
Carbon emissions from deforestation and forest degra-
dation in tropical regions are estimated to be 2.9 PgC 
per year, equivalent to 38% of the carbon emissions 
from fossil fuels during the years 1990–2007 [1]. On 
the other hand, tropical forest regrowth amounts to a 
carbon sink of 1.6 PgC per year, which offsets a signifi-
cant proportion of emissions, resulting in a net carbon 
balance in tropical forests of -1.3 PgC per year. REDD+ 
is a mechanism proposed by the UN to facilitate tropical 
countries’ participation in climate change mitigation. 
According to the IPCC [2], reducing deforestation is 
the forestry mitigation option with the largest and most 
immediate effect on atmospheric CO

2
 concentration.

First proposed at a COP to the UNFCCC in 2005, 
REDD (without the +) generated a great deal of interest 
among countries with high rates of deforestation and 
forest degradation, because under the proposed pro-
gram, they could receive payments from other countries 
or entities that wished to offset their fossil fuel emissions 

[201]. Initially, the nature of REDD did not allow for 
participation by countries that were already highly 
deforested or had low rates of deforestation; hence, the 
‘+’ was added as a way to encourage participation by 
countries where improvements in forest management, 
conservation and enhancement of forest carbon stocks 
could be included in the REDD mechanism. 

In this review we focus on the current state of moni-
toring systems to support implementing REDD+ in 
tropical countries. Monitoring requirements for the 
three main activities – hereafter referred to as defores-
tation, degradation and improving forest management 
– confer unique challenges, as well as the need to be 
integrated into a holistic approach that is also consistent 
with other forest monitoring requirements. For example, 
in addition to implementing programmatic activities, 
such as REDD+ on specific areas, tropical countries 
are also required to periodically report national GHG 
emissions and sinks [202]. 
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Reporting and monitoring guide-
lines are available from different 
sources, including the IPCC and 
the UN, among many others [3]. 
However, in application, monitor-
ing programs to support REDD+ 
are still evolving as countries grap-
ple with implementing the appro-
priate methods in varying national 
circumstances such as existence of 
national or regional inventory and 
monitoring systems, stability of 
institutions to conduct the monitor-
ing, and availability of expertise to 
perform the required planning, data 
collection and analyses. 

The broad theme of this review is to provide guid-
ance on emerging approaches to measurement, report-
ing and verification (MRV) in tropical countries, and 
how to deploy these approaches so that MRV systems 
can evolve to meet future needs. Elements of approaches 
included in this review are forest inventories, remote-
sensing, intensive monitoring sites and models, which 
may be integrated for MRV purposes including estima-
tion of uncertainty. Traditional forest inventories, often 
targeted to timber assessment and therefore not usually 
measuring all carbon pools, must be augmented with 
additional observations and data required specifically for 
REDD+, including information needed to build mod-
els to improve estimates of the different carbon pools. 
Improvements may be needed in remote sensing of land 
cover and land-cover change for detecting deforestation 
and degradation, and more intensive field observations 
are required to assess effects of these activities and natu-
ral disturbances on above- and below-ground biomass, 
dead organic matter and soil carbon pools. Models are 
fundamental to making useful estimates from avail-
able data and are also required to project baselines of 
anticipated future GHG emissions under scenarios of 
‘business-as-usual’ rates of deforestation, degradation 
and improved forest management. Baselines are also 
compared with the actual emissions and removals, and 
form the basis for the accounting of credits or debits 
resulting from the implementation of REDD+ strate-
gies. Improvements in estimation processes are needed 
to integrate multiple data sources and models and assess 
the uncertainty of complex estimation methods.

This review is based on recent work in selected tropi-
cal countries, as well as established forest inventory and 
monitoring systems in temperate and boreal countries. 
In many countries, MRV systems are being actively 
developed and tested following the general guidelines 
provided by the IPCC, the FAO and other interna-
tional organizations. For example, the US ‘SilvaCarbon’ 

program provides technical advice and assistance from 
different agencies regarding the use of remote sensing 
and inventories, including currently active programs in 
Peru, Ecuador, Colombia, Gabon and Vietnam [203]. 
Mexico is among the few tropical countries that already 
have an established national forest inventory with 
repeated measurements to use as a strong foundation 
for MRV. Some countries such as Ecuador have recently 
completed a first national forest inventory, Colombia is 
developing a proposal for an MRV system and national 
forest inventory, while Peru has designed and is just 
beginning to implement its national forest inventory. 

Monitoring & reporting requirements for REDD+
The UNFCCC national GHG inventory reports require 
estimates of GHG emissions and removals by economic 
sector, including ‘land use, land-use change and for-
estry’. Estimation and reporting guidelines are provided 
by the IPCC Task Force on National Greenhouse Gas 
Emissions [204], and are documented in the ‘2003 Good 
Practice Guidance’ and the ‘2006 IPCC Guidelines for 
National Greenhouse Gas Inventories’ [4,5]. The tech-
nical guidance for the forest sector recognizes indi-
vidual countries’ national circumstances by providing 
flexibility in methodology, and a three-tiered approach:

�� Tier 1: uses IPCC default values for carbon stocks in 
different ecoregions and country-specific activity 
data;

�� Tier 2: uses country-specific data about forests and 
carbon stocks within detailed strata, and country-
specific activity data;

�� Tier  3: uses inventories with repeated direct 
measurements of changes in carbon stocks, or models 
parameterized with country-specif ic data, and 
country-specific activity data.

Moving from tier 1 to tier 3 increases the level of effort 
required and therefore the cost of the monitoring sys-
tem, but improves the accuracy of estimates and utility 
of the information for assessing alternative mitigation 
approaches. Countries are encouraged to use the best 
possible methodology appropriate to their national 
circumstances and to improve estimates over time by 
moving from lower to higher tiers, and by identifying, 
quantifying and reducing uncertainties as far as prac-
ticable. In the context of the IPCC, reducing uncer-
tainties in GHG inventories refers to the uncertainty 
of the reported estimates and all of their components, 
which may include uncertainty arising from the use of 
default volume to biomass-expansion factors, sampling, 
modeling and systematic errors, to name a few of the 
possible contributors to uncertainty. The IPCC does 
not predetermine a required level of precision; rather, 

Key term

Allometric equations: Establish a 
quantitative relationship between 
characteristic dimensions of trees such 
as diameter of the bole or total tree 
height, and another tree property such 
as volume or biomass, which is much 
more difficult to measure directly. This 
relationship is typically based on 
detailed measurement of the desired 
tree property on a small number of 
trees representing a population of 
interest, and then extrapolated to a 
much larger sample of trees based on 
the allometric relationship to the 
simpler measurements, which can be 
more widely deployed.
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countries are encouraged to use the uncertainty analyses 
to help improve the accuracy of inventories and guide 
decisions on methodological choices. The IPCC guide-
lines provide information about estimating uncertainty 
for the different estimation components of each tier [4,5]. 

With respect to REDD+, national GHG invento-
ries provide an important large-scale benchmark that 
reflects the net effect of all factors, both anthropogenic 
and natural, that affect ‘managed forests’, as defined by 
each country. Estimates of the effects of activities falling 
under REDD+ should be consistent with the national-
scale estimates for managed forests; however, REDD+ 
activities are likely to be targeted to specific projects or 
regions, and so national inventories that do not include 
intensified sampling in areas of change may not provide 
estimates of emissions reductions from activities such 
as deforestation, which affect only a small percentage 
of the forest area annually (annual average of 0.6% of 
forest area globally) [1].

National GHG inventories inform policymakers about 
the magnitude of emissions associated with deforestation 
and degradation, and thus the importance and urgency 
of investing in their avoidance. They also inform poli-
cymakers about opportunities to increase carbon stocks 
through improved forest management. Another impor-
tant function of the national inventories is to provide 
country-specific standards for measurement, estimation, 
reporting and accounting within the established interna-
tional guidelines. National standards then provide guid-
ance for estimation at the smaller scales of individual 
projects, such as the definition of a forest and the differ-
ent forest carbon pools, and elements of estimation meth-
ods such as biomass equations. National standards allow 
estimates at different scales to be consistent and additive.

Markets and GHG registries are often targeted to 
individual projects or legally defined entities such as 
companies, individual landowners, NGOs and com-
munities. Each market or registry has its own reporting 
requirements that typically involve comparison of two 
scenarios – business-as-usual (without the project) and 
a second scenario representing the difference in carbon 
stocks or rates of change that result from the project. 
Ideally, these markets and registries conform to national 
and international guidelines so that any awarded or 
registered carbon credits are fungible. Usually, markets 
and registries specify an accuracy standard and require 
specific approaches for inventory and estimation, as 
well as clearly defining the acceptable activities, eligible 
entities and geographic scope (e.g., California’s Climate 
Registry) [205]. 

Some policy approaches to REDD+ involve govern-
ment regulations or incentives to land managers to 
change the practices applied to their land. For exam-
ple, the Mexican government provides payments for 

ecosystem services (hydrological, but includes avoided 
deforestation), and these payments are based only on the 
area treated and maintained [6]. In the case of incentive 
programs, reporting may only require data about the 
area affected by allowable practices and assurance that 
the revised land management practices remain effec-
tive for a specified period of time, rather than a full 
accounting of the impacts on carbon stocks.

Elements of approaches 
Estimating and mapping forest carbon and other typi-
cal inventory variables such as timber volume usually 
involves a combination of two or more methods: remote-
sensing, field measurements, intensive sites and model-
ing. In this section we describe the basic elements that 
are being used for monitoring changes in carbon stocks, 
and some ways to integrate them into a reporting system. 
This is an active topic of research and several global 
initiatives are underway to improve integrated moni-
toring of forests from space and on the ground, such as 
the international program Global Observation of Forest 
and Land Cover Dynamics [206], and the Global Forest 
Observation Initiative [207]. 

�  � National forest inventories & traditional  
field methods 
National forest inventories can be the foundation of a 
‘tier 3’ approach to forest carbon monitoring, either as 
an initial inventory of stocks from which changes can 
be estimated based on knowledge of effects of different 
factors such as harvesting and natural disturbances, or 
as a direct estimate of stock change from repeated inven-
tories. One of the main forest carbon pools, forest bio-
mass, has traditionally been measured and monitored 
with forest inventory methods originally developed 
many decades ago for assessing timber supplies [7]. For-
est inventories involve systematic or random selection 
of sampling locations in areas as large as countries; field 
measurements of tree parameters such as species, diam-
eter and height; and allometric equations to estimate a 
variable of interest that is difficult to directly measure 
(e.g., timber volume or biomass) [8]. The inventory 
sampling approach provides unbiased estimates with 
known sampling uncertainty, although the uncertainty 
attributed to the use of allometric equations or models 
is infrequently estimated [9]. Monte Carlo estimation 
methods (discussed later in this Review) may be used 
to assess the overall uncertainty of a nation’s GHG 
inventory [10]. National inventories are often targeted 
to assess the population of live and dead trees in a for-
est. Other ecosystem carbon pools may be estimated 
directly, with supplemental measurements added to the 
inventory or modeled using exogenous data [11]. Most of 
the global statistics on forest biomass and other forest 
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attributes reported by the FAO are 
based on national forest inventories 
[12], and in some cases, an image-
sampling approach. From these 
comprehensive statistics it is pos-
sible to develop global estimates of 
biomass and other carbon pools for 
the last two decades based primar-
ily on ground data, including forest 
inventories and other field sampling 
networks [1].

Allometric equations are used to 
estimate the biomass of individual 
trees from field measurements such 
as tree diameter and height. Typi-
cally, biomass equations are devel-
oped for a population of trees by 
harvesting and weighing a small 
sample of them across a range of 
diameter and/or height classes, and 
then estimating parameters of an 
equation relating biomass to these 
measured variables using regres-
sion techniques. Individual tree 
estimates may be expanded to the 
population of trees by knowing the 
probability of sampling each tree 
and the area to which the sample 
applies. Another approach is to 
derive an ‘expansion factor’ whereby 
biomass is estimated as a function of 
volume, which was previously esti-
mated as a function of tree diam-
eter and bole length. Variations on 
these standard methods are also 
possible [13,14]. In practice, especially 
for large regions, there is usually a 
scarcity of representative biomass or 
volume equations so that only a few 
equations are available, representing 
populations of trees that may be dif-

ferent from the population of interest [15]. This is par-
ticularly true in tropical regions where such work has 
been lacking, although the methods are well known [16]. 
Available local biomass equations may be aggregated to 
provide more generalized regional equations that may be 
used for large areas but are not necessarily appropriate 
for specific forest tracts that are not likely to be repre-
sented by a regional average value [8,17]. When local or 
species-specific biomass equations are not available, a 
typical situation in tropical forests, it is common to use a 
generalized biomass equation. Several general regression 
equations are available for estimating tropical forest bio-
mass, and a recent study has shown that valid estimates 

of tree biomass for any species can be made using three 
independent variables: tree diameter, tree height and 
wood specific gravity [18]. Several different regression 
models may be used with these variables, and the mod-
els are likely to be less biased and have smaller residual 
standard errors if developed separately by forest type 
[18]. Countries may also wish to consult a new database 
of allometric equations available for use in estimating 
volume, biomass and carbon [208].

Estimating the change in biomass of live trees from 
forest inventories requires successive measurements of 
sample plots, typically the same sample plots measured 
at an interval of at least several years to allow accu-
rate measurement of an average rate of change in tree 
diameter and height. Measurements should be made on 
individual marked survivor trees at both points in time, 
on trees that grow into the sample by crossing a mini-
mum diameter threshold (ingrowth trees, measured at 
the second inventory), and on trees that died during 
the interval [19]. Corrections must be made for the tim-
ing of ingrowth or tree death to account for the actual 
increments that occurred over part of the time interval.

Other forest carbon pools – standing dead trees, forest 
floor, down dead wood, soil organic carbon, understory 
vegetation, and carbon in harvested wood – may be sur-
veyed along with trees in a national inventory, or may 
be estimated with empirical models that relate these 
variables to standard inventory estimates of volume, 
biomass, forest composition, forest age and other cat-
egorical variables, such as ecoregion or climate zone, or 
with models that estimate changes as a result of biomass 
dynamics and disturbance history [7,20]. The IPCC pro-
vides guidelines for assessing these carbon pools, and 
there are several references available that summarize 
methods that are appropriate in different circumstances 
[4,5,8]. Descriptions of several different approaches for 
combining forest inventories with data from intensive 
sites (described later in this Review), including details of 
the data requirements and models used, are available for 
the three North American countries [21–23]. 

In the USA where there are data available from many 
ecosystem studies in different ecoregions and forest 
types, estimates of other forest carbon pools for the 
national GHG inventory have been made using a tier 2 
approach [22]: carbon in standing dead trees and down 
dead wood is estimated using equations or ratios relating 
these quantities to live tree mass; and carbon in litter 
and soils is estimated with equations relating litter mass 
to stand age or time since disturbance. More recently, 
to move toward a tier 3 approach for these variables in 
the USA, carbon in standing dead trees and down dead 
wood has been estimated from inventory measurements 
of these variables on a subset of the national inventory 
sample plots [24]. The relative uncertainty of the different 

Key terms 

Live trees: Live trees with a specified 
minimum diameter at breast height 
(diameter at breast height typically 
2.5 cm), including carbon mass of 
coarse roots (typically greater than 
0.2–0.5 cm), stems, branches and 
foliage.

Standing dead trees: Standing dead 
trees with diameter at breast height 
typically greater than 2.5 cm, including 
carbon mass of coarse roots, stems and 
branches.

Forest floor: Organic material on the 
floor of the forest, which includes fine 
woody debris up to 7.5 cm in diameter, 
tree litter, humus and fine roots in the 
organic forest floor layer above 
mineral soil.

Down dead wood: Woody material that 
includes logging residue and other 
coarse dead wood on the ground that is 
larger than 7.5 cm in diameter, and 
stumps and coarse roots of stumps.

Soil organic carbon: Belowground 
carbon without coarse roots, but 
including fine roots and all other 
organic carbon not included in other 
pools, to a depth of 1 m.

Understory vegetation: Live vegetation 
that includes the roots, stems, branches 
and foliage of tree seedlings (typically 
trees <2.5 cm diameter at breast height), 
shrubs and bushes.

Carbon in harvested wood: Includes 
products in use and in landfills. 
‘Products in use’ include end-use 
products that have not been discarded 
or otherwise destroyed. Examples 
include residential and nonresidential 
construction, wooden containers and 
paper products. ‘Products in landfills’ 
include discarded wood and paper 
placed in landfills where most carbon is 
stored long  term and only a small 
portion of the material is assumed to 
degrade, at a slow rate.
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variable estimates for the USA suggests that the largest 
carbon pools – live trees and soil – contribute the most 
to the overall estimates of forest carbon stocks and stock 
changes, as might be expected [25]. The overall uncer-
tainty of the estimated changes in forest carbon stocks 
for the USA is approximately 21% [26]. 

In tropical countries where sufficient field observations 
may be lacking, the IPCC recommends using generic 
emissions factors for tropical regions provided in their 
documentation (a tier 1 approach) but also recommends 
that such factors be developed with country-specific data 
where and when possible, to advance to a tier 2 approach 
[4,5]. However, it takes resources and time to implement 
the more intensive field studies required to represent the 
main ecoregions and forest types within a country.

In practice, forest inventories are often implemented 
with simple random sampling of an area or with a com-
bination of remote sensing and field measurements using 
regression estimators, stratified sampling or two-phase 
sampling with regression estimators. A recent review 
paper compared these different sampling approaches 
to address the important issue of cost efficiency in the 
development of forest carbon stock assessments and the 
selection of remote-sensing techniques [27]. The authors 
recommended that implementation of monitoring sys-
tems for REDD+ should be based on an optimization 
process that compares different data sources and sampling 
designs, to reduce the costs and uncertainties. 

To estimate changes in forest area, forest inventories 
may be combined with remote sensing; or changes in 
forest area may be estimated using only the proportion 
of field sample points that are classified as forest on the 
ground [28]. Regardless of the approach used, it is impor-
tant to estimate both the gross gains and losses, and the 
net change. If only the net change is estimated, significant 
losses and gains of forest area, and the associated car-
bon emissions and removals, may not be revealed. Since 
REDD+ is concerned with both losses of forest land from 
deforestation and increases in forest land from agriculture 
reversions back to forest, full knowledge of these losses 
and gains is an essential component of a useful monitor-
ing system for REDD+. Even if the area of forest land 
remains constant, biomass losses from deforestation can 
be substantially higher than biomass gains on new forest 
land, because biomass growth is slow compared with the 
rapid loss from harvesting. 

�  � Remote sensing for carbon monitoring
Here we briefly review the types and uses of remote-
sensing for carbon monitoring and how remote sensing 
data is integrated with ground truth and models. A more 
in-depth overview of different remotely sensed and field 
measurements, and their capabilities and applications 
with respect to REDD+, is presented by Havemann [13]. 

Aerial photographs have been 
used for more than 80  years in 
forest inventories to estimate the 
proportion of land classified as for-
est in a given sampling area, and 
as a first-phase sample in a dou-
ble-sampling strategy [29]. More 
recently, Landsat satellites have 
provided a time series of remotely 
sensed digital images spanning 
30 years, and the images are now 
used widely for monitoring bio-
mass and carbon stocks. Landsat 
data are particularly suitable for 
classifying vegetation and assess-
ing attributes such as forest cover 
percent, leaf area index and dis-
turbances, key variables for spatial 
ecosystem models and for estimat-
ing biomass [30]. Although Landsat 
imagery does not directly estimate 
biomass, spectral attributes are 
related to biomass and can be used 
in conjunction with field data and models to pro-
vide spatially explicit estimates of biomass and other 
vegetation attributes over large areas such as North 
America [31]. There are several approaches used to 
combine satellite data, models and field data for esti-
mating biomass and biomass change [32,33,209]. These 
approaches involve using either empirical or process 
models (described later in this article) for integrating 
information that may include satellite data (e.g., land 
cover or Normalized Difference Vegetation Index), 
spatial data such as climate and topography, and 
field-based biomass estimates that are correlated with 
these variables and originally derived from the allo-
metric relationships between biomass and frequently 
measured tree attributes. 

The MODIS satellite has also had a long history of 
providing useful information about forest biomass, 
productivity and disturbances over large regions at 
coarse spatial resolution [34,35]. The daily temporal 
resolution yields more frequent cloud-free images 
that make this sensor particularly useful in tropical 
regions with persistent cloud cover [13]. One limita-
tion of both Landsat and MODIS is that the passive 
optical signals ‘saturate’ at moderate-to-high levels of 
leaf area, so that these sensors cannot differentiate 
between ecosystems with moderate-to-high levels of 
biomass [36]. Landsat and MODIS are also unable to 
detect early regrowth of secondary vegetation, and do 
not reveal small disturbances such as removal of indi-
vidual trees, which may be important for monitoring 
forest degradation. 

Key terms 

Empirical models: Describe the 
statistical relationship between 
observed variables or experimental 
data, and are approximate 
representations of the systems that 
generated the data. These models are 
typically used to describe the current 
state of a system or trends, and are 
sometimes used for making projections. 
An allometric equation (described 
above) is an example of an  
empirical model.

Process models: Often referred to as 
mechanistic models, explicitly represent 
an understanding of biological, 
chemical and/or physical processes, and 
attempt to quantify relationships 
among variables by their underlying 
casual mechanisms. Because of this 
mechanistic basis, process models are 
often considered to be better able to 
extrapolate relationships beyond the 
current or observed state, and may be 
particularly useful for making 
projections.
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The detection limitations of Landsat and MODIS 
can be overcome by high-resolution optical sensors, 
aerial photographs and active sensors such as Light 
Detection and Ranging (LiDAR) or Synthetic Aperture 
Radar. Application of these remote-sensing instruments 
is currently limited to smaller areas because of the high 
volume of data and cost [13]. However, high-resolution 
sensors can be used to monitor individual trees or small 
disturbances, and have many uses in forest monitoring 
at smaller spatial scales. Synthetic Aperture Radar has 
the distinct advantage in tropical regions of penetrating 
clouds that mask the Earth from optical sensors, and 
can provide information about vegetation height and 
structure. Recently, LiDAR has gained popularity for 
high spatial resolution biomass estimation. LiDAR is an 
active optical sensor that can accurately measure veg-
etation height, does not saturate as quickly as Landsat 
under high-biomass conditions, and has been shown 
to be effective at estimating and mapping biomass at 
smaller scales, although when used as part of a sampling 
design such as strip sampling, may also be appropriate 
for large-scale estimation [37–39]. 

When using remote sensing for estimating changes 
in forest cover, it is important to distinguish ‘forest 
cover’ from ‘forest land’, which is typically reported 
by forest inventories and has a land-use connotation. 
From the forest inventory perspective, and as defined 
by FAO, forest land may include areas that are tem-
porarily treeless as a result of harvesting or natural 
disturbance. This same land may be classified into a 
nonforest category from remote-sensing of land cover, 
and in a forest category from an inventory of forest 
land. The opposite is also true – the FAO forest defi-
nition does not include land that is predominantly 
agricultural or urban, even if such land has some tree 
cover. Failing to account for these differences can have 
a significant effect on the resulting estimates and make 
comparisons between different approaches confusing. 
For example, a recent study used MODIS and Landsat 
imagery to assess global forest cover loss, indicating 
that many areas were losing large amounts of forest 
cover; however, many of these areas were not consid-
ered to represent losses of forest land from the forest 
inventory perspective [40]. Many of the losses were tem-
porary removals of trees followed by regrowth and not 
deforestation events.

�  � The role of intensive monitoring sites 
Even with advances in forest inventories and remote 
sensing, the uncertainty associated with estima-
tion of CO

2
 emissions and removals in the land use, 

land-use change and forestry sector remains relatively 
high because of the difficulties to estimate stocks and 
stock changes for all of the carbon pools. One way to 

overcome this limitation and to reduce the uncertainty 
is to have detailed information, generated at a fine scale 
in intensive monitoring sites, of: 

�� Carbon stocks and rates of change for carbon pools 
that may not be easily quantified over large areas by 
extensive field measurements; 

�� Processes of CO
2
 uptake, sequestration and release to 

the atmosphere that can help explain observed changes 
that result from management or disturbance [41]. 

This information, in turn, can be used to develop emis-
sion factors or to parameterize models to scale-up esti-
mates to regional and national levels when combined 
with remote sensing and national forest inventories. 

Detailed information from intensive monitoring 
sites provides data about physiological parameters to 
develop and test models of carbon exchange, and to 
relate carbon fluxes to remote-sensing data. Physiologi-
cal and ecological measurements on these sites allow 
separation of the components of carbon fluxes, such 
as CO

2
 fixation rates, autotrophic and heterotrophic 

respiration, litter fall, decay rates of organic matter, 
and forest growth and mortality rates. These variables 
can reveal the mechanisms responsible for the fluxes, 
facilitate the use of models for the various uses in the 
assessment and reporting process, and design forest-
management systems for increasing carbon stocks. 
Intensive monitoring sites provide data and informa-
tion necessary to transition to higher tiers in MRV 
systems. These sites can also be valuable in cross-vali-
dation research through the testing of different MRV 
methods, and can provide or generate information 
for designing and implementing forest-management 
practices that can reduce emissions or increase carbon 
stocks at regional or state (province) scales. They also 
serve as centers for technology transfer and education 
centers for communities, and training for students, 
technicians and government personnel involved with 
forest ecosystem management. 

Data collection and analysis of information from 
intensive monitoring sites is typically based on a hier-
archical monitoring approach. Both ‘bottom-up’ and 
‘top-down’ analysis approaches are combined across 
multiple spatial and temporal scales, with intensive 
and detailed studies providing specific information to 
scale-up through the use of remote-sensing techniques, 
extensive forest inventories (Table 1), and empirical and 
process modeling. Ideally, an intensive monitoring site 
should have three basic components, although the exact 
combinations of data collections and sampling designs 
are variable depending on site conditions and the objec-
tives for establishing and maintaining the sites that 
may not be targeted specifically to improve estimates 
of carbon stocks and fluxes:
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Ground plots
A dense network of ground plots for measurement 
of biomass and carbon stocks, and for monitoring 
carbon f luxes and growth and mortality rates. The 
plot layout should ideally follow the same protocol for 
sampling common variables as that used for national 
forest inventories to facilitate the consistency with 
field measurements following international standards. 
Analyzing the accumulation process of biomass and 
carbon in a network of plots in intensive sites will 
ensure that information collected represents ecosys-
tems and forest types over a large region. Also, local 
estimation from ground plots will improve estimates 
of carbon accumulation and the upscaling processes 
when they are linked to data from national forest 
inventories. 

Flux tower 
A tower that extends above the forest canopy, instru-
mented to measure the exchange of water, energy and 
CO

2
 between the forest and the atmosphere using 

a statistical technique known as ‘eddy covariance’. 
A nondestructive technique, eddy covariance can be 
applied to timescales varying from minutes to years, 
and therefore is ideal to capture CO

2
 f luxes across 

different climate conditions from diurnal cycles to 
long-term environmental changes [42,43]. The informa-
tion generated by eddy covariance methods, coupled 
with extensive forest inventories and remote-sensed 
data into a data-assimilation framework [44], can be 
used to parameterize ecosystem models to support 
tier 3 reporting.

Remote sensing 
A library of remote-sensing data from different sen-
sors and resolutions, both spatial and temporal. Land 
cover and land-cover change are two variables that can 
be estimated with remote-sensing techniques, provide 
critical information about land-management activities 
and natural disturbances, and are fundamental to esti-
mate emissions and removal of CO

2
 at regional and 

national scales. Increasingly, stand structural informa-
tion directly related to biomass estimation is becoming 
available from spaceborne and airborne sensors.

These components may be integrated into the MRV 
system using a variety of approaches – a few examples 
are provided here for illustration. A formal technique 
used to combine data and assess uncertainties from dif-
ferent studies that typically do not use the same meth-
ods is known as meta-analysis. This technique was used 
to quantify the effect of harvesting on soil carbon of 
temperate forests and it was found that, on average, 
harvesting reduced soil carbon by an average of 8 ± 3% 
(95% CI), with differences between forest types and 
soil layers [45]. Intensive sites having a broad suite of 
flux tower data and biometric measurements can result 
in comprehensive assessments of productivity, carbon 
allocation among pools and storage [46]. In developing 
such assessments, each individual measurement may 
have its own analysis method, and then the individual 
elements of the ecosystem carbon budget must be com-
bined and their uncertainties estimated according to the 
understanding of relationships between physiological 
processes [46]. Data from eddy flux towers collected over 
a period of years or at several contrasting sites can reveal 

Table 1. Variables collected at each scale of analysis. 

Variable Intensive sites Forest inventory Remote sensing

Land cover X X X
Leaf area index X X X
Disturbance impacts X X X
Aboveground biomass X X X
Live and dead aboveground biomass X X
Forest structure X X
Species composition X X
Growth, removals, mortality X X
Forest health indicators X X
Litter fall X 
Belowground biomass X 
Root dynamics X 
Soil CO2 flux X 

Runoff X 
Dissolved organic carbon X 
Net ecosystem exchange of CO2 X 

Energy and water balance X 
Adapted from [41].
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how annual carbon storage is simultaneously affected 
by multiple variables such as stand age, disturbance 
and climate [47]. The detailed measurements are used 
to parameterize empirical or process models, which can 
provide estimates or emission factors used by carbon 
accounting models [23]. 

�  � Empirical & process models
One way to improve the precision and accuracy of esti-
mates of carbon stocks and fluxes for the forest sector 
and their response to management, disturbances or cli-
mate is through the development, calibration and vali-
dation of carbon dynamics modeling tools for terrestrial 
ecosystems [48–50]. Models are powerful tools that enable 
the quantification of forest carbon dynamics through 
the synthesis and integration of data derived across dif-
ferent spatial and temporal scales, from detailed plot-
level measurements to national-scale remote-sensing 
products [50–52]. Through these types of models we 
can understand the mechanisms controlling carbon 
exchanges between the land and atmosphere, identify 
gaps in information, and guide future research to fill in 
these gaps in a cost-effective manner [49,53,54]. Further-
more, models are the best tools available to create and 
compare scenarios to examine the effects of different 
activities on forest systems (e.g., management, land-use 
change and natural disturbances) that have not yet been 
observed [50,53].

Generally, the available models can be divided into 
those using detailed ecophysiological relationships 
between plants, soil and the atmosphere (process mod-
els), and those using information typically contained in 
forest inventories (empirical models). The first group of 
models requires information normally available at inten-
sive monitoring sites such as leaf area index, interannual 
climatic variability and soil conditions, among other 
variables, to simulate carbon dynamics driven by pho-
tosynthetic processes (e.g., CENTURY, 3-PG, Biome-
BGC) [55–57]. The second group of models uses informa-
tion derived from forest inventories and management 
plans such as wood volume yield data (e.g., CBM-CFS3, 
CO2FIX) [50,58]. 

In order to make more reliable projections of car-
bon exchanges between vegetation and the atmosphere, 
and to determine the magnitude and direction of the 
response of forest ecosystems to global change, the com-
bination of both modeling approaches may be necessary, 
taking advantage of the strengths of each [23,59]. Process 
models are more useful for simulating forest ecosystem 
response to changes in climate or in the concentration 
of atmospheric CO

2
, and may be used to make estimates 

or projections outside the spatial and temporal bound-
aries of the data used for parameterization. Empirical 
models are well suited to represent carbon stock changes 

of the different carbon pools due to: impacts from man-
agement activities, fires, pests and land-use change; to 
quantify the uncertainty of directly measured carbon 
pools; and to validate the independent estimates from 
process models [23,50]. Conversely, it is important to vali-
date process models with independent datasets before 
attempting to use them outside the range of parameter-
ization data, and using empirical models to extrapolate 
in time and space should be done cautiously and with 
acknowledgement of possible sources of error or bias 
such as failure to account for rising CO

2
 concentrations 

or changes in growing season length. 
The Good Practice Guidelines of the IPCC recom-

mend that the uncertainties associated with the estima-
tion of GHG emissions and removals within forest eco-
systems are identified, quantified and reduced as far as 
practicable [4]. According to the IPCC, the uncertainty 
of model-based estimates reflects the degree of lack of 
knowledge that exists about the processes that generate 
GHG fluxes [5]. Thus, countries seeking to use models 
to assess forest carbon dynamics must quantify the level 
of reliability of the results by examining the effects of 
model structure and model inputs on the variability 
in the estimates of GHG fluxes [60]. For example, they 
must have an adequate quality control system to test for 
errors in model structure or coding, and to determine if 
the input data were collected and/or processed improp-
erly, if there are errors from an inadequate adaptation 
of the model in a different domain of origin, or if the 
scientific assumptions that determine the logic of the 
study processes are not correct [53].

Currently, only Canada (i.e., CBM-CFS3) [23,50] and 
Australia (i.e., FullCAM) [61] use models as the primary 
basis for the preparation of national reports for their 
forestry sectors [53]. However, exploration of modeling 
approaches is beginning to spread to several countries, 
including some in the tropics (e.g., Mexico, Indonesia) 
[62,63]. In the case of many tropical countries, substantial 
efforts are required to generate sufficient experimental 
and observational data (e.g., rates of biomass growth 
and transfers to soil compartments, decomposition rate 
of organic matter in soil) to calibrate key parameters 
and validate modeling results at regional or national 
scales. Nevertheless the use of modeling tools can still 
be valuable for improving monitoring and reporting of 
GHG dynamics in these countries. If based on the best 
available scientific and technical information, models 
can help understand past GHG emissions and remov-
als, identify key contributors to the GHG net balance 
(human or natural) and estimate the impact of specific 
policy-mitigation activities (e.g., REDD+) on future 
GHG emissions and removals dynamics [64].

An important use of models in proposed MRV 
systems is to establish forward-looking reference levels 
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or baselines. Generally, a reference level is defined as a 
“benchmark scenario against which future emissions reduc-
tions can be measured” and “are used to determine the 
additionality of a given activity” [65]. The baseline is a 
critical determination, since in a carbon crediting sys-
tem credit for additions to carbon stocks may be given 
only for the amount that exceeds the expected baseline. 
Although baselines may be defined as an observed his-
torical trend or even a point in time, a baseline may also 
be defined as an expected change in carbon stocks under 
a scenario that may reflect current policies and manage-
ment practices, or include changes that may be expected 
compared with historical references. Estimating a proj-
ect baseline may be complicated and require consid-
eration of many factors [66]. However, in most cases it 
is necessary to quantify the changes in carbon stocks 
that are likely in the future, requiring an ecosystem 
modeling approach as described in this section. 

Integration of approaches: moving from tier 1  
to tier 3 

�  � Spatially explicit & spatially referenced methods
IPCC methodologies outline two possible methods for 
estimating and reporting GHG emissions and remov-
als in the land use, land-use change and forestry sector 
[4,5]. The spatially explicit and spatially referenced meth-
ods differ in the way in which information about land 
characteristics and human activities is compiled and 
used in the estimation and reporting of GHG dynam-
ics. Spatially explicit methods require that all informa-
tion is available for each land cover polygon (or pixel) 
with complete (wall-to-wall) coverage of all relevant 
land areas. Spatially referenced approaches define the 
geographic boundaries within the country for which 
estimates are calculated and reported such as states, 
provinces or ecoregions. Spatially referenced methods 
are more suitable for countries that rely on sampling 
approaches in the development of GHG inventories. 
For example, information from forest inventory sample 
plots for specific geographic strata (or reporting regions) 
can be extrapolated to the entire reporting region. 
Depending on the national circumstances and avail-
able resources, either of these methods can be imple-
mented in an MRV system, and it is also possible to 
mix the approaches, using spatially referenced methods 
where data are sparse and spatially explicit approaches 
for specific areas of greater interest or with higher rates 
of human activities.

Spatially explicit methods typically require informa-
tion on land cover and land-cover changes obtained 
from time series of remote-sensing products [40,67]. The 
land-cover class prior to disturbance, the year and type 
of disturbance, and where available the postdisturbance 
land-cover class information for each polygon in the 

landscape, can be combined with data on forest carbon 
dynamics to estimate carbon stocks, stock changes, and 
the associated emissions and removals over time. Such 
approaches are data and computationally intensive, and 
are typically constrained by the small number of land-
cover classes that can be identified in remote-sensing 
products and the associated errors in classification [68]. 
Methods that base change detection on more than 
two images or scenes, and taking account of pheno-
logical differences, can reduce uncertainties of change 
products [69].

Spatially referenced methods can be based on remote 
sensing or sample-based information. For example, 
countries can develop annual (or periodic) land-cover 
change matrices that define, for a specific region, the 
annual rates of change among land-cover classes. Some 
of these transitions are associated with human activities 
that are defined as deforestation or degradation events, 
while other transitions are the result of forest establish-
ment or postdisturbance recovery. Quantification of 
the carbon implications of these transitions can then 
contribute to GHG budgets. Lower tier methods are 
typically based on simple emission factors that char-
acterize the emissions associated with specific land 
category transitions. Tier 3 methods involving models 
account for more complex pre- and post-disturbance 
carbon dynamics.

The use of spatially explicit methods is often lim-
ited by availability of historical spatially explicit data or 
interpretations of historical satellite data for mapping 
of attributes such as deforestation or wildfire. Likewise, 
some models may not operate in spatially explicit modes. 
In contrast, spatially referenced methods lack the abil-
ity to provide estimates at spatial scales smaller than 
geographic regions or ecoregions. Both methods should 
include quantification of errors and an assessment of the 
minimum area for which estimates can be used with 
some specified level of precision. Both methods require 
additional tools that translate the information about 
forest conditions, changes in forest conditions and the 
associated rates of human activities into estimates of 
GHG emissions and removals. This can be done with 
elaborate spreadsheet systems, or carbon budget models 
that deploy empirical or process-based simulation of 
forest (and other land category) carbon dynamics, as 
discussed above.

Spatially referenced methods are more readily use-
able for the development of projected ‘business-as-usual’ 
or reference levels required for the implementation of 
REDD+ programs for payment of emission-reduction 
achievements. Models that use historic data on human 
activities such as deforestation, degradation and for-
est management can project such rates of activities into 
the future using various assumptions about rates of 
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change. It is much easier and more 
efficient to develop such scenarios 
using a spatially referenced frame-
work because it is not necessary to 
account for the spatially explicit 
details of where and when the vari-
ous activities might occur in the 
future. Some models can use spa-
tially explicit information to char-
acterize past changes, for example 
from 1990 to the present, and then 
use spatially referenced information 
for the projection of future GHG 
budgets [23].

�  � Combining & comparing 
remote sensing, field data & modeling
Combining and comparing estimates from different 
approaches is a useful way to reduce costs, improve or 
gain confidence in the results, if the estimates from 
different approaches are similar. Comparison studies 
may also help with understanding the causes of dif-
ferences in order to improve comparability of results 
in the future. Comparisons may take many different 
forms – here we use examples to illustrate two kinds 
of comparisons that are particularly relevant to imple-
menting a REDD+ system: combining LiDAR remote 
sensing with field data to estimate above-ground car-
bon density, and comparing large-scale remote-sensing 
biomass maps with landscape-scale field data.

Mapping and monitoring carbon stocks is an impor-
tant element of preparing for REDD+, and there is a 
growing interest in using remote-sensing-based meth-
ods, of which there are many different approaches [70]. 
A recent study evaluated two approaches to calibrate 
airborne LiDAR data with ground-based forest inven-
tory plots [37]. One approach involved field measure-
ments of tree species, diameters and heights, which 
were combined into an allometric model of tree height 
as a function of tree diameter that is regionally appro-
priate for calibrating the LiDAR data after also tak-
ing account of wood density. Another more universal 
approach involved relating LiDAR mean canopy height 
to field-measured basal area, and using regional aver-
age wood densities to reduce the time needed to collect 
data in the field. This simpler approach accurately 
predicted aboveground carbon density (r2 = 0.80; root 
mean square error = 27.6 MgC ha-1).

Recent research has developed a high-resolution con-
tinental-scale biomass map for the USA [26], and similar 
maps have been developed for most of the tropics [71,72]. 
The US map was based on an empirical modeling 
approach to combine US Department of Agriculture 
Forest Service Forest Inventory and Analysis data with 

high-resolution radar data and optical remote-sensing 
data acquired from the Landsat ETM+ sensor. We 
compared this map with small (1 km2) landscape-scale 
areas where we had independently estimated above-
ground woody biomass using a dense network of field 
plots (Figure 1) [73]. The comparison showed that the 
map performed well across a range of biomass densi-
ties, with a slight tendency to underestimate biomass 
in high-density areas, which is likely the result of the 
saturation effect described earlier. 

�  � Imputation methods
There is yet another approach to the estimation and 
mapping of forest carbon, via imputation methods, that 
incorporates information collected from national forest 
inventories, remote sensing and other auxiliary data, 
as well as empirical models. In general, imputation is 
a technique for replacing missing data in a collection 
with substitute data. There are many possible rules 
for performing this substitution, but in the case of the 
approach described here, the rule is based on using one 
or more substitute data points that are in some way 
most similar to the missing data point. This is typically 
referred to as nearest-neighbor imputation, a methodol-
ogy that is increasingly being used to fill in missing data 
at a sample plot or polygon level [74]. For national forest 
inventory applications, this technique has been used 
extensively in Finland [75] and the USA [76,77]. Similar 
approaches have also been used with LiDAR data [78,79].

In the context of mapping and estimation of forest 
carbon stocks, one application of the nearest-neighbor 
imputation methodology integrates field plot data 
with tree- and plot-level models of forest carbon pools, 
MODIS imagery, ecological zone boundaries, as well 
as climatic and topographic raster data [80,81]. These 
data were used to construct a model that relates the 
response variable collected from the field to the pre-
dictor auxiliary variables. The model coefficients were 
used to transform the predictor variables into a new set 
of variables. The transformed variables specified by the 
model were used to conduct nearest-neighbor imputa-
tion of plots to pixels. Each transformed variable can be 
thought of as one dimension in a new coordinate space. 
Each pixel in the predictor dataset can be located in 
this new coordinate space. Each field plot can likewise 
be located in this space, based on the pixel where it is 
geo-located. In this imputation scenario, the missing 
data are the modeled forest carbon data for all of the 
pixels that do not contain plots. The substitution data 
are the data derived from the empirical forest carbon 
stock models for the field plots that were collected. Each 
pixel is then assigned the value, or average value, of 
the attribute of interest from the plot, or a small set of 
plots, nearest to it in the transformed coordinate space. 

Key term

Imputation methods: Refers to the 
process of replacing missing data with 
substituted values. After the missing 
values have been imputed, the resulting 
dataset may be analyzed using 
techniques for complete datasets, 
although bias may be introduced by the 
imputation process. There are many 
imputation methods and they are 
constantly evolving. A typical method 
used in forestry is the k-nearest 
neighbor method, used to produce 
continuous maps of forest attributes 
based on empirical relationships 
between variables determined at 
sample points, extrapolated to a grid of 
cells across a large landscape.
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Estimates are then computed by adding up imputed 
pixel values within the estimation area of interest.

To date, this particular approach has been used only 
in the USA in temperate and subtropical forests using 
an extensive network of permanent plots collected under 
a quasi-systematic sampling design. The robustness and 
feasibility of using this approach in the tropical forests of 
Latin America has not been tested, particularly in coun-
tries with restricted access to the forested estate requiring 
the use of unequal probability sampling, nor in countries 
with limited funding for an extensive plot network. 

Uncertainty of imputed results may be assessed in sev-
eral ways. One approach is to validate the results using 
independent datasets at different spatial scales using vari-
ous statistical metrics to test the agreement between the 
datasets [80]. This approach can produce both cumulative 
distribution functions of map-based versus field-based 
estimates of carbon stocks and choropleth (or shaded) 
maps that indicate the confidence level of estimates as 
well as indicating whether the map estimate is higher or 
lower than the field estimate. In general, however, the sta-
tistical foundation for imputation techniques is not very 
well developed, and this is an active area of research [82]. 

�  � MRV options & range of choices for countries 
A country’s choice of an MRV strategy will generally 
depend upon a combination of factors, including his-
toric patterns of forest cover change, current landscape 
composition, demographic trends, available budgets, 
institutional readiness and labor costs. The former three 
factors will particularly affect strategic MRV components 
such as definition of forest and establishment of reference 
emissions levels [83], whereas the latter three will tend to 
affect tactical components such as the choice of remote-
sensing methods and ground data acquisition strategies 
[84,85]. Countries proposing an MRV system should take 
the unique combination of these factors into account. 

When considering an MRV system proposal for carbon 
monitoring, it can be helpful to consider the MRV system 
in the context of a broader vision for natural resource 
monitoring. From this perspective, one can consider the 
development of a natural resource-monitoring system 
as being a process of continually assessing information 
needs and improving estimates by reducing uncertainty. 
Guidance provided by the IPCC in the form of the tier 
system can be helpful in this respect [4,5]. Figure 2 provides 
a conceptual model of the evolution of a natural resource-
monitoring system, of which an MRV is a component. 
This model is highly compatible with the tier system, and 
can serve as a tool with which countries can assess the mix 
of factors that affect their choice of a strategy.

Key points to take note of in Figure 2 are that, first, it 
represents an approach that progresses towards increasing 
scientific validity and reduced uncertainty of estimates. 

Each country, based on a range of factors, might choose 
a particular set of methods when it is necessary to have 
results to meet reporting requirements. Second, it assumes 
that forest inventory data from an inventory design based 
on sampling theory constitute a ‘gold standard’. This per-
spective arises from guidance from the IPCC [4,5], and is 
due to the fact that well-designed surveys have been used 
for decades to generate information that can be inter-
preted through the lens of sampling theory, which pro-
vides a common, well-understood language for resource 
professionals to use to help make decisions. Furthermore, 
integrating an MRV with an existing natural resource-
monitoring strategy (one that necessarily includes some 
form of statistically valid forest inventory) is more effi-
cient than having the MRV and the inventory decoupled. 
Third, remote sensing is a critical component of any MRV 
system, particularly in areas where the costs of field plots 
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Figure 1. The total aboveground biomass carbon (tree and sapling) 
for nine intensive monitoring sites of 1 km2 compared with the values 
extracted from a biomass map over the same area [209]. The totals 
represent the mean of 12–16 plot measurements within a 1-km2 area and 
scaled to 1 km2. The error bars are the 95% confidence limits of the mean 
biomass carbon of each site after applying error-propagation methods 
scaled to 1 km2 [90].  
Symbols represent field sites: BL: Brooklyn Lake, WY, USA; CB: Cedar 
Bridge, NJ, USA; FC: Fool Creek, CO, USA; FD: Fort Dix, NJ, USA; MEF: Marcell 
Experimental Forest, MN, USA; NACP: Bartlett Experimental Forest, NH, USA;  
NCLP: North Carolina Loblolly Pine Parker Tract, NC, USA; NRAT: Niwot Ridge 
Ameriflux Tower, CO, USA; SL: Silas Little, NJ, USA.

Approaches to monitoring changes in carbon stocks for REDD+  Review

future science group www.future-science.com 529



are high. The specific mixture of remote sensing and 
design-based inventory plots a country chooses will again 
result from an analysis of opportunity costs.

The different pathways and end products identified in 
Figure 2 are associated with different types of uncertainty 
metrics. These uncertainty metrics will have different 
levels of acceptance by groups or panels evaluating an 
MRV system. In principle, higher tier end products with 
well-defined uncertainty metrics will lead to higher car-
bon payments than those based on weaker foundations. 
Countries need to take this into account and balance the 
opportunity costs when choosing the desired combina-
tion of tier and uncertainty level, all in the context of 
their own institutional readiness.

In conclusion, it is important to recognize that a 
country’s unique circumstances should dictate where in 
the evolutionary process to begin the implementation of 

an MRV system. Of particular concern are cases where 
donors attempt to promote an MRV system that is not 
compatible with a country’s institutional readiness, or 
one that does not consider that an MRV could be a com-
ponent of a broader resource-monitoring system, which 
includes some combination of national forest inventory 
plots and remote sensing. Finally, regardless of current 
economic conditions, the MRV should be created with a 
vision in mind (e.g., Figure 1), and that, ultimately, higher 
tier reporting corresponds to higher capacity to monetize 
carbon and generate a more effective and scientifically 
defensible natural resource-monitoring program.

Methods for estimating & reporting uncertainty 
Estimating uncertainty is a valuable tool for a variety 
of reasons. Principally, the process of quantifying the 
confidence in estimates helps policymakers and forest 

Tier 1 Tier 2 Tier 3+

Isolated project-scale work,
including plots and fine
resolution remote sensing
products are created, mostly
driven by external cooperators

Forest inventory
design based on
sampling theory
is developed   

Forest inventory
is refined as new
statistical
methods and
remote sensing
strategies emerge

Full forest
inventory begins
– regional
estimates using
design-based
error estimates
are generated,
and a reporting
system is
formalized         

More project-scale data are
acquired; this mixture of
subnational datasets allow
countries limited participation in
REDD    

Country-specific
emission factors are
developed and applied
to high-resolution
remote sensing imagery

Coarse resolution
maps, including global,
macro-regional and
some national,
generally derived by
external entities are
combined with default
emission factors

Multi-temporal,
higher resolution
regional and
national maps are
developed with
opportunistic or
purposively chosen
ground truth data

More detailed
carbon science
data are
acquired and
used to improve
emissions factors
and develop
better process
models

Tests of combining
high resolution
remote sensing data
and inventory plot
data for design-based
estimation are done

A fully functional
repeated forest
inventory is
combined with
remote sensing in
order to develop
design-based
estimates and
uncertainty
measures         

Increasing scientific validity of estimates and uncertainty metrics (e.g., decreasing need for default emission factors)

Increasing cost and complexity (to a point)

Increasing ability to monetize carbon 

Time

Increasing ability to measure deforestation, degradation and other forest parameters needed for sound resource management

Figure 2. Conceptual model of the evolution of a measurement, reporting and verification system. Milestones in this process are 
indicated, with relative locations along the continuation of time, cost, value, usefulness and quality shown.
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managers to better understand how much confidence to 
place in the results when making decisions. Uncertainty 
estimates also can be used to prioritize efforts to improve 
the accuracy in carbon stock estimates and informs deci-
sions on methodological choices for estimating carbon 
stocks [86]. In a REDD+ context, estimates need to be 
credible to the community at large with sufficient accu-
racy before any payments can be made. Quantification 
of uncertainty, showing the upper and lower confidence 
limits, would allow for REDD+ projects to be acceptable 
since the principle of conservativeness could be applied 
to adjust carbon numbers to the lower limit to ensure 
an overall reduction in CO

2
 [87]. However, it is also 

possible that large uncertainties could overwhelm any 
improvements, so that no payments are made.

Uncertainty can be thought of as errors, unreliabil-
ity, inexactness and imperfection in the knowledge of 
an estimate or process [88]. Some common sources of 
uncertainty stem from natural variability, measurement 
errors, the use of sampling statistics, lack of representa-
tiveness and model form, use and parameter estimates, 
and human errors in data processing. In complex sys-
tems it is difficult or impossible to completely quantify 
and characterize all the uncertainties, but measurement 
error and natural variability (sampling error) are the 
most rigorously quantified in ecology [89,90].

Uncertainty analysis is the process of quantifying 
uncertainty in an estimate or model, and determines 
the relative degree of importance in the various sources 
of error [88,91,92]. Error propagation of the individual 
uncertainties is part of the process to estimate the over-
all uncertainty in an estimate, and can be done explic-
itly or through the use of Monte Carlo analyses. Table 2 
shows a summary of the most common approaches to 
uncertainty analysis.

Countries eligible for participation in REDD+ know 
they need to implement strict quality assurance pro-
cedures in all steps of the data collection and estima-
tion processes, and quantify uncertainties. However, 
as an example, at a recent meeting of tropical coun-
tries in Latin America, only one country out of eight 
had begun work on quantifying uncertainties in their 
estimates [93,210]. There was general agreement that 
uncertainty quantification was a priority, but most 
efforts are directed at other areas of MRV. A percep-
tion that quantifying uncertainty is difficult and that 
their uncertainties are high compared with what will 
eventually be required under REDD+ placed emphasis 
on these other areas. Reluctance to perform uncertainty 
analysis is based on a variety of other reasons [94].

Conclusion
Monitoring changes in forest carbon and attributing 
those changes to specific human activities and natural 

factors will continue to be a challenge in the coming 
decade. The basic elements of MRV – field inventories, 
remote sensing, intensive monitoring sites and models 
– are available now and improving over time, but their 
application must still be tailored to individual country 
circumstances, the unique characteristics of different 
forest ecosystems, and the driving factors that influence 
their carbon stocks. With climate changing and new 
programs being designed to mitigate the buildup of CO

2
 

in the atmosphere, it will be a continuing challenge to 
keep pace with the demands for basic information and 
the means to assimilate available data into meaning-
ful analyses that can separate the different causes of 
observed effects. Even with the emergence of advanced 
space-based and aerial observation instruments, good 
field data is essential but often lacking in many tropical 
regions, despite international efforts to fill these gaps. 
Nonetheless, the last decade has witnessed a signifi-
cant escalation of deployment of the MRV elements, 
and there is reason to expect that this trend will con-
tinue along with advancement in analytical tools such 
as ecosystem models that can make good use of the 
increasingly available data. 

Future perspective
The main elements of current monitoring systems 
such as Landsat satellites and traditional forest inven-
tories will continue to be the backbone of many forest-
monitoring systems around the world. However, new 
technologies and monitoring approaches are address-
ing problems specific to the tropics and implement-
ing REDD+. LiDAR techniques are becoming widely 
deployed to improve knowledge of vegetation struc-
ture, which combined with field observations can 
address the need for information about aboveground 
carbon pools at field sites and improve estimates of 
changes such as forest degradation. Although it is 
expensive to acquire LiDAR imagery over large areas, 
sampling approaches based on LiDAR flight lines show 
great promise [39]. There is no current satellite system 
delivering 3D imagery, but NASA’s ‘ICESat-II’ with 
an orbiting laser altimeter is scheduled for launch in 
2016, and Japan has a planned 2013 launch of ALOS-
2, which includes a radar instrument. Both of these 
will enhance our capacity to map and monitor dynam-
ics in forest structure. High-resolution optical sensors 
such as RapidEye are being tested for use over large 
areas [95], and radar has gained increasing attention 
because of its ability to penetrate clouds [96]. Studies 
of forest species composition at landscape scales using 
hyperspectral imagery have shown great promise for 
improving knowledge of ecosystems [97]. Although the 
Hyperspectral Infrared Imager developed by NASA 
has no planned launch date, the European Space 
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Agency has planned a 2014 launch of Sentinel-2 with 
13 spectral bands.

Expanded networks of field-monitoring sites are 
especially needed in the undersampled tropical forests 
of the world [13]. Regional or global networks have 
emerged to address this need on an opportunistic basis, 
depending on local collaborators to identify monitoring 
sites. For example, the RAINFOR network is a series 
of long-term sites monitoring forest dynamics across 
Amazon forests [98], and the Global Ecosystem Moni-
toring network aims to measure and understand forest 
ecosystem functions and traits [99], although the areas 
sampled are targeted to intact Amazonian forests and 
are not representative of the range of forest conditions 
in the region. Nonetheless, these sites are essential for 
monitoring the annual changes in forests from distur-
bances such as storms and drought, and are usually the 
only source of information about carbon pools that are 
not typically measured in forest inventories, such as soil, 
belowground biomass, litter and understory vegetation. 

There is steadily increasing recognition of the util-
ity of combining remote-sensing measurements with 
field data, and these approaches continue to evolve 

as new sensors are deployed and as the availability 
of field data increases. Individually, both approaches 
have limitations: field measurements can only sample 
a small fraction of the domain, while remote-sens-
ing techniques grapple with varying sensor angles, 
atmospheric properties, physical constraints and 
technological change, resulting in a limited num-
ber of observable attributes (Table 1). Approaches for 
landscape scale and larger area estimation of for-
est biomass and carbon need to be f lexible enough 
to accommodate different field-sampling schemes, 
types of remote sensors and empirical models used to  
interpret them [84,100]. 

There is great room for improvement in methods 
to scale up precise, locally replicated measurements to 
ecoregion, national, continental and biome estimates, 
especially in areas that are challenging to sample on 
the ground such as mangrove forests. Scaling up will 
clearly benefit from the more sophisticated maps of 
forest area and attributes becoming available from 
advanced remote sensing, as well as improvements 
in the models used to integrate these sources of 
information [101,102]. 

Table 2 Approaches to uncertainty estimation. 

Approach Description Advantages Disadvantages Ref.

Expert opinion Experts in the area provide their best 
judgment as to the numerical level of 
uncertainty based on their experience.  
The process involves surveying a number 
of experts and compiling the information 
in a systematic manner to produce a 
quantified uncertainty

Where uncertainty estimates do 
not exist, this approach permits 
the identification of priority areas 
on which to focus on gathering 
more complete information. It 
is a simple and straightforward 
process

Sufficient expertise may not be 
available. Uncertainty estimates 
are less credible and  
generally high 

[86]

Classical Standard frequentist approach that 
examines probabilities of estimates to 
be different from the ‘true’ value where 
inferences can be made about the 
population from sample data

Widely known method. Results 
are familiar to most persons. Vast 
amount of literature available on 
methods. Considered to be the 
best available and most robust 
methodology

Requires assumptions about data 
and population distributions that 
are not always met (normality, 
homoscedastic and so on). For 
reducing levels of uncertainty, 
the approach often requires large 
sample sizes

[86]

Monte Carlo Uses the selection of random values from 
within individual PDF to calculate a value. 
The calculation is run numerous times 
using different selections of random 
variables to develop the overall probability 
density function

Can be performed at many levels 
of estimation. Can use with PDFs 
of any physically possible shape 
and width. Straightforward 
process to implement and 
propagate errors. Easiest 
approach where a classical 
approach cannot be used

Can be computationally 
intensive. Requires the analyst 
to have scientific and technical 
understanding of the data. 
Analyst must choose a PDF for 
each variable and outcomes are 
heavily influenced by this choice 

[86]

Bayesian Uses the Bayes Theorem and some form of 
Monte Carlo method (often Markov Chain 
Monte Carlo) to generate PDFs based on 
prior information and data

Allows the incorporation of 
any prior information of PDFs 
to inform posterior PDFs and 
therefore reduce uncertainty. Can 
be used to estimate uncertainty 
in complex models

Is not listed as an approved 
method in IPCC guidance 
documents. Not widely known

[107,108]

PDF: Probability density functions.
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For understanding processes and projecting future 
forest conditions, dynamic global vegetation models 
simulate both forest distribution and ecosystem bio-
geochemical cycles, and are becoming more widely 
used as global data availability improves [103,104]. A 
new class of models employs a technique known as 
‘perfect plasticity approximation’, which provides a 
methodology for scaling up properties from indi-
vidual trees to whole populations, to allow inclusion 
of the effects of changes in species composition and 
competition within the plant functional types typi-
cally used by dynamic global vegetation models [105]. 
These newly evolving models can simulate spatially 
explicit global or landscape-scale vegetation dynamics 
and feedbacks of carbon and water exchanges to the 
atmosphere under past, current or future climate, and 
may be useful in the future for establishing baselines 

and separating the influence of various driving factors 
such as land management, changing climate and rising 
CO

2
 concentration [106].

Finally, it is important to recognize the importance of 
standardization and consistency of approaches and spec-
ifications of reporting requirements, while allowing the 
necessary flexibility for participation by all countries, 
taking account of individual country circumstances. 
The ability to compare methods and data across regions 
is a vital aspect of improved monitoring of forest carbon 
in support of REDD+.
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Executive summary

Monitoring & reporting requirements for REDD+
�� Monitoring programs to support REDD+ are still evolving as countries grapple with implementing the appropriate methods in varying 

national circumstances. Countries are encouraged to use the best possible methodology appropriate to their national circumstances and 
to improve estimates over time.

Elements of approaches
�� National forest inventories can be the foundation of forest carbon monitoring, either as an initial inventory of stocks from which changes 

can be estimated, or as a direct estimate of stock change from repeated inventories. National forest inventories are particularly suitable for 
monitoring key elements of forest dynamics (growth, harvest, mortality), and for estimating biomass of trees and forests.

�� The Landsat satellites have provided a time series of remotely sensed digital images spanning 30 years and are now being used widely 
in monitoring activities such as deforestation, forest degradation and natural disturbances, and for estimating changes in biomass and 
carbon stocks. 

�� For estimating changes in forest area from deforestation and afforestation, it is important to estimate both the gross losses and gains, and 
the net change. If only the net change is estimated, significant losses and gains of forest area and the associated carbon emissions and 
removals may not be revealed. 

�� Detailed information generated at a fine scale at intensive monitoring sites can address the difficulty of estimating stocks and stock 
changes for litter, dead wood and soil, and for developing model parameters. 

�� Models are powerful tools that enable the quantification of forest carbon dynamics through the synthesis and integration of data across 
different spatial and temporal scales, and are the best tools available to create and compare future scenarios to examine the effects of 
different activities (e.g., management, land-use change and natural disturbances). 

Integration of approaches: moving from tier 1 to tier 3
�� Implementation of monitoring systems for REDD+ should be based on an optimization process that compares different data sources and 

sampling designs, to reduce the costs and uncertainties. The process of quantifying the confidence in estimates helps prioritize efforts to 
improve the accuracy in carbon stock estimates.

�� A country’s choice of a measurement, reporting and verification strategy will generally depend upon a combination of factors, including 
historic patterns of forest cover change, current landscape composition, demographic trends, available budgets, institutional readiness 
and labor costs. 

Future perspective: technology of future monitoring approaches
�� The main elements of current monitoring systems such as Landsat satellites and traditional forest inventories will continue to be the 

backbone of many forest-monitoring systems around the world, but new technologies and monitoring approaches are addressing 
problems specific to the tropics and implementing REDD+. 

�� Light Detection and Ranging techniques are becoming widely deployed to improve knowledge of vegetation structure, which combined 
with field observations, can address the needs for information about aboveground carbon pools. 

�� Expanded networks of field-monitoring sites are especially needed in the undersampled tropical forests of the world. Regional or global 
networks have emerged to address this need on an opportunistic basis, depending on local collaborators to identify monitoring sites and 
to provide their data. 

�� For understanding processes and projecting future forest conditions, new classes of dynamic vegetation models are emerging to simulate 
forest distribution, forest dynamics and ecosystem biogeochemical cycles.
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