as an emergent property of interacting

independently modeled processes acting on various

ecosystem variables (e.g., vegetation type, fuel class,

habitat type). However, the degree to which the

processes can produce novel system states and behav-

ior varies considerably. Model data structure and

process design must have sufficient degrees of freedom

to allow all plausible future system states to occur. (3)

The specific processes (mostly disturbances) that

various FLMs can model also vary widely, ranging

from one (HARVEST, Gustafson and Crow 1996) to

six (LANDIS-II, Scheller and Mladenoff 2004). The

processes currently included in many FLMs include

succession, fire (wild and prescribed), disease and

vegetation management activities. Other processes

available in some FLMs include insect outbreaks,

windthrow and drought. Potentially important pro-

cesses still in need of development include ungulate

herbivory, beaver activity, exotic earthworms, com-

petitive invaders and severe weather events (e.g., early

thaw or late frost) (Keane et al. in review).

History of forest landscape modeling

Forest landscape dynamics modeling evolved in con-

cert with the development of the field of landscape

ecology and computer technology (Scheller and

Mladenoff 2007). The earliest forest dynamics models

were tree and stand growth models used for silviculture

research (see examples in Fries (1974)). Regional

forest change models (e.g., Shugart et al. 1973) and

plot-level ‘‘gap’’ models such as JABOWA (Botkin

et al. 1972) and FOREST (Ek and Monserud 1974)

were developed in the 1970s to answer more ecological

research questions. In the 1980s, FOREST-BGC

(Running and Coughlan 1988), a mechanistic plot-

level model based on tree physiology was combined

with a gap model (ZELIG, Urban et al. 1991) to better

model growth in the gap model (HYBRID, Friend et al.

(1993)). These developments set the stage for the

development of DGVMs which couple vegetation

models with global circulation models at coarse scales

(Shugart and Woodward 2011). Concurrently, a num-

ber of stand-level models were developed for forestry

applications, most notably strategic planning and

growth and yield models such as FORPLAN (Johnson

1992) and FVS (Crookston and Dixon 2005). By the

1990s, a convergence of events provided the impetus to

develop landscape-level forest dynamics models. First,

the emerging field of landscape ecology (Risser and

Iverson 2013) combined forces with a new ecosystem

management paradigm (Grumbine 1994) to create a

huge demand for projections of future forest landscape

dynamics for research and management purposes. It

became accepted throughout academia and within land

management agencies that a landscape perspective was

essential for sound ecosystem and forest management

(Turner 2005). Second, exponential advances in the

capability and accessibility of computers made land-

scape modeling feasible. Third, scientific advances in

ecological theory (e.g., disturbances, spatial ecology)

and computational algorithms (e.g., pattern recogni-

tion, spatial processing, object-oriented programming)

provided the conceptual basis to rapidly advance the

sophistication of landscape models.

Modern FLMs were developed for various purposes

and their complexity and modeling approach follows

the purpose. They all include some level of spatial

interaction, but vary in the dynamism of the species

assemblages (communities) that can occur and the

specific ecosystem processes that can be simulated

(Scheller and Mladenoff 2007). Many of the simpler

models were developed for heuristic study of specific

disturbances to help develop management options

(e.g., HARVEST (Gustafson and Crow 1996), LAND-

SUM (Keane et al. 2006), BFOLDS (Perera et al.

2004)). Other models that integrate many ecological

and physical processes have been used to understand

ecosystem dynamics in the face of interacting natural

and anthropogenic perturbations (e.g., FireBGCv2

(Keane et al. 2011), SIMPPLLE (Chew et al. 2004),

LANDIS (Mladenoff 2004), RMLANDS (McGarigal

and Romme 2012)). As FLMs have become more

integral to the management planning process, some

FLMs are continually being expanded to include an

ever-increasing variety of ecological processes and
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disturbances to increase the accuracy and specificity of

the projections.

In recent years, FLMs have been applied to help

answer questions about the potential effects of com-

pletely novel environmental conditions such as cli-

mate change, air pollution (elevated CO2 and ozone,

nitrogen deposition), exotic invasions and land use

change. These questions require parameter inputs that

in some cases are well outside the range of values for

which the models were designed, a fact that is

especially problematic for phenomenological models.

This fact is readily acknowledged in most such

applications of empirically-based model components,

and adjustments of various kinds are made in an

attempt to compensate. For example, Keane et al.

(2008) used LANDSUM to study climate change

effects on fire-prone landscapes in Montana (USA) by

modifying input maps as a function of climatic drivers

and modifying fire regimes as an ad hoc proportion of

the historical fire regime. Successional transition

parameters for the future are unknown, but were not

modified from current values. In another Montana

example, Cushman et al. (2011) simply increased the

probability of fires and insect outbreaks by 10 % to

simulate the effects of climate change on wildlife

habitat using RMLANDS. Again, successional state

transition probabilities were not changed. Gustafson

et al. (2010) simulated the effects of climate change on

the composition of Siberian forests using LANDIS-II

by (1) adjusting species growth rates according to

results of PnET-II (Aber et al. 1995) model runs forced

by the future climate projections of a GCM, (2)

modifying the temperature and precipitation values

fed into the fire extension by the difference between

current climate and that projected by the GCM, and (3)

by lengthening fire seasons by 10 %. Clearly, the

adjustments in each of these examples were ad hoc and

crude. They did allow researchers to make some

heuristic advances while waiting for better modeling

solutions, but the results are not robust enough for

making specific management decisions that will play

out in the globally-changing future.

Next generation landscape models

How should we proceed as we develop the next

generation of landscape models, including FLMs? A

number of proposals have been put forth, of which I

mention but two. Cushman et al. (2007) laid out a

thoughtful research agenda that integrates gradient

modeling (to empirically establish relationships

between biophysical gradients and forest response),

ecosystem models and FLMs. The gradient modeling

part of this approach seeks to empirically get very

close to the mechanisms of forest response, but

nevertheless is not quite mechanistic. Kimmins and

Blanco (2011) advocate for a multi-scale hybrid

modeling approach combining tree-level, stand-level

and landscape-level models. Rather than make my

own proposal, let me rather propose some principles

that I believe will increase the robustness of landscape

models in the face of global changes. First, I believe

that landscape modelers should increasingly adopt a

more mechanistic approach wherever one or more

drivers of landscape dynamics are affected by some

aspect of global change. This should include modify-

ing existing mechanistic components to take a more

‘‘first principles’’ approach and migrating phenome-

nological components to a more mechanistic approach

where it is feasible. I do not go so far as to say that the

phenomenological approach should be abandoned

altogether. Landscape models are designed around a

number of tradeoffs (e.g., extent v. resolution, com-

plexity v. parsimony, mechanistic v. phenomenolog-

ical) that are necessary to keep them tractable. For

some processes a phenomenological approach may

remain viable and even desirable because it reduces

parameter burden and uncertainty. However, for those

where the relationships of the past may not hold in the

future, a more mechanistic approach is needed.

Furthermore, model developers should strive to sim-

ulate processes at the most fundamental level that is

reasonable, while avoiding the temptation to add

unnecessary detail just because it is feasible. For

example, simulating tree growth as a function of soil

water availability and potential evapotranspiration

would be more robust to novel future conditions than

simulating growth as a function of temperature and

precipitation because the latter is a (perhaps weak)

surrogate for the former. Thus, hybrid models will

continue to be the norm, but the percentage of

mechanistic components should be increased. FLM

modelers in particular may be able to borrow from the

approaches used in gap models and DGVMs. This

would serve to increase the robustness of landscape

models in the face of multiple global changes that have

no historical analog (Korzukhin et al. 1996).
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Secondly, I suggest that the interaction of processes

within a model should be carefully designed to

minimize a priori constraints on process interactions

within model runs. Interactions among causal factors

can have important effects on system outcomes. It is

critical that these interactions reflect reality. I believe

that the most effective way to ensure this is to allow

each ecosystem process to independently operate on

the fundamental ‘‘currency’’ of ecosystems (vegeta-

tion) at the lowest hierarchical level possible. If each

process is driven solely (as much as possible) by the

fundamental system drivers and by conditions of the

system state, then interactions will emerge in terms of

their combined effect on the vegetation, which mimics

how interactions play out in real life. For example, if a

succession process simulates how species establish,

grow and compete for growing space as a function of

temperature, precipitation and CO2 concentration, and

rising temperatures result in outbreaks of an insect pest

that kills only slower-growing conifers, then modeled

rates of carbon storage may increase because rela-

tively fast growing species become dominant. So,

even though this interaction is not specified, it plays

out as an emergent property of the independent

processes acting on the common ‘‘currency’’ of

vegetation. It should be noted that interactions

between ecosystem states and the drivers themselves

(e.g., vegetation and climate) may also be important,

but such interactions are very difficult to simulate in a

FLM (Keane et al. in review).

Thirdly, I submit that any model that is expected to

make accurate projections of future system states and

dynamics must include all of the critical ecological

processes that structure the system. It is not enough to

account for most of those processes when a missing

process may in fact significantly alter the projected

future. On the negative side, this will require signif-

icant additional work for many landscape models. On

the positive side however, any new component

development can be designed using a mechanistic

approach, which is often easier than modifying code

designed using a phenomenological approach.

Having said all this, I must acknowledge that there

is a fly in the ointment. A truly robust mechanistic

approach is not possible at landscape scales because

ultimate reductionism to the molecular level is intrac-

table and undesirable. Furthermore, the premise that

we might actually be able to correctly model multiple

complex processes mechanistically and have their

combined behavior reliably reflect a future reality

without being able to test that assertion is arguably

audacious. Therefore, compromises must be made. I

submit that the best solution is to blend mechanistic

and phenomenological approaches in a way that

maximizes the use of mechanisms (especially where

novel driver conditions are expected) while achieving

modeling objectives and keeping the model tractable.

Hierarchy theory (Urban et al. 1987) can be applied to

help determine the appropriate level of mechanistic

detail for a model and its process components

(Cuddington et al. 2013). For a given scale, it is

necessary to consider larger scales to understand the

context and smaller scales to understand mechanisms

(Allen and Hoekstra 1992). Modelers must ask

themselves a number of questions. What is the most

appropriate level of resolution and detail for repre-

senting each ecological process? What is the best

system ‘‘currency’’ that best reflects the real-world

outcome of the processes and allows interactions to

occur in an unfettered way? Are there adequate data to

support a mechanistic approach for an ecosystem or

process? At what level of complexity does the model

become intractable or the uncertainty too high? There

are doubtless a number of very different ways that

models can be constructed or linked to address the

principles and problems raised here.

Let me illustrate my thinking with an example of

how my colleagues and I are wrestling with these

issues as we seek to apply our FLM (LANDIS-II) to

make projections of future forest dynamics. The

LANDIS-II Biomass succession extension (Scheller

and Mladenoff 2004) takes a mechanistic approach to

simulate succession (and species biomass accumula-

tion) by using species life history attributes (e.g.,

probability of establishment, maximum growth rate,

shade tolerance, longevity, dispersal distance, etc.) to

simulate competition for growing space within each

site (grid cell) on a landscape. Species assemblages are

highly dynamic and non-deterministic in space and

time, being determined probabilistically by the rela-

tive establishment and growth rates of species and by

the various disturbances that can be simulated. How-

ever, the extension was not designed to easily

accommodate changing values for some parameters

that are projected to change in the future. For example,

the maximum growth rate parameter does not vary

directly in response to climate and atmospheric (e.g.,

CO2 concentration) drivers, but can only be modified
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on an ad hoc basis at user-specified time steps. The

establishment probability of species cannot be varied

through time at all. Although this extension is one of

the most mechanistic of all FLM succession simula-

tors, it only approximates first principles of growth and

competition. A modified approach that better incor-

porates first principles is under development by our

group (De Bruijn et al. in prep). Algorithms from the

PnET-II ecophysiology model (Aber et al. 1995) have

been modified and embedded within the biomass

extension to simulate the competition of species

cohorts for light and soil water. The extension

estimates water balance and LAI of canopy layers on

each site as a function of temperature, precipitation,

CO2 (and ozone) concentrations (among other factors)

and simulates the growth of each cohort as a compe-

tition for the available light and water. Establishment

probability of species is also calculated at each time

step as a function of climate drivers. The extension can

be fed annual climate variables through time from

downscaled GCM projections. This approach causes

establishment, growth, competition (and therefore

succession) to respond directly to the changes in the

fundamental drivers through simulated time and

should provide a more robust projection of forest

dynamics under changing future conditions. This

comes at a cost of slightly longer run times and

several more parameters, but the stronger link between

changing drivers and projected system response

should make those costs reasonable.

Other modelers are similarly adding mechanistic

components to FLMs improve their ability to

address questions of climate change. For example,

Kimmins and Blanco (2011) formally linked models

that operate at different scales to address forest

management questions. Keane et al. (2011) merged

the ecophysiology model BIOME-BGC (Running

and Hunt 1993) with FIRESUM (Keane et al. 1989)

to create the FireBGCv2 model. Their objective was

to describe potential fire dynamics in the western

US under future climates and land management

strategies to provide critical information to help fire

managers mitigate potential adverse effects. They

rightly point out that the mechanistic approach is

not without significant difficulties. Although it does

provide a potentially robust method to make

projections under novel conditions, landscape mod-

els that combine many mechanistic components are

extremely difficult to validate. Furthermore, model

complexity may increase dramatically and the

combined model and parameter uncertainty may

become quite high (Kimmins et al. 2008). Finding

ways to manage complexity and uncertainty in more

mechanistic models is not a trivial matter and

considerable research and creativity will be required.

Integration of several types of models operating at

different scales (e.g., Cushman et al. 2007; Kimmins

and Blanco 2011) is being explored. Bayesian

hierarchical models (Berliner 2003; Parslow et al.

2013) can explicitly model three sources of uncer-

tainty (initial conditions, process and parameter

uncertainty), and this approach may help us find a

robust balance between empirical and mechanistic

components in our landscape models. Pareto opti-

mality analysis (Kennedy and Ford 2011) has been

proposed as a way to assess deficiencies and

uncertainty in the structure of complex process-

based models, but such applications are thus far

rare.

Conclusion

Phenomenological landscape models are limited in

their ability to address the novel conditions of the

future because they rely on relationships estimated in

the past to predict ecosystem dynamics in the changing

future. A mechanistic approach based on ‘‘first prin-

ciples’’ has potential to overcome some of those

limitations, although such an approach is not without

cost and other limitations (Bugmann et al. 2000). I

challenge landscape ecosystem modelers to seek new

ways to make their models more robust to the multiple

global changes occurring today. I have argued for an

increasing use of mechanistic model components

based on hierarchically scaled ‘‘first principles’’ in

landscape models. There may be other ways. But this

problem needs to be addressed because landscape

models that can robustly predict future ecosystem

dynamics are urgently needed by land managers and

policy-makers. It may be prudent to view the shift

toward more robust landscape models as a long road,

but we need to start the journey now.
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