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Many newmethods for sampling down coarse woody debris have been proposed in the last dozen or so years.
One of the most promising in terms of field application, perpendicular distance sampling (PDS), has several
variants that have been progressively introduced in the literature. In this study, we provide an overview of the
different PDS variants and comprehensive comparison of their associated estimator performance. Additionally,
two new variants and their estimators are introduced to the existing pool. Simulations are used to determine
the efficiency of competing protocols and associated estimators. The simulation results corroborate the theo-
retical unbiasedness of the estimators for PDS in all forms. In addition, while there is somedifference in variance
among the protocols, the overall difference is small, and depends on the attribute to be estimated. Therefore,
the choice of which PDS variant to use in field applications will depend on the field conditions and attributes to
be estimated.

Introduction
The estimation of attributes within the different components of
forest ecosystems continues to be an important subject of great
interest to both scientists and practitioners alike. The standing
tree component of forests has been the recipient ofmuch effort in
advancing sampling designs to estimate volume, biomass, diam-
eter distributions and related quantities, for the obvious reason
that there is economic value associated with the standing crop.
The downwood component of forests constitutes a biomass pool
that is important for other reasons, including its value for wildlife
habitat, its importance as a fuel source in fire-prone ecosystems
and its ability to store carbon for moderate time periods. His-
torically, not as much effort was devoted to the down coarse
woody debris (CWD) component of the forest and only a few
methods were available for sampling CWD such as line intersect
sampling (LIS)1 and fixed-area plots. However, the past dozen
years have seen a proliferation of competitive new methods that
provide a number of choices that are optimized for several impor-
tant attributes and hence make inventorying the deadwood pool
easier and more efficient in general.
Most of the new methods that have been developed recently

are based on probability proportional to size sampling theory
and are optimized for a chosen size attribute, allowing for the
design-unbiased estimation of that design attribute by only
counting the number of pieces of down CWD (hereafter sim-
ply logs) that are included in the sample at a given location.

These methods often have simple related strategies for the
estimation of other log attributes as well. Similar to LIS, the
attribute of choice is often the log length. Transect relascope
sampling,2 distance-limited sampling (DLS)3 and the so-called
‘sausage sampling’ protocol for fixed-area circular plots4 are
examples of new methods developed to sample with proba-
bility proportional to length. A point-based equivalent to tran-
sect relascope sampling, point relascope sampling, samples logs
with probability proportional to length-square.5 Both length and
length-square are closely correlated with log volume, and thus
these methods offer alternatives for the estimation of volume
or closely related attributes such as woody biomass and car-
bon content. However, if volume-related attributes are the main
goal of the survey, then perpendicular distance sampling (PDS),6
which samples logs with probability proportional to volume is
a useful alternative, and has been specifically recommended
for the estimation of carbon content precisely because of this
property.7 With slight modification, PDS can be viewed as a
probability proportional to surface or coverage area method as
well.8,9 Another closely related method, line intersect distance
sampling (LIDS), combines the strengths of PDS for volume esti-
mation, with the transect protocol of LIS,10 resulting in a method
that samples larger logs more frequently than LIS alone, for
example.11 Finally, methods have been developed that allow the
selection of logs using a prism as in standing tree inventories.
These methods are again useful for volume and related attribute
estimation.12,13
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Of all the new methods mentioned for sampling CWD, those
based on PDS appear to have received themost attention in terms
of extensions and field testing. This is perhaps due to the simplic-
ity of the method as originally envisioned in the field applications
for the estimation of volume. Under PDS, a count of the number
of logs that meet the criterion for being included in the sample
on a given point provides an estimate of volume for that point.
Additionally, PDS was found to perform better than LIS for the
estimation of aggregate volume in simulation studies,6and was
competitive in field studies14; these results provided support for
the general theory and its application. The original theory, how-
ever, was constrained to the estimation of volume, and this was
an encumbrance to the application of the method when esti-
mates of other attributes were desired. Similarly, it was realized
early on that large logs could exist far from the sample point and
still be selected, requiring an extended search effort tomake sure
no logs were overlooked on each sample point. These potential
problems, as well as others (e.g. handling logs of various shapes),
have now been effectively dealt with through clarification and
extensions to PDS in the literature, and will be described in more
detail in what follows.
The result of this active research work is that several variants

of PDS now exist in the form of protocols, and these protocols
have extended the method far beyond the original conception.
The purpose of this paper is threefold. First, because PDS now
exists in several forms, it is useful to synthesize the salient points
concerning the different protocols for a complete understanding
of the method. Secondly, two new sampling protocols are added
here to more fully complete the family of estimators that has
become PDS. Finally, a set of simulations is presented to facil-
itate the comparison of the different PDS variants. This type of
comprehensive comparison should serve to both clarify and cod-
ify PDS into a more easily apprehended method for sampling
down CWD. Note that only point-based protocols are considered
herein – Affleck10,11 should be consulted for comparisons of the
LIDS variant to PDS. A list of the symbols used in this paper along
with their meanings can be found in Table 1.

PDS methods
Preliminaries

All variants of PDS are areal sampling methods that are based on
sampling logs with probability proportional to some attribute of
size. The areal component comes from the idea that each log in
the population on a given tract, A, has an inclusion zone asso-
ciated with it. The inclusion zone is simply that area projected
onto the tract datum within which a random sample point could
fall and select the log into the sample record. The area associ-
ated with a log’s inclusion zone can be calculated and depends
on some attribute of the log, in addition to design parameters
inherent in the sampling method. In the case of PDS, all variants
employ an expansion factor (K) that inflates the attribute of inter-
est for the ith log to a larger area, ai, the inclusion zone area,
based on somemeasure of log taper: e.g. radial or cross-sectional
taper. Thus, the inclusion zones are proportional to log taper on
either side of the log, with proportionality constant K. This yields
a bilaterally symmetric inclusion zone along each log’s needle

(the pith on straight logs, see de Vries15 and Williams et al.16 for
more details on branched or crooked logs).
One design-based criterion that is common to all of the

PDS variants is the concept of the selection attribute used to
determine the inclusion zone of individual logs. Logs can be
selected with probability proportional to volume (PDSV), surface
area (PDSS) or coverage area (PDSC),6,9,14 determining the selec-
tion protocol. On any given inventory, one would generally fix the
selection protocol for all sample points so that, for example, the
entire survey would be conducted with PDSV. As part of the sur-
vey design, the PDS expansion factor, K, would also be fixed in
advance. This is similar to other methods of sampling, from fixed-
area plots, where the plot radius would normally be fixed for the
entire survey, or sampling standing trees with a constant basal
area factor for all points.
Table 2 presents the necessary information to distinguish the

three selection-based variants of PDS. For example, when sam-
pling with probability proportional to volume, the inclusion zone
width is proportional to log cross-sectional area, and is deter-
mined by expanding the cross-sectional area about both sides
of the log by a factor of Dl = Kx(l) and integrating. As l varies
from 0 to Li for the log, Dl determines the perimeter of the inclu-
sion zone, or the maximum search distance perpendicular to the
needle for each side of the log. Integrating cross-sectional area,
x(l), over the entire log length yields the log volume (V), so inte-
grating 2Dl yields ai = 2KV. Therefore, the inclusion zone area is
proportional to volume, making PDSV a probability proportional
to volume samplingmethod where each log selected contributes
F = (10000/2K)m3 ha−1 to the per unit area estimate. Under
the PDSV selection protocol then, a count of the logs on a sam-
ple point yields an estimate of the volume of logs on the tract for
that point. This follows because when the attribute of interest on
a log is volume, yi = Vi, and the estimator reduces to |A|/2K for
the ith log. Similar interpretations for both PDSS and PDSC can be
gleaned from Table 2 – more details are provided in the papers
cited earlier.
Inclusion zones for the three selection-based protocols for PDS

are compared in Figure 1. Because the functions of log diam-
eter presented in Table 2 are in metres, it is easy to see that
PDSV will have the smallest maximal search distance and inclu-
sion zone area for logswhose largest diameter is less than 1.27m.
For logs whose diameter is larger than 1.27m, coverage area will
generally have the smallest inclusion area of the three selection
protocols. Inclusion zone widths for surface area and volume do
not intersect until log diameters reach 4m. Note, however, that
c(l) = πd(l) in general, so that the inclusion zone width for PDSS
is simply a scaled version of PDSC.

Traditional PDS

The original concept behind PDSwas for the design-unbiased esti-
mation of volume: a simple count of the number of logs on each
sample pointwas all thatwas required.6 Other quantitieswere ini-
tially deemed to be non-estimable in field application under the
PDSV method. The reason for this is that, for any of the selection
protocols given in Table 2, one must know the true value of the
selection attribute (e.g. volume), which appears in the denomi-
nator of the estimator, to derive unbiased estimates whenever yi
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Table 1 Symbol table

Symbol Meaning

ρ Bulk density (mass per unit volume) – in general, this can be a function of l
ψ Biomass to carbon conversion (mass carbon per mass wood) – in general, this can be a function of l
π Universal constant (unsubscripted); inclusion probability (subscripted)
A A physical tract of land
|A| Area of tractA (m2)
a Inclusion zone area (m2)
B Woody biomass (appropriate mass units)
Ca Carbon content (appropriate units)
C Coverage area (m2)
C Coverage area (m2 ha−1)
c(l) Log circumference (m) at length l
D⊥(l) Perpendicular distance from the log needle to the sample point at length l as determined by the sample point
Dl Distance search limit (m)
Dmax Maximum search distance (m)
d(l) Log diameter (m) at length l
db Log large end diameter (m) at d(0)
du Log small end diameter (m) at d(L)
F Per unit area volume, surface area or coverage area factors (see Table 2)
K PDS expansion factor (for units, see Table 2)
l Length (m) along the log, 0 ≤ l ≤ L
L Total log length (m)
m Number of sample points
me Number of sample points covered by inclusion zones
N Number of logs in the synthetic population used in simulation
nj Number of sampled logs recorded at the jth sample point
nj1, nj2 Number of logs recorded for the DLS and PDS portions of DLPDS, respectively, on the jth sample point where nj = nj1 + nj2
r Taper equation parameter expressing the log form such that 0 < r < 2 is neiloid, r = 2 is a cone and r > 2 is paraboloid
S Surface area (m2)
S Surface area (m2 ha−1)
x(l) Log cross-sectional area (m2) at length l
y Some attribute measured on a log
Y The aggregate total overA for a given attribute y
V Volume (m3)
V Volume (m3 ha−1)

Table 2 PDS quantities for each of the selection-based protocols

Selection protocol ai Dl Estimator1 Selection integral K units F2

PDSV 2KV Kx(l)
nj∑
i=1

|A|yi
2KVi

V = ∫ L
0 x(l)dl m−1 10000

2K

PDSS 2KS Kc(l)
nj∑
i=1

|A|yi
2KSi

S = ∫ L
0 c(l)dl [dimensionless]

10 000
2K

PDSC 2KC Kd(l)
nj∑
i=1

|A|yi
2KCi

C = ∫ L
0 d(l)dl [dimensionless]

10 000
2K

1 For the jth point.
2 In the same units as the selection attribute ha−1.
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Figure 1 A comparison of inclusion zones for PDS when the selection attribute is volume (solid), surface area (long dash) and coverage area (short
dash). The logs vary in geometric shape (taper) from neiloid (left), to conic (middle) and paraboloid (right) in each frame, with butt diameters of (a)
50 cm, (b) 127 cm and (c) 400 cm. (d) The inclusion zone width relations over a larger diameter range with K = 1.

is not equivalent to that attribute. Employing models to estimate
these quantities imparts a bias in the estimate of unknownmag-
nitude and is therefore not recommended. To help circumvent
these peculiarities, ad hocmethods were proposed. For example,
alternative companion sampling methods like circular plots were
suggested to estimate other quantities such as log density.9
This limitation implies that PDS is useful only for estimat-

ing the attribute of interest, regardless of the selection protocol.
A solution to this dilemma that allowed the estimation of any
quantity under PDS that could be written in an integral form
was proposed by Ducey et al.8 The solution proposed by the
authors (see also Gregoire and Valentine17) involves employ-
ing a crude Monte Carlo (CMC) approach18 to the estimation
of the selection attribute integral and the quantity of interest,
although the estimator can also be derived from continuous
Horvitz–Thompson (HT) theory.19 For example, if interest is in
the estimation of some attribute y, then it can be shown that
all that is required is to develop a judiciously chosen compan-
ion integral relation for this quantity in the form y = ∫

g(l)dl.
Given this relation, the following estimator of the total for the
jth sample point can be employed for each of the PDS selection
variants

Ŷj =
|A|
2K

nj∑
i=1

gi(l)
fi(l)

(1)

This estimator follows because the selection attribute of volume,
surface area and coverage area can similarly always be written

in integral form,
∫
f (l)dl, which can also be estimated by CMC.

Here we denote the quantity g(l)/f (l) in (1) as the Monte Carlo
‘attribute ratio’. The required relationships for each selection pro-
tocol are given in Table 3. For example, the CMC estimate for
volume derives from cross-sectional area measured perpendic-
ular to the sample point; therefore, f (l) = x(l). Now if log den-
sity is to be estimated, then g(l) = L−1, resulting in the estima-
tor fraction given in Table 3 for this attribute under PDSV. In
this case, both the cross-sectional measurement and the log
length, L, must be recorded. Other relations are similarly devel-
oped for each attribute to be estimated under the different
selection protocols of PDS; details and proof of unbiasedness
are given in Ducey et al.8 Notably, it is easy to see that under
each of the selection variants, the selection attribute cancels
where g(l) ≡ f (l) in the attribute ratio in (1), and the estimator
reduces to the traditional PDS form. We will refer to this method
as ‘omnibus’ PDS (OPDS) in what follows, while the original form,
where only the selection attribute is readily estimable will be
termed ‘canonical’ PDS.
Both canonical and omnibus PDS can be used on all attributes

listed in Table 3 in simulations, because the selection attribute
can be calculated exactly under each selection protocol. How-
ever, only omnibus PDS imparts the ability to use each of the three
selection variants to estimate any attribute in a field survey as
well. It should be noted that the inclusion zone for a given log is
exactly the same under both canonical and omnibus PDS. What
differs is the field measurement protocol in each case, and the
resulting estimators under omnibus for the allowable attributes
of interest.
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Table 3 Integral quantities that can be easily estimated under
CMC, and associated attribute ratios for use in the omnibus
protocols

Attribute g(l) Integral Attribute ratio1

PDSV PDSS PDSC

Density
1
L

∫ L

0

1
L
dl = 1

L−1

x(l)
L−1

c(l)
L−1

d(l)

Length 1
∫ L

0
dl = L

1
x(l)

1
c(l)

1
d(l)

Surface
area2

c(l)
∫ L

0
c(l)dl ≈ S

c(l)
x(l)

c(l)
c(l)

c(l)
d(l)

Coverage
area

d(l) 3
∫ L

0
d(l)dl = C

d(l)
x(l)

d(l)
c(l)

d(l)
d(l)

Volume x(l)
∫ L

0
x(l)dl = V

x(l)
x(l)

x(l)
c(l)

x(l)
d(l)

Biomass ρx(l) ρ
∫ L
0 x(l)dl = B ρx(l)

x(l)
ρx(l)
c(l)

ρx(l)
d(l)

Carbon ψρx(l) ψρ
∫ L
0 x(l)dl = Ca ψρx(l)

x(l)
ψρx(l)
c(l)

ψρx(l)
d(l)

1The Monte Carlo ratio g(l)/f (l) in (1).
2This integral is approximate, but very close – comparewith Table 5.
3Diameter (m) parallel to the horizontal plane of the ground.

Distance-limited PDS

In the previous section, we showed how omnibus PDS can be
used to overcome the shortcomings of canonical PDS with regard
to estimating a wide array of useful attributes on the popula-
tion of down CWD. However, a second perceived shortcoming
that afflicts both canonical and omnibus PDS is the exaggerated
search distances that can accompany certain combinations of
K for large-diameter logs. This is especially true when sampling
with probability proportional to surface area under PDSS, where
large search distances can result, even for small and moder-
ate diameter logs (Figure 1). Recently, Ducey et al.14 introduced
distance-limited PDS (DLPDS) as a way to minimize missed logs
due to non-detection by restricting the search distance for logs in
the area of larger diameters. Consequently, the maximum width
of the inclusion zone on either side of a log’s needle is constrained
by the limiting distance.
DLPDS can most easily be envisioned as a combination of two

sampling methods: PDS and DLS.3 The DLS method simply sam-
ples a logwhen the perpendicular distance from the sample point
to the log’s needle (D⊥(l)) is less than some distance limitDl form-
ing a rectangular inclusion zone encompassing each log. Two field
measurement protocolswere suggested for DLS. The first is based
on HT theory and the normal field measurements that would
be taken in an inventory for most areal sampling methods, like
fixed-area plots. In this protocol, yi is normally a direct measure-
ment or estimate of the quantity to be estimated on the log; for
example, an estimate of volume from Smalian’s formula might
suffice for yi in the case of volume estimation. The second DLS
measurement protocol is based on CMC and utilizes the same
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Figure 2 An inclusion zone for DLPDS (shaded) using the selection pro-
tocol PDSC with Dl = 3m and K = 10. The log has dimensions L = 10m,
db = 0.5m and du = 0.1m shown with ‘needle’ (dotted). The transition
diameter is d(L1) = 0.3m with L1 = 6.46 and L2 = 3.54. The inclusion
zone outline for PDSC is also shown for comparison (dashed).

concept of a random measurement on g(l) given in Table 3; for
example, a design-unbiased estimate of volume is established by
measuring the cross-sectional area on the log perpendicular to
the sample point. Therefore, the CMC protocol for DLS is closely
related to omnibus PDS in terms of field measurements. In gen-
eral, CMC is asymptotically unbiased leading to a design-unbiased
estimator for DLS, which Gove et al.3 corroborated via simulation.
DLPDS is illustrated in Figure 2. The rectangular DLS portion of

the shaded inclusion zone area has width Dl, while its length (L1)
depends on the properties of the log (i.e. the log length and taper)
andK. The rest of the shaded area comprises the PDS component
of the log having length L2, such that L = L1 + L2. A given log can
be all PDS, all DLS or a combination of both, again depending on
the log dimension and the design parameters of the survey,which
now include both K and Dl. It is perhaps simplest to consider the
limiting or transition diameter d(L1), if any, as dividing the log
into two separate logs, which are then treated according to their
respective protocols. The limiting diameter can be easily deduced
for each of the PDS selection protocols using the relationships for
Dl given in Table 2.
The estimators for DLPDS are given in Table 4. Ducey et al.14

introduced DLPDS as a design-unbiased method for estimating
volume or surface area, and this approach also extends to the
estimation of the coverage area. Their estimator was presented
in the form of a hybrid approach (HDLPDS) where the PDS com-
ponent of the log (if any) is sampled with canonical PDS to take
advantage of design-unbiasedness, whereas the DLS portion of
the log (again, if any) is sampled with the DLS CMC protocol.
However, there are two other useful protocols that are based on
the concepts already discussed: these are again referred to as
canonical (DLPDS) and omnibus (ODLPDS). The former parallels
canonical PDS, augmented with the basic HT-based DLS field
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Table 4 DLPDS estimators on the jth plot for each of the selection-based protocols. In each case, the leftmost component corresponds to the
DLS estimator and the rightmost to the PDS estimator

Selection protocol Canonical estimator Omnibus estimator Hybrid estimator

PDSV
|A|
2Dl

nj1∑
i=1

yi
Li

+ |A|
2K

nj2∑
i=1

yi
Vi

|A|
2Dl

nj1∑
i=1

gi(l)+ |A|
2K

nj2∑
i=1

gi(l)
xi(l)

|A|
2Dl

nj1∑
i=1

gi(l)+ |A|
2K

nj2∑
i=1

yi
Vi

PDSS
|A|
2Dl

nj1∑
i=1

yi
Li

+ |A|
2K

nj2∑
i=1

yi
Si

|A|
2Dl

nj1∑
i=1

gi(l)+ |A|
2K

nj2∑
i=1

gi(l)
ci(l)

|A|
2Dl

nj1∑
i=1

gi(l)+ |A|
2K

nj2∑
i=1

yi
Si

PDSC
|A|
2Dl

nj1∑
i=1

yi
Li

+ |A|
2K

nj2∑
i=1

yi
Ci

|A|
2Dl

nj1∑
i=1

gi(l)+ |A|
2K

nj2∑
i=1

gi(l)
di(l)

|A|
2Dl

nj1∑
i=1

gi(l)+ |A|
2K

nj2∑
i=1

yi
Ci

nj1 and nj2 are the number of logs sampled by DLS and PDS, respectively, on the jth plot.
di(l) is the diameter (m) parallel to the horizontal plane of the ground.

measurement protocol. The latter parallels omnibus PDS, with the
CMC field protocol used for DLS as well. The canonical DLPDS pro-
tocol is useful only in simulation studies for any attribute other
than the design attribute, for the same reasons as PDS, since we
must know the true value of the design attribute to derive unbi-
ased estimates. This is also true of the hybrid approach for the
estimation of quantities other than the design attribute. How-
ever, under omnibus DLPDS, we have a set of estimators that will
provide design-unbiased estimates of any attribute through the
associated random quantity g(l), found in Table 3. The combina-
tion of Monte Carlo-based estimators under omnibus DLPDS pro-
vides a simple, consistent protocol useful for field application. Of
course, a hybrid protocol that is the complement of the one pre-
sented here can also be envisioned, but its utility is questionable,
so it will not be discussed further.
It is important to note that the estimators given in Table 4

are for a full count of logs on the jth sample point, where nj =
nj1 + nj2 logs are sampled. The DLS component of the estima-
tor applies to the nj1 logs that were selected under this protocol
on the jth sample point. Similarly, the PDS component of the
estimator applies to the nj2 logs that were selected under the
appropriate PDS protocol on the point. Note that either quantity
can also be a zero tally, in which case no logs were selected under
the respective protocol. Finally, as in canonical and omnibus PDS,
the inclusion zone for a given log is the same for all of the DLPDS
protocols for fixed Dl, K and selection protocol. The differentia-
tion arises from the field measurement protocol and associated
estimator adopted for estimation.

Simulation methods

Williams 20,21 formalized the sampling surface approach to sim-
ulation for the comparison of areal sampling estimators. The
sampling surface approach tessellates the tract A into square
grid cells of chosen resolution, where the centre of each cell is
treated as a sample point location. The tract, A, is then popu-
lated with down logs whose inclusion zones are known and can
also bemapped. A buffer is used to ensure that all inclusion zones
fall within the tract, eliminating any potential bias due to bound-
ary overlap. A sampling surface is developed as follows for each
protocol and attribute. The grid of all cells within A constitutes

an exhaustive sample of size m, which depends on the grid cell
resolution. At each grid cell, j = 1, . . . ,m, a sample is effectively
taken including the nj = 0,1,2, . . . logs whose mapped inclusion
zones overlap the cell centre point. The appropriate estimators
(Tables 2 and 4) are applied to each of the ‘in’ logs on the jth
grid cell, yielding an estimate Ŷj for that cell. The variable height
sampling surface is effectively built up by summation of the indi-
vidual log attribute estimates in this manner for each of the m
cells.
The variance of each estimator is directly related to the

unevenness of the sampling surface and is approximated for a
given resolution by

Var
(
Ŷ
)

= 1
m− 1

m∑
j=1
(Ŷj − ˆ̄Y)2 (2)

where the summation over allm sample points equates to sum-
mation over all m cells in the rectangular grid. Other statistics
such as the surface mean ( ˆ̄Y), which provides the simulation esti-
mate, can be similarly calculated. In particular, an estimate of

the surface standard deviation is SD
(
Ŷ
)

=
√
Var

(
Ŷ
)
. The close-

ness of the approximations to the true population attribute
values depends on the grid cell resolution. As the resolution
increases (grid cell size decreases), the number of sample points,
m, increases yielding a better approximation. There will always
be a small bias that is recorded in the simulations because one
can never sample every point (m → ∞). In general, this small
recorded bias is an artefact of the grid cell resolution, not the sam-
pling methods themselves. Past simulation studies using grid cell
resolutions on the order of one-quarter to one-half metre have
proven quite reasonable,3,4,6,13,22 therefore half metre resolution
is used here. Finally, the sampling surface approach has been
implemented for the samplingmethods and attributes discussed
here, aswell as several others, in the ‘sampSurf’ package23 for the
R statistical language.24
A simple taper equation25 was used to construct the syn-

thetic log population for the simulations. This equation is shown
in Table 5, along with closed-form solutions to the corresponding
volume, and coverage area equations, while surface area must
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Table 5 Taper equation and associated equations used in the simulations

Attribute Equation

Log taper (m) d(l) = du + (db − du)
(
L− l
L

)2/r

Volume (m3) V(l) = π

4

[
d2u l+ L(db − du)2

r
r + 4

(
1−

(
1− l

L

)(r+4)/r)

+ 2Ldu(db − du)
r

r + 2

(
1−

(
1− l

L

)(r+2)/r)]

Surface area (m2) S = π

∫ L

0
d(l)

√
1+ d′(l)2

4
dl

d′(l) = −2 (db − du)(L− l)2/(r−1)

rL2r

Coverage area (m2) C(l) = 1
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]

d′(l) is the derivative term for the surface area integral – all diameters are in the same
units as length.

be numerically integrated. Log forms can vary depending on the
shape parameter from neiloid (0 < r ≤ 2), through conical (r =
2) to parabolic (r > 2). A population of N = 100 logs was gen-
erated from this taper model with log forms in the range of
r ∈ [1,10]. Log dimensions were determined as random uniform
deviates in the following ranges: Db ∈ [8,40] cm, Du ∈ [0,0.9]×
Db and L ∈ [1,10] m. Each log was randomly placed within a
tract of |A| = 1ha with a random orientation angle φi ∈ [0,2π ],
i = 1, . . . ,N. The tract was minimally buffered such that all inclu-
sion zones fit within the tract.
The synthetic log population that was used in the simula-

tions and their associated inclusion zones is depicted in Figure 3.
The survey design parameters KV, KC and Dl where chosen in
an attempt to equalize the inclusion zone areas between PDSV
and PDSC to facilitate the comparison with regard to sampling
effort (me). In general, the goal of equality is elusive, however,
and it is only possible to approximate as the inclusion zones scale
differently with diameter (Table 2) and log form. PDSS was not
considered in the simulations as it is a scaled version of PDSC,
as mentioned earlier. Sixty-eight per cent of the logs in the syn-
thetic population had truncated inclusion zones under distance-
limited PDSV (Figure 3), while 58% were affected under PDSC (not
shown). For this log population and this particular set of design
parameters, the maximum search distance for both PDS selec-
tion protocols was not large, with a maximum of 6.1 and 4.7m
for PDSV and PDSC, respectively. This implied a maximum reduc-
tion in search distance under DLPDS of 3.1 and 1.7m for the two
selection protocols, respectively. Other simulations with differ-
ing design parameters were also run on this same population of
logs to demonstrate the difference in efficiency under the various
DLPDS protocols.

Results
It is worth reiterating that the omnibusmethods are the only pro-
tocols that do not require an exact measurement of the selection

attribute for design-unbiased estimation of any attribute listed
in Table 3 in field applications. In the simulation approach, these
attributes are known exactly for each log, so it is possible to esti-
mate any quantity desired under all of the different protocols,
not just the omnibus variants. In addition, not all attributes were
considered in the simulations; biomass and carbon are scaled
versions of volume, and so they were not considered. Similarly,
surface area is a scaled version of coverage area when the diam-
eter is taken parallel to the horizontal plane of the ground, so it
also was not considered.
Table 6 presents the results of the basic simulations under

the PDSV protocol. The most obvious result to be gleaned is that
all of the protocols for all attributes do prove to be unbiased in
accordance with theory. The small (largely less than 1%) bias
recorded is a manifestation of the sampling (grid cell) resolu-
tion and would be recorded in any simulation approach, including
pure Monte Carlo. The ‘bias’ of the magnitudes reported, there-
fore, is a ‘computational’ or ‘apparent’ bias and is due to the
numerical precision of the simulation of the sampling surface and
not to any inherent bias in the estimators – which are all unbi-
ased in theory. For example, the small positive bias recorded in
the estimation of density under the OPDS and ODLPDS proto-
cols has a logical explanation and should not be misconstrued
to indicate an underlying bias in the estimators. Referring to
Table 3, it can be seen that each of the three omnibus pro-
tocols for density has an L−1 component associated with the
estimator. As noted by Ducey et al.,8 this in combination with
small cross-sectional area can cause an inflation in the estima-
tor for very short logs and evidently contributes to this small
increase in bias over the other estimates. Both omnibus esti-
mators for density also have higher variance. This is directly
related to small cross-sectional area in sample locations near
the tip of short logs, yielding a maximum sampling surface value
that is more than three times that for the canonical and hybrid
protocols. The inflation of length estimates under the omnibus
protocols is even more pronounced in terms of the surface max-
imum, because cross-sectional area goes to zero on logs that
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Figure 3 Synthetic log population ofN = 100 logs used in the simulation experimentswith inclusion zones for DLPDS (shaded) using selection protocol
PDSV with Dl = 3m and KV = 50 m−1. The inclusion zone outline for both canonical PDSV (solid) and PDSC (dashed, KC = 12) are also shown for
comparison.

taper to the tip, and is not scaled by length as in the case of
the density estimators, so it is independent of the log length.
Again, this results in an increase in variance over the canonical
and hybrid methods, but it does not result in any appreciable
increase in apparent bias. The other results conform to what
would be expected by the form of their estimators, which appear
to be well behaved in general. For example, both canonical and
omnibus estimates of volume reduce to a count of the logs
under the PDSV selection protocol, and so produce identical statis-
tics, with surface maximum an integer factor of the FV = 100
based on amaximumof nj = 4 overlapping inclusion zones in this
simulation.
The simulation results for PDSC are presented in Table 7.

Again, under this selection protocol all the methods are unbi-
ased. Additionally, in all cases, the variances are quite con-
sistent among the methods. Both OPDS and ODLPDS record
spikes in the surface maximum when estimating length. Refer-
ring to Table 3, this can be attributed to having log diam-
eter in the denominator of the estimator: recording a small
diameter near the end of a piece that tapers to the tip will
inflate the estimate for the corresponding sampling grid point.
Similar, but somewhat less severe inflation is recorded for den-
sity estimates under these two protocols where the addition
of log length in the denominator attenuates the inflation due
to small diameter. Under the PDSC selection protocol, a count

of the number of logs yields an estimate of the coverage area
so again, canonical and omnibus produce the same statistics.
In this case, FC = 416.67m2 ha−1, so the intersection of inclu-
sion zones for four points again yields a maximum surface
estimate of njFC.
A few general trends may be established for the variance

(via SD) among the different protocols. Canonical and omnibus
PDS always have smaller variance than the distance-limited pro-
tocols for both volume and coverage area, regardless of the
selection protocol. When considering log density and length,
the omnibus-based protocols (OPDS and ODLPDS) have gen-
erally higher variance than the others, with the exception of
OPDS for density under PDSC. This is perhaps due to the fact
that log diameter scales linearly compared with cross-sectional
area in the estimator denominator. In all cases, ODLPDS has
the highest variance of the five estimators, regardless of the
selection protocol or attribute being estimated. This may result
from both components of the estimator being Monte Carlo
based, which could contribute more variability to the esti-
mate. Still considering the relative magnitude of the variances
in each case, the increases are not large and the efficiency
of the different protocols in terms of variance is surprisingly
comparable.
Although the observations on variance noted above are indeed

true for this particular set of design parameters, they will change
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Table 6 Results of the simulations for a standard synthetic log population of size N = 100 logs under PDSV. Sampling design constants
were: Dl = 3m and K = 50m−1

Attribute/protocol Population total Sampling surface

Estimate % Bias SD Max me
1

Volume (m3)
PDS 18.31 18.29 −0.12 46.7 400 6049
OPDS 18.31 18.29 −0.12 46.7 400 6049
DLPDS 18.31 18.27 −0.21 50.4 360 5340
ODLPDS 18.31 18.27 −0.21 50.7 380 5340
HDLPDS 18.31 18.27 −0.21 50.7 380 5340

Length (m)
PDS 525.42 526.84 0.26 1802.4 29583
OPDS 525.42 527.68 0.43 2049.4 115079
DLPDS 525.42 527.04 0.31 1812.7 29582
ODLPDS 525.42 528.51 0.59 2060.7 115078
HDLPDS 525.42 527.04 0.31 1812.7 29582

Density
PDS 100 100.81 0.81 437.5 12500
OPDS 100 101.16 1.16 509.4 33175
DLPDS 100 100.86 −0.86 457.2 12500
ODLPDS 100 101.27 1.27 524.0 33176
HDLPDS 100 100.86 −0.86 457.2 12500

Coverage area (m2)
PDS 100.66 100.64 −0.02 270.5 2544
OPDS 100.66 100.63 −0.03 274.1 3828
DLPDS 100.66 100.62 −0.04 278.6 2649
ODLPDS 100.66 100.64 −0.02 282.8 3828
HDLPDS 100.66 100.62 −0.05 278.9 2649

1Values forme, the number of grid cell centres covered by inclusion zones, are the same for each attribute.

under the distance-limited protocols as the Dl design parameter
changes. As can be noted from Tables 6 and 7, there is a reduc-
tion of sampling effort (effective sample size, me ) of 700 and
500 sample points (grid cells) under the distance-limited proto-
cols for PDSV and PDSC, respectively, in this particular synthetic
log population. As Dl approaches the maximum perpendicular
distance, Dmax, encountered on the largest log under canonical
PDS, the sampling effort will approach that of PDS, since L1 → 0
when this happens (Figure 2). A subset of N = 50 logs were used
for a broader set of simulations illustrating the effect of increas-
ing Dl. The results for the standard deviation are shown in Figure 4
for Dl ∈ {2,4,6,8}m; the maximum width of the inclusion zones
in this log population is Dmax = 12.2 and 9.1m, for PDSV and
PDSC, respectively. The observations for canonical and omnibus
PDSmade above also hold for this new set of simulations because
the inclusion zones are independent of Dl. Note particularly that
OPDS has higher variance than canonical PDS for both length and
density as described above and, of course, they coincide for the
selection protocol attribute under PDSV and PDSC. In all cases,
the variance for ODLPDS converges to that of OPDS. Similarly, the
variances for DLPDS and HDLPDS converge to PDS. This can be
verified in Table 4 by noting that as Dl → Dmax, L1 → 0 and thus
nj1 → 0, so this component of the estimator vanishes, leaving
only the canonical component for each selection protocol. The

same observation can be made for ODLPDS which reduces to the
OPDS estimator.
What appears to be an aberration in the results for the vari-

ance when estimating density under PDSC, shows up in all three
of the distance-limited estimators in Figure 4. The reason for the
spike is that this particular distance limit produces several logs
whose PDS component length is 3 cm or less, with the short-
est being 0.7 cm. Referring to Figure 2 and Tables 3 and 4, the
omnibus estimator has length, L2, in the denominator, and as
this goes to zero, the estimator inflates. Likewise, under both
DLPDS and HDLPDS, the computed coverage area for L2 com-
ponent of the log is very small (the smallest was on the order
of 0.002m2), inflating the estimator accordingly. These produce
estimates (maximum surface values) for the particular grid cell
point on the order of 60000m2 ha−1, under each of the three
distance-limited protocols. This result is to be expected occasion-
ally in simulations when a certain combination of distance limit,
log length and shape, and PDS selection protocol combine to
form a very small log length for either component of the three
estimators in Table 4 and will inflate the estimate for density
in this case.
Finally, with regard to these simulations, the convergence of

the effective sample size (me) is presented in Figure 5 for the
DLPDS variants, allowing comparison of the number of sample
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Table 7 Results of the simulations for a standard synthetic log population of size N = 100 logs under PDSC. Sampling design constants
were: Dl = 3m and K = 12

Attribute/protocol Population total Sampling surface

Estimate % Bias SD Max me
1

Volume (m3)
PDS 18.31 18.26 −0.31 43.2 314 7809
OPDS 18.31 18.26 −0.27 43.7 326 7809
DLPDS 18.31 18.24 −0.42 47.0 368 7309
ODLPDS 18.31 18.26 −0.28 47.6 397 7309
HDLPDS 18.31 18.25 −0.34 47.5 404 7309

Length (m)
PDS 525.42 524.12 −0.25 1220.7 9926
OPDS 525.42 524.28 −0.22 1268.7 50316
DLPDS 525.42 524.91 −0.10 1236.8 9926
ODLPDS 525.42 525.06 −0.07 1286.1 50316
HDLPDS 525.42 524.91 −0.10 1236.8 9926

Density
PDS 100 99.82 −0.18 279.4 3603
OPDS 100 100.05 0.05 304.2 21595
DLPDS 100 100.00 −0.01 316.4 8973
ODLPDS 100 100.22 0.22 336.9 21595
HDLPDS 100 100.00 −0.01 316.4 8973

Coverage area (m2)
PDS 100.66 100.40 −0.26 221.9 1667
OPDS 100.66 100.40 −0.26 221.9 1667
DLPDS 100.66 100.43 −0.23 231.9 1858
ODLPDS 100.66 100.45 −0.21 232.5 1930
HDLPDS 100.66 100.45 −0.21 232.5 1930

1Values forme, the number of grid cell centres covered by inclusion zones, are the same for each attribute.

points for each different distance limit (Dl). Note again that for a
fixed set of design parameters, all DLPDS variants share the same
inclusion zone for each log, as do both canonical and omnibus
PDS. Under both selection protocols, the sample sizes converge
non-linearly from approximately 44% of the full sample size at
Dl = 2m. This kind of convergence parallels the non-linear shape
of the inclusion zones as Dl → Dmax for the largest diameter log
in the population.

Confidence interval estimation

The sampling distributions of the estimators given herein play a
role in determining how many samples are necessary in a field
inventory for the nominal coverage rate to apply under normal
theory confidence intervals. It is important to look at this aspect
of the estimators because as Affleck10 showed, the sampling dis-
tributions can be far from Gaussian for variants of PDS studied
there, leading him to question the appropriateness of normal
theory intervals for these estimators. However, the overarching
question is not whether normal theory intervals apply, because
the central limit theorem covers the distribution of samplemeans
under repeated random sampling designs26,27; rather the main
question is what sampling intensities might be necessary to
attain near nominal coverage in the field applications. This is not a

trivial question to answer, because each combination of selection
protocol, sampling protocol and attribute to be estimated has its
own estimator and related sampling distribution; moreover, the
empirical sampling distributions will differ in practice for each log
population surveyed.
The sampling distribution of the estimators can be approxi-

mated for a given PDS sampling protocol under both PDS selection
protocols and, for each attribute, by the empirical distribution of
the estimates over all grid cells for each simulation run in Tables 6
and 7. Specifically, the zero-truncated distribution is used here
because, while zero values are reasonable estimates (no sam-
ples at a given point), their number is dependent on the tract
size, resolution and sample design parameters KV, KC and, for
distance-limited variants, Dl. The resulting sampling distributions
for the N = 100 log simulations reported here range from nega-
tive exponential to positively skewed and sometimesmultimodal,
similar to those described by Affleck.10 As noted earlier, the distri-
butions for the selection attribute for each of the PDSV and PDSC
selection protocols is integral valued (at the respectiveFV andFC
levels) as well.
The results of a small Monte Carlo study on each of the

estimators (selection protocol, sampling protocol and attribute
combinations) is presented in Figure 6. These results, like those
in Tables 6 and 7 on which they are based, are conditional on
the synthetic log population used and will vary somewhat for
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Figure 4 Comparison of standard deviations for a 50-log subset of the population in Figure 3 for all PDS variants. Both selection protocols, PDSV
(KV = 100m−1) and PDSC (KC = 24), are given for each attribute at different distance limits.

different populations. Therefore, we adopt a somewhat arbitrary
rule that observed the coverage rates over approximately 92%
will be adequate for nominal 95% coverage in other populations
in lieu with a more comprehensive simulation study. In addition,
we caution here, as elsewhere, that because the effective sample
size cannot be equated between the two selection protocols due
to the differing non-linear inclusion zone perimeters, it is unwise
tomake comparisons between the results for PDSV and PDSC. The
variance of the estimators is directly related to the effective sam-
ple size in each population, with more sample points leading to
smaller variance. For any of the protocols, increasing the inclusion
area increases the effective sample size, decreases the variance
and so smooths the empirical sampling distributions; this was
demonstrated in Figure 4, and is true in general.
Under PDSV and for all of the sampling protocols, it appears

that a sample size of approximately 20–30 could be used to esti-
mate volume and coverage area in terms of attaining nominal
confidence interval coverage. Between 30 and 50 sample points

might be reasonable for the estimation of length under PDS,
DLPDS and HDLPDS , whereas approximately 100would be neces-
sary for OPDS and ODLPDS. Density appears quite problematic for
all of the estimators, requiring in the neighbourhood of 250 sam-
ple points for near-nominal coverage. PDSC performed somewhat
better, but again, this could be due to the larger overall effective
sample size composing the sampling distributions in each case.
All methods approach nominal coverage for volume estimation
with sample sizes as small as 20. Again, sample sizes between 20
and 30 could be used for the estimation of the coverage area for
all methods, with the possible exception that 30 should be used
for ODLPDS. When estimating length, between 20 and 30 sample
points could be used for close to nominal coverage. Finally, the
estimation of density requires approximately 100 samples under
all of the protocols.
The estimator coverage results are somewhat variable based

on these simulations with the estimation of volume and cover-
age area requiring fewer sample points in general than length
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Figure 5 The effective sample size, me, for a 50-log subset of the
population in Figure 3 with increasing distance limit for PDS (solid) and
DLPDS (dashed), under selection protocols PDSV (KV=100 m−1) and PDSC
(KC = 24).

and density. One obvious solution would be to choose the most
variable attribute that is to be estimated and to determine the
overall sample size for the inventory based on this. Another more
equitable approach would be to use the smaller sample size for
all attributes and supplement sample points for the estimation
of length or density. Schemes like these have often been pro-
posed with points established along a cruise line intermediate to
the main sample points in sampling for standing trees, for exam-
ple. Nevertheless, the main point of this exercise was to illustrate
that all of the combinations of estimators do indeed converge to
the nominal levels, regardless of how skewed or multimodal the
underlying sampling distribution, even though the convergence
rates differ. Therefore, normal theory confidence intervals are
appropriate, true to theory, for all variants of PDS sampling given
a sufficient sample size. However, a sufficiently large sample size
for attributes like length and density may be too large for many
downwood inventory applications, especially given that the natu-
ral variability of downed log populationsmay be greater than that
observed in the simulations. In such cases, the use of sample sizes
that are too small will lead to erroneous inferences when normal
theory intervals are applied. Hence, for practical field applications,
our results are in accord with Affleck,10 who conjectured that
even bootstrapmethodsmay fail to reach nominal coverage rates
in some situations. Clearly, this is an area deserving further study
in general; and again, we caution that the results will change for
other log populations and combinations of design parameters.

Discussion
In this paper, we have shown that PDS can be presented in
many forms. Design-unbiased estimators can be derived based

on classical HT estimation, ostensibly requiring the traditional
suite of measurements such as length and volume, for estima-
tion. However, the presence of the selection attribute (volume,
surface area, coverage area) in the estimator (Tables 2 and 4)
limits this form to the estimation of the design attribute only.
The reason for this is that the presence of, for example, vol-
ume requires the exact measurement of this attribute for true
design-unbiasedness of the estimator. Because this is normally
impractical, the canonical PDS and DLPDS estimators should not
be used for the estimation of other attributes; nor should HDLPDS,
because the PDS component of this estimator is based on canon-
ical PDS. It may be tempting to substitute a model estimate for
the true volume (e.g. from Smalian’s formula) but this imparts an
unknown model bias to the estimate.
An alternative formof estimator can be derived from the appli-

cation of Monte Carlo integration to the solution of the integrals
in Table 3. The Monte Carlo connection stems from the measure-
ment of the required quantities at a point on the log’s needle
that is perpendicular to a randomly chosen sample point, and is
thus a Monte Carlo (random) selection of the measure of interest
on the log. The omnibus protocols (OPDS and ODLPDS) use this
method exclusively, and therefore can be applied to any attribute
in a field inventory because there is no requirement for the knowl-
edge of the true volume, surface area or coverage area of the
logs selected. It is well known that the methods based on Monte
Carlo integration strategies in general are unbiased by the Law of
Large Numbers,28 and therefore, the omnibus methods can also
be shown to be unbiased,3,8 a fact that has been corroborated by
our simulation results. As the results of this study have shown,
the omnibus estimators tend to have slightly higher variance
than the canonical estimators, and can require more samples
for adequate confidence interval coverage rates. However, these
results can be partially offset by judicious choice of the PDS design
parameter K.
It was noted earlier that it is possible under the various

distance-limited protocols for the log length of the PDS compo-
nent (L2) to become very small. When this occurs, the estimator
for density inflates under all threemethods. This can also happen
if the DLS component (L1) becomes small, and will likewise affect
all three estimators for density. However, it will also inflate the
DLS portion of the canonical estimator for all attributes (Table 4).
The main concern for field application, however, is the omnibus
estimator for reasons mentioned previously. The inflated esti-
mates resulting from very short logs are indeed true estimates
and their precise enumeration under simulation is required to
show unbiasedness. However, in field applications of ODLPDS,this
phenomenon is less likely to be encountered, not because it is
indeed unlikely, but because it is unlikely to be detected. The prob-
lem really arises from the lack of precision inmeasurements. First,
there will be a judgment error in determining exactly where the
perpendicular point on the log’s needle is such that a log with
tiny L2 may not even be tallied. However, if tallied, the simple
inconsistencies in taper due to the presence or absence of bark,
partial deflation due to decay and numerous other factors may
be a challenge in determiningwhere the transition fromdistance-
limited (L1) to PDS (L2) occurs when the perpendicular point lies
at the end of the log. It is unlikely that a log length on the order
of a few centimetres would even be able to be determined under
these conditions. The consequence is that the log would most
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size 10, 20, 30, 50, 100 and 250 were drawn. Both selection protocols, PDSV (KV=100 m−1) and PDSC (KC=24), are given for each attribute at different
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likely be sampled as all DLS (i.e. when the L2 component is very
short). This is now a combined measurement and classification
error that will theoretically impart a bias in the estimate, because
the inflated estimate that would normally arise will be precluded.
In actuality, of course, the measurement so taken will be unbi-
ased, it will simply be for an incorrect classification of the per-
pendicular measurement taken. Errors of classification between
the DLS and PDS portions of the log under DLS are less of a con-
cern at other points along the log because the estimator behaves
reasonably in these cases, and they will undoubtedly cancel over
a large population of log measurements. Therefore, while very
short log lengths, L2, are theoretically a potential source of bias in
field application, in reality, its effect on the final estimate will be
minimal.
In general, there are several relationships among the estima-

tors that can be gleaned from Tables 3 and 4 and will always

hold. The canonical and omnibus PDS protocols will always give
the same estimate for the selection attribute (e.g. volume for
PDSV). This is true for ODLPDS and HDLPDS as well, because the
PDS components of the estimators both reduce to a count of the
number of logs, while the DLS components are identical under
these two protocols. Canonical DLPDS and HDLPDS will always
yield identical estimates when sampling for length or log den-
sity. The PDS component of these two estimators is identical
regardless of the attribute under consideration, so the DLS com-
ponent is what determines the difference in the estimators and
the resultant protocol. For length, the DLS component of these
estimators reduces to a count of the number of logs, since yi = Li
and gi(l) = 1. When estimating log density, the DLS components
both reduce to (|A|/2Dl)

∑
(1/Li) since yi = 1 and gi(l) = 1/Li. All

of these relationships may be verified in the estimators and are
borne out by the simulation results in Tables 6 and 7.
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Wehavementioned three PDS sample selection protocols (vol-
ume, surface area and coverage area) and have contrasted two in
this paper. What may not be so apparent is that canonical PDS is
actually a very general method for sampling attributes on down
logs (and perhaps other particles as well) that can be envisioned
as an integral along the limits of log length. Any of the integrals
in Table 3 could be used to derive an estimator for that attribute
in the sense of PDSV or PDSC. For example, the estimator for log
carbon content is simply a scaled version of PDSV (assuming con-
stant bulk density, ρ, within a log), and is therefore trivial to define.
A less obvious example is that of DLS used in the distance-limited
estimators shown here and in Ducey et al.14 DLS is an estima-
tor of the aggregate length based on the integral in Table 3, and
again can be derived in both HT and CMC forms3; equating Dl to
K provides the link. The exception is the estimation of density,
where the solution to the integral is not based on any attribute
of the log, and therefore does not appropriately fit the theory. In
each of these caseswhere the selection attribute is used to define
the estimator, a simple count of the number of logs will provide
an estimate of the aggregate attribute of interest when properly
expanded.
Earlier it was mentioned that normally one selection proto-

col would be chosen with associated fixed design parameters K
(and Dl under DLPDS) and implemented on all plots in the inven-
tory. Here we loosen those guidelines somewhat and note that
it is indeed possible to use each of the three selection proto-
cols (PDSV, PDSC and PDSS) plus DLS from each sample point to
arrive at design-unbiased estimates of volume, coverage area,
surface area and length from a simple count of the number of
‘in’ logs on the point. In this case, each method would have
its own associated design parameter (KV, KC, KS and Dl) for
the attribute of interest. Obviously, depending on how these are
chosen, a given log could be sampled under one selection pro-
tocol (say PDSV) and not selected under one or more of the
others (Figure 1). While this type of design is indeed possible,
note that keeping track of the different design parameters, each
with associated limiting distance tests for borderline logs, could
make this design confusing and hence error prone in the field.
Unless absolute minimal variance estimation is required, one of
the omnibus variants should be preferred to this approach in
general.
All of the PDS protocols ultimately rely on the establishment of

a log’s needle, whether the log is straight, crooked or branched.
Methods for dealing with these issues are discussed in detail
elsewhere.16,29 On amore general level, the estimation of log vol-
ume can be a potential source of bias in the estimation of aggre-
gate volume. Methods that rely on a model such as Smalian’s
or similar30 involve assumptions based on the model, and ulti-
mately impart a bias to the estimate. Discounting for deflation
due to decay becomes problematic under such designs. The
omnibus methods alleviate this problem by not relying on a vol-
umemodel with its inherent source of error. However, they do still
require an accurate measurement of diameter or cross-sectional
area at the perpendicular point on the log, which can equally
be affected by deflation and the like. Under PDS, the random
measurement point provides the ability to sub-sample for esti-
mates of decay or estimate bulk density at this point, which can
be used to unbiasedly estimate attributes such as volume or
carbon.7 The random measurement point is integral to the PDS

design protocols and therefore provides a designed-based solu-
tion to these potential problems without resorting to the use of a
measurement model.
Finally, some form of boundary correction method is required

for logswhose inclusion zones are intersected by the tract bound-
ary. Williams and Gove6 describe a solution based on the bound-
ary reflection method that is implemented in the field using the
walk-throughprocedure about a log’s needle.5,31 Themethodhas
been shown to be unbiased and is straightforward and simple to
implement in practice. Furthermore, the method works for all of
the PDS protocols discussed in this paper and also applies to DLS
as well.

Summary and conclusions
At its most fundamental level, PDS is a single sampling method
based on the idea that an integral quantity associated with a log
attribute can be transformed to an associated estimator. When
the different sample selection, field measurement and distance
protocols are added to this, PDS is expressed as a family of sam-
pling protocols and associated estimators. All of the estimators in
the family are design unbiased, but not all are necessarily appro-
priate for practical implementation in the field. The seminal PDS
design provides for the estimation of aggregate log volume on a
forested tract from counts of logs at sample points. This canoni-
cal design has evolved to provide for the estimation of aggregate
amount of other design attributes, namely, coverage area, sur-
face area and length. By the application of CMC, the canonical
formulations transform to omnibus formulations, which easily
accommodate the estimation of aggregate log attributes that
differ from the design attribute; e.g., log number or density is
also easily estimated under the omnibus formulation. The pre-
cision of omnibus and canonical designs is identical whenever
the design attribute and the measured attribute are the same.
The canonical formulations are more precise when the mea-
sured and design attributes differ; however, the measurement
of design attributes for canonical estimation such as volume,
surface area or coverage area are impractical if not impossi-
ble, rendering the estimation of other attributes infeasible in
field surveys. On the other hand, the requisite measurements for
omnibus estimation are easily obtained, and any observed defi-
ciencies in precision can be easily offset by a modest increase
in the number of sample points, a judicious choice of K, or
both. Distance limitation increases the practicality of omnibus
PDS in situations where logs run large in diameter or where
sight lines are truncated by vegetation, topography or other
obstructions.
The results of the simulations corroborate the unbiasedness

of the different variants, but do not clearly point to any one of
the variants as being superior to the others with regard to effi-
ciency over the suite of estimable attributes tested. For example,
it was noted that the estimators for log length and density under
PDSV show what might be construed as significant differences
in the simulated standard deviations (Table 6). In reality, how-
ever, only the omnibus methods are useful for the estimation
of these two attributes in field application, and the differences
between these estimates are trivial in the context of the simula-
tion. A related finding that should not be ignored is with regard
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to the applicability of normal theory confidence intervals to small
surveys using small or moderate sample sizes. Our findings here,
for density and length especially, affirm those of Affleck10 and
point to the need for more extensive future research in this area,
not only for PDS, but also other probability proportional to size
methods as well.
The flexibility of having multiple PDS variants with simi-

lar performance to choose from may prove to be its biggest
strength, because the variety of the different variants allows
PDS to be tailored to the field conditions and attributes of inter-
est by choosing the most appropriate variant or variants for
the situation. Finally, as noted earlier, the wider PDS family also
includes the LIDS protocol, which has proved to be an efficient
method in initial trials.10,11 LIDS combines LIS and PDS and is
yet another option that should be afforded serious consideration
where surveys based on lines rather than points may be more
desirable.
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