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Abstract After identifying 114 microsatellite loci from

Choristoneura fumiferana expressed sequence tags, 87 loci

were assayed in a panel of 11 wild-caught individuals,

giving 29 polymorphic loci. Further analysis of 20 of these

loci on 31 individuals collected from a single population in

northern Minnesota identified 14 in Hardy–Weinberg

equilibrium.
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Expressed sequence tags (ESTs) are valuable resources for

rapid discovery of genetic variation, including microsatel-

lites (simple sequence repeats, SSRs). Despite their con-

served nature relative to genomic SSRs and lower levels of

polymorphism (Kim et al. 2008), EST-SSRs make good

candidates for use in population genetic studies due to a

lower incidence of null alleles and ease of use. This is

particularly beneficial for SSR development in Lepidop-

tera, insects known to have high levels of transposable

elements that complicate marker development (Sinama

et al. 2011; van’t Hof et al. 2007; Zhang 2004).

The spruce budworm [Choristoneura fumiferana

(Clemens)] is the most ecologically important defoliator of

North American coniferous forests (Volney and Fleming

2007). Although the spruce budworm is not itself an

endangered species, it is nonetheless of great conservation

interest because of its role in determining structure within

North America’s boreal forest ecozone. Its geographical

distribution covers the boreal forest across Canada ranging

from the Atlantic coast to the Yukon and Alaska, an area of

*1 billion hectares of forested land (Volney and Fleming

2000). As one of the world’s largest resources of seques-

tered carbon (and therefore a significant contributor to the

global carbon cycle), the boreal forest is of global con-

servation importance. Ironically however, the boreal forest

is increasingly threatened by industry (e.g. oil exploration

and extraction, timber harvesting) and natural disturbances

(e.g. climate change, wildfire, insect outbreak). Impacts

caused by the spruce budworm alone have been known to

account for more than 30 % of the total forested area

depleted annually in Canada (Volney and Fleming 2000).

Although, dendrochronological reconstruction of spruce

budworm population cycles and forest structure has been

documented for the last 400 years (Boulanger et al. 2012),

surprisingly little is known about the synchronization of

population cycles and dispersal patterns of the spruce

budworm throughout its range (Anderson and Sturtevant

2011). This gap is largely due to a paucity of genetic

markers from which fine-scaled surveys of population

structure can be attained. Here, we characterize SSRs

derived from EST libraries of the spruce budworm that

complement an existing SSR resource developed by
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Lumley et al. (2009) using traditional genomic isolation

techniques.

Trace files for 41,230 ESTs of C. fumiferana, were base-

called, assigned quality values, and trimmed of low-quality

sequence using Phred v.0.071220.b (Ewing et al. 2008).

Sequencing artifacts were removed from the quality filtered

ESTs using Figaro v.1.05 (White et al. 2008) and SeqClean

(http://compbio.dfci.harvard.edu/tgi/software/). Sequences

were then assembled with TGICL (Pertea et al. 2002) by

assembling ESTs in one direction. Approximately 1,893

unigenes and 1,406 singletons resulted from this

processing.

Using a custom Perl script (Beldade et al. 2009) 150

EST-SSRs were discovered with at least three repeats of

2–5 bases in length. These were reduced to 114 unique loci

after accounting for redundancy among loci using Micro-

Family v.1.2 (Meglecz 2007). Primer3 (Rozen and

Skaletsky 2000) was used to find primer sequences

between 20 and 25 bases in length that yielded amplicons

between 100 and 150 bases for each locus. Primers for 87

loci were designed using these criteria (Online Resource 1).

A validation panel of 11 C. fumiferana individuals (four

females and seven males) collected throughout Alberta was

used to test loci for amplification success. Microsatellites

were amplified in 10 lL reactions containing 1X PCR

buffer (10 mM Tris pH8.8, 0.1 % Triton X-100, 50 mM

KCl, 0.16 mg/ml BSA), 2.5 mM MgCl2, 0.2 mM dNTPs,

0.1 lM M13-tagged forward primer, 0.4 lm reverse pri-

mer, 0.4 lm fluorophore-tagged M13 primer, 0.1 U/lL

Taq polymerase and 1 lL of template DNA (5 ng/lL).

PCR cycling was as follows: 95 �C (3 min); 10 cycles of

94 �C (35 s), annealing temperature (Ta) plus 10 �C

(-1 �C/cycle) (35 s) and 72 �C (45 s); 30 cycles of 94 �C

(35 s), 53 �C (35 s) 72 �C (45 s); and 72 �C (20 min).

Table 1 Summary data for 20 EST-SSRs tested on 31 individuals of Choristoneura fumiferana from the Border Lakes landscape of northern

Minnesota

Locus Label Repeat Motif Ta (�C) MgCl2 (mM) n Na Range Ho (He) HWE

Fum107 VIC (TAA)4 57 2.5 31 2 133–136 0.1612 (0.2522) 0.0929

Fum120 NED (CTG)6 55 1.5 31 4 134–148 0.5161 (0.5684) 0.7483

Fum122 6FAM (TCA)4 59 2.5 31 3 108–114 0.1935 (0.1803) 1.0000

Fum128 NED (TGTT)4 57 2.5 31 2 124–140 0.0322 –

Fum129 NED (ATAA)4 59 2.5 30 10 139–160 0.2000 (0.7316) 0*

Fum130 PET (TACC)4 55 1.5 31 2 135–145 0 (0.0634) 0.0168*

Fum133a NED (GAG)4 53 3.5 31 2 101–103 0.0967 (0.0936) 1.0000

Fum137 PET (GCA)6 59 2.5 31 2 106–109 0 (0.0634) 0.0166*

Fum145 PET (ACT)6 59 2.5 31 5 140–153 0.2580 (0.4077) 0.0134*

Fum147 VIC (AAT)4 53 3.5 31 4 102–109 0.8064 (0.6409) 0.0992

Fum149 6FAM (TA)7 55 1.5 29 4 138–144 0.0689 (0.1336) 0.0359*

Fum157 VIC (GA)7 55 1.5 31 3 147–150 0.1612 (0.2363) 0.0097

Fum160 VIC (CGT)5 57 3.5 31 3 133–139 0.3548 (0.3484) 1.0000

Fum164 PET (ATA)5 57 3.5 31 5 120–127 0.1612 (0.5949) 0*

Fum169 NED (AAT)6 55 3.5 31 4 144–150 0.0645 (0.1253) 0.0332*

Fum170 6FAM (ATA)5 59 2.5 31 3 143–150 0.2903 (0.4965) 0.0086*

Fum171 PET (GAG)4 59 2.5 31 1 112 0 –

Fum177 NED (AG)7 59 3.5 24 10 133–155 0.3333 (0.8617) 0*

Fum185 6FAM (TCATA)4 59 3.5 31 5 130–140 0.5161 (0.6430) 0.0004

Fum187 6FAM (AGG)5 59 2.5 31 3 101–110 0.4516 (0.4394) 1.0000

Locus is the EST-SSR name with italics indicating loci that had inconsistent or low amplification success using a validation panel of 11

individuals, Label is the fluorophore used in PCR amplification (primer sequences are identified in Online Resource 1), Repeat Motif is the SSR

sequence (in parentheses) and number of repeats (subscript), Ta and MgCl2 are the optimal annealing temperature and magnesium chloride

concentrations used during PCR, n is the number of individuals assayed, Na and Range are the number of alleles detected and their respective size

ranges (ranges are italicized if allele sizes are not multiples of the repeat length suggesting the presence of indels), Ho(He) is the observed and

expected heterozygosity (only a single value if no difference), and HWE is the P value for a test of deviation from Hardy–Weinberg equilibrium

(italics indicate significant deviation after Bonferroni correction, P \ 0.0025). * Loci with excess homozygosity. a Peaks 105 bases in length

were also present in all individuals at this locus as would be expected based on information from Online Resource 1, indicating that the size range

reported here may be due to unspecific amplification, but nonetheless the peaks in the size range reported here behaved in a manner similar to

SSRs
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A Ta of 53 �C was used for M13-tagged primers (Schuelke

2000). Amplicons were co-loaded and diluted 1:30 in

water, and 1 lL was added to 8.7 lL of Hi-Dye formamide

(ABI) and 0.3 lL of GeneScan 500-LIZ size standard

(ABI) and analyzed using an ABI 3730 sequencer.

GeneMapper v.4.0 (ABI) was used to visualize and score

genotypes. Genetic diversity statistics were obtained using

the Excel Microsatellite Toolkit (Park 2001) (Online

Resource 1). Tests for Hardy–Weinberg equilibrium

(HWE) and linkage disequilibrium (LD) were performed

using GenePop v.1.2 web server (Raymond and Rousset

1995; Rousset 2008).

Of the 87 loci tested, 59 produced detectable peaks in at

least six individuals. Monomorphism was observed in 23

loci, and seven loci had inconsistent peak patterns that

could not be reliably genotyped. Of the remaining 29

polymorphic loci, five had low allele frequencies and could

not be tested for HWE, and one locus deviated from HWE

(Online Resource 1). Evidence for null alleles was found

for six loci using MicroChecker v.2.2.3 (van Oosterhout

et al. 2004) (Online Resource 1). Significant linkage dis-

equilibrium was not detected. The number of alleles per

locus ranged from 2 to 8 with an average of 3.52. Observed

and expected heterozygosity ranged from 0–0.91 (averag-

ing 0.336) and 0.09–0.9 (averaging 0.438), respectively.

Since M13-tagged forward primers are known to com-

plicate PCR amplification (de Arruda et al. 2010) we also

obtained 50 fluorescently labeled primers for 20 loci

(including all that seemed potentially useful in the test

panel) and assayed these in 31 individuals from northern

Minnesota. Optimization of Ta and MgCl2 concentrations

was performed for each locus to increase amplification

success (Table 1). Of these 20 loci, two had low allele

frequencies and four had allele frequencies that deviated

from HWE (Table 1). The remaining 14 loci satisfied

HWE (Bonferroni corrected P \ 0.0025). Significant LD

was detected between two loci, Fum145 and Fum160

(P = 0.0006). Observed and expected heterozygosity ran-

ged from 0–0.806 (averaging 0.233) and 0–0.862 (aver-

aging 0.346), respectively. In comparison with the eight

SSR loci previously developed by Lumley et al. (2009), our

reliance on an EST resource has nearly tripled the number

of useful SSRs but required only a fraction of the time

needed using traditional cloning techniques.
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