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Larval gypsy moths, Lymantria dispar (Lepidoptera:Lymantriidae) were co-infected with the L. dispar
nucleopolyhedrovirus (LAMNPV) and the Cotesia melanoscela (Hymenoptera:Braconidae) polydnavirus
(CmeBV). CmeBV was given along with a parasitoid egg and calyx products in a stinging event, or in
the form of an injection of calyx-derived extract. LAMNPV was delivered per os, integrated into artificial
diet. Mortality from all sources was recorded over the subsequent three-week period. Neither parasitism
nor injections of purified CmeBV with toxin had any effect on the amount of mortality caused by concur-
rent challenges with LAMNPV.

Published by Elsevier Inc.

1. Introduction

Polydnaviruses (PDVs) occur in many genera of ichneumonids
(ichnoviruses) and braconids (bracoviruses) (Stoltz and Whitfield,
1992; Webb and Strand, 2005) but replicate only in the ovarian
calyx cells of female wasps. The primary function of PDVs is to
immunosuppress larvae parasitized by the wasp and overcome
encapsulation of parasitoid eggs (Stoltz et al., 1988). Additionally,
Washburn et al. (1996) reported that parasitism of Heliothis zea
larvae via Campoletis sonorensis (Hymenoptera:Ichneumonidae)
led to immunosuppression that increased spread of the Autographa
californica nucleopolyhedrosis virus (AcMNPV) in larval tissues.
Washburn et al. (1996) theorized that the increased virulence
was due to the effects of the C. sonorensis polydnavirus on larval
hemocytes, which may normally clear early AcCMNPV infection in
H. zea by encapsulating infected cells.

Parasitoids both produce and transmit PDVs, and also have a
role in field dissemination of baculoviruses, especially the
nucleopolyhedroviruses (NPVs) that infect lepidopteran hosts
(Kurstak and Vago, 1967; reviewed by Cossentine, 2009). Our work
stems from numerous observations of interactions between a
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lepidopteran larva (gypsy moth), its baculovirus (LAMNPV), and a
braconid parasitoid (Cotesia melanoscela). During ovipositionC. mel-
anoscela injects the bracovirus CmeBV into larvae along with calyx
secretions and an egg (Stoltz et al., 1986). Parasitism by this wasp
ranges from 0% to 80% in both samples collected in the field and
reared until wasp emergence (Reardon and Podgwaite, 1976;
D’Amico et al., 1999), and in larvae exposed to parasitism by C. mel-
anoscela concurrently with LAMNPV (Woods and Elkinton, 1987).

Guzo and Stoltz (1985) used CmeBV to immunosuppress Orgyia
leucostigma to the extent that it became permissive for three para-
sitoid species that under normal circumstances were unable to
complete their life cycle within that host. CmeBV, however, did
not make gypsy moth larvae permissive for any of these parasit-
oids. Lovallo et al. (2002) explored the effects of the C. congregata
PDV on the immune responses of three species of lepidopteran lar-
vae, including Lymantria dispar. One of the striking findings of their
work was that despite relatively close phylogenetic relationships
between parasitoid-host players, the immune responses of gypsy
moth larvae were essentially unaffected by that PDV.

We hypothesized that if CmeBV had the expected immunosup-
pressive properties of other PDVs, then it would influence gypsy
moth disease dynamics by increasing susceptibility to per os
LAMNPV challenge. Separately both CmeBV and LdMNPV have
been studied extensively, but their interactions have not been
investigated.
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2. Materials and methods

Gypsy moth larvae were from a “New Jersey” strain (US Forest
Service, Hamden, CT). C. melanoscela adults were reared on gypsy
moth larvae at the ARS Beneficial Insects Laboratory in Newark,
DE. Larvae were used immediately after molting to the 2nd instar.
Using methods similar to Washburn et al. (2000), larvae were
challenged per os with LAMNPV, and by parasitization or injection
with PDV. After challenge they were reared on artificial diet (Bell
et al., 1981) for three weeks, and dead individuals examined using
light microscopy to verify LIMNPV as the cause of death. Mortal-
ity data were compared using a two-factor analysis of variance.
Paired t tests were used to compare individual points where
appropriate, with Pvalues of less than 0.05 considered statistically
significant.

To explore the effects of C. melanoscela parasitism and CmeBV
on LAMNPV virulence, a cohort of gypsy moth larvae were given
one of two treatments, either a sting from C. melanoscela 48 h prior
to an LAMNPV dose; or an LAMNPV dose only, delivered at the
same time as that given to the stung larvae. Larvae in both treat-
ments were further divided arbitrarily into groups of ~30 larvae
and fed cubes of virus-incorporated diet containing O (control),
or 500, 5,000, 10,000, 20,000 or 50,000 OBs/ml (Slavicek et al.,
1992). Only larvae eating the entire cube were used; in any case
only 25 larvae were used for each treatment. The effects of CmeBV
on larval immunity are known to last at least through the four or
five days comprising the early larval development phase of C. mel-
anoscela (Stoltz et al., 1986), so we considered our 48 h timing
choice to be reasonable. Stung larvae in the 0-dose group were
the controls for parasitism, and the unstung 0-dose group for
LAMNPV contamination.

We repeated the experiment above with a change in timing of
treatments. Two groups of larvae were given either a stung or uns-
tung treatment but larvae fed on contaminated diet starting 48 h
before being stung, rather than after. We added this treatment pair
to see if a change in the order of parasitization by C. melanoscela or
infection by LAMNPV would have a strong effect on mortality from
either agent.

Using methods described by Beckage et al. (1994), an experi-
ment was designed in which CmeBV was extracted from 150 fema-
leC. melanoscela and then injected into larvae. One wasp equivalent
of CmeBV preparation (crude ovarian extract in Grace’s medium to
ca. 1 pl per injected larva) was injected into each of 150 third instar
larvae with a Hamilton syringe and a 31 gauge needle. Another
group of 150 larvae were injected with 1 pl of Grace’s medium
only, and another group of 150 larvae were not injected. Each
group was arbitrarily divided further into groups of 25 and dosed
with LAMNPYV at rates of 0, 500, 5,000, 10,000, 20,000 and 50,000
OBs/ml of diet. Statistical analysis was performed as above.

3. Results

There was no virus-caused mortality in the controls in any
experiment. Parasitism was approximately 80% in the controls
and was verified on emergence or through dissection of parasitized
larvae. Controls are shown for comparison of developmental data.
When parasitism occurred 48 h before dosing, it did not signifi-
cantly change the amount of LAMNPV-caused mortality observed
in larvae (Fig. 1A) (df = 1, F = 2.21, P= 0.188), although stung larvae
experienced less mortality at the two highest doses of LAMNPV.

LAMPNV mortality in larvae stung 48 h after LAMNPV challenge
was similar to mortality in larvae stung prior to challenge. Thus,
parasitism did not significantly change the amount of LAMNPV-
caused mortality observed in larvae (Fig. 1B) (df=1, F=3.194,
P=0.124). In fact, stung larvae experienced more mortality at the
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Fig. 1. (A) LAMNPV-caused mortality in gypsy moths stung by C. melanoscela as
newly emerged 2nd-instar larvae, and dosed with LAMNPV per os 48 h later, and
unstung larvae given LAMNPV only. LAMNPV doses were administered to all larvae
at the same time. There was no LAMNPV mortality in any control larvae (not
shown). There were no significant differences between the treatments. (B)
LdMNPV-caused mortality in gypsy moths dosed with LAMNPV per os as newly
emerged 2nd-instar larvae, and stung by C. melanoscela 48 h after, and unstung
larvae given LAMNPV only. LAMNPV doses were administered to all larvae at the
same time. There was no LAMNPV mortality in any control larvae (not shown).
There were no significant differences between the treatments.
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Fig. 2. LAMNPV-caused mortality in gypsy moths treated as newly emerged 3rd-
instar larvae with: an extract of C. melanoscela ovarian calyx tissue in Grace's
medium and LAMNPV per os, Grace’s medium and LAMNPV per os, or LAMNPV per
os. A two-factor ANOVA performed on the three possible treatment comparisons
showed no significant differences between LAMNPV-caused mortality in the larvae
treated with CmeBV + Grace’s + LAMNPV versus those treated with LAMPV only
(P=0.114), or between larvae treated with CmeBV + Grace’s + LAMNPV versus those
given Grace’s + LAMNPV (P = 0.442).

four highest doses of LAMNPV, although this difference did not
produce significant differences in overall mortality at the P=0.05
level.
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Results of our injection experiment (Fig. 2) were consistent with
those using parasitoids to inject CmeBV into larvae. The two-factor
ANOVA performed on the three possible treatment comparisons
revealed no significant differences between LdAMNPV-caused mor-
tality in the larvae treated with CmeBV + Grace’s + LAMNPV versus
those treated with LdMPV only (df=1, 4.063, P=0.114), or
between larvae treated with CmeBV + Grace’s + LAMNPV versus
those given Grace’s + LAMNPV (df=1, F=0.725, P=0.442). The
treatment pair that did not include CmeBV, LAMNPV versus
Grace's + LAMNPV, showed significant differences in LdMNPV-
caused mortality (df =1, F=8.48, P=0.04): mortality was higher
in larvae not given an injection of Grace’s medium at all but the
lowest NPV dose (Fig. 2).

4. Discussion

In our experiments we found no effects of parasitism or injec-
tion of CmeBV on gypsy moth mortality either before or after per
os challenge with LAMNPV. This is evidence that immunosuppres-
sion produced by CmeBV or other C. melanoscela-derived ovarian
calyx products does not compromise the defenses with which
gypsy moth larvae resist per os LAMNPV. While there are no di-
rectly comparable studies of CmeBV and LAMNPV, one recent study
by McNeil et al. (2010a) showed that intrahemocoelic injections of
the Glyptapanteles flavicoxis polydnavirus markedly increased lev-
els of infection in gypsy moth larvae after injections of the budded
virus form of LAMNPV at 3.750 tissue culture infectious dose
(TCIDsp) units, or three to four budded virus particles. Reasons
for this result are not yet well-understood.

The earliest stages of the NPV infection process (dissolution of
polyhedra, penetration of the peritrophic membrane, or binding
of ODV to midgut cells) are likely not subject to influence by con-
current PDV infection. Washburn et al. (1996) strongly implicated
the PDV-mediated abrogation of hemocytic encapsulation of in-
fected cells as the reason for a rapid spread of ACMNPV in a “highly
refractory” host, H. zea. Other work by McNeil et al. (2010b) does
not lend strong support for that mechanism achieving the same
protective role in the gypsy moth-LAMNPV system. They found
strong evidence for some encapsulation and melanization after
LdMNPV challenge, but no obvious correlation between these
and observed mortality. It may be that the gypsy moth-CmeBV-
LdMNPV system is somehow atypical, although we will have to re-
peat our work, adding budded baculovirus injections and using
both C. melanoscela and G. flavicoxis PDVs, before further
conjecture.

Questions raised by this and similar studies emphasize the
usefulness of PDVs in unraveling the sequence and mechanisms
of insect baculovirus resistance. The continued exploration of
interactions between polydnaviruses and baculoviruses, in this
system as well as others, is therefore likely to be fruitful on both
a microbiological and ecological basis.
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