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Abstract Achieving adequate and desirable forest
regeneration is necessary for maintaining native tree
species and forest composition. Advance tree seedling
and sapling regeneration is the basis of the next stand
and serves as an indicator of future composition. The
Pennsylvania Regeneration Study was implemented
statewide to monitor regeneration on a subset of
Forest Inventory and Analysis plots measured by the
U.S. Forest Service. As management techniques are
implemented to improve advance regeneration,
assessments of the change in the forest resource are
needed. When the primary focus is on detecting
change, hypothesis tests should have small type II (β)
error rates. However, most analyses are based on
minimizing type I (α) error rates and type II error
rates can be quite large. When type II error rates are
high, actual improvements in regeneration can remain
undetected and the methods that brought these
improvements may be deemed ineffective. The
difficulty in detecting significant change in advance
regeneration when small type I error rates are given
priority is illustrated. For statewide assessments,
power (1-β) to detect changes in proportion of area
having adequate advance regeneration is relatively
weak (≤0.5) when the change is smaller than 0.05.

For evaluations conducted at smaller spatial scales,
such as wildlife management units, the reduced
sample size results in only marginal power even
when relatively large changes (≥0.20) in area propor-
tion occur. For fixed sample sizes, analysts can
consider accepting larger type I error rates to increase
the probability of detecting change (smaller type II
error rates) when it occurs, such that management
methods that positively affect regeneration can be
identified.

Keywords Type II error . Tree seedling . Species
composition . Forest inventory

Introduction

Preservation and maintenance of forested land often is
a high priority for environmental conservation and is
contingent upon diversity in native tree species
composition and tree size distributions (Liebhold et
al. 1995). In most situations, native tree species
composition is maintained through naturally occur-
ring regeneration such that the same species are
present in both the overstory and as regeneration. To
help determine whether forests are replacing them-
selves, silviculturists often examine advance tree
regeneration (Marquis et al. 1992). Mechanisms
capable of altering the number and composition of
regenerating species include removal of overstory
trees due to weather extremes (Fajvan et al. 2006) or
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harvest/mortality (Kays et al. 1988), competition (Fei
et al. 2010; Harmer 2001), deer browsing (Powers
and Nagel 2009; Horsley et al. 2003), soil chemistry/
pollution (Drohan and Sharpe 1997), and fire
(Nowacki and Abrams 2008). When sufficient regen-
eration is lacking in a given landscape, it is often
difficult to attribute failure to a specific causal agent.

Advance regeneration often is monitored through
standard forest inventory methods, i.e., a network of
sample plots (Johnstone et al. 2004; McWilliams et al.
1995). As such, the planning process entails comput-
ing sample size for a desired level of precision.
Sample size estimates are often based on estimates of
population variability, selection of an acceptable type
I error rate, and desired confidence interval width
(Schreuder et al. 2004). This approach emphasizes the
precision of estimates for current regeneration status.
Often overlooked is the ability to detect change when
change has indeed occurred—also known as the
statistical power to detect change.

As a reminder to readers, types I and II error rates
are often defined within the framework of statistical
hypothesis testing. In the context of this paper, there
is a null hypothesis representing the status quo (or no
change) and a research hypothesis that represents
some level of change in a population parameter. A
type I error occurs when the actual change in the
population does not cross the threshold value speci-
fied in the research hypothesis, but the research
hypothesis is accepted as true due to the sample
statistics. Similarly, a type II error is committed when
the actual change in the population crosses the
threshold value specified in the research hypothesis,
but the null hypothesis is accepted as true (Di Stefano
2001). In practice, commission of either type of error
remains unidentified as the true population values are
unknown. As such, low types I and II error rates are
sought to minimize the probability of drawing
erroneous conclusions.

The conundrum faced by analysts is that type I (α)
and type II (β) errors are inversely related, such that
for a given sample size, β increases if α decreases and
vice-versa (Kleinbaum et al. 2008). An appropriate
balance between α and β error rates requires
evaluation of the negative consequences involved
with each type of error. Techniques for making these
assessments include a cost ratio approach where the
costs of each type of error are determined and the
ratio of the two error rates (e.g., α/β) is made to

correspond with the ratio of respective costs
(Peterman 1990). Field et al. (2004) evaluate a cost
function that varies with α and β error rates, where
the α/β relationship is determined via statistical
models. Theoretically, the minimization of the cost
function provides the optimal error rates. Other
methodologies for determining appropriate values
for α and β are described by Murphy and Myors
(2004). Generally, type II errors are considered more
egregious in environmental monitoring studies be-
cause failing to detect (and more importantly respond
to) changing conditions is often more deleterious than
taking action to correct a perceived change that did
not actually occur (type I error; Fairweather 1991;
Mapstone 1995). In the context of regeneration,
identification of changes in regenerative capabilities
of forests is paramount to conservation of indigenous
tree species and forest types.

The importance of considering type II error rates
for environmental studies has been well-documented;
however applications specific to forest vegetation
monitoring are infrequent. Evans and Viengkham
(2001) considered statistical power analysis to inves-
tigate potential survey designs for monitoring Lao
rattan. This study seems to have motivated Archaux
and Bergès (2008) to use power analysis to optimize a
sampling design for detection of a specified level of
change in species richness for plant communities.
Thompson et al. (2011) evaluated power to detect
change in vegetation cover when developing a
sampling design for national parks in Alaska. The
strength of three different vegetation sampling meth-
ods to detect change in species richness, plant
abundance, and overstory basal area and composition
was studied by Johnson et al. (2008). Bechtold et al.
(2009) assessed ability of a forest health monitoring
network to detect prescribed levels of change in
various tree crown attributes. The relative recency of
these papers suggests that although the need for
analyses of type II error rates has been recognized
for some time; practical applications to forest vegeta-
tion monitoring are only beginning to be undertaken.

In this study, data from an existing regeneration
monitoring program were used to examine type II
error rates, i.e., incorrectly accept the null hypothesis
of no change when change has actually occurred. The
objectives of this study are: (1) introduce and provide
estimation methodology for an area-based metric of
regeneration success (proportion of forestland area
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having adequate regeneration), (2) assess population
and subpopulation variability and investigate ability
to detect various amounts of change at current and
alternative sample sizes, (3) provide information to
assist future development of advance tree regenera-
tion surveys.

Methods

Data

In cooperation with the Forest Inventory and Analysis
(FIA) program of the U.S. Forest Service, the
Pennsylvania Regeneration Study (PRS) was initiated
in 2001 by the Pennsylvania Department of Conser-
vation and Natural Resources, Bureau of Forestry
(McWilliams et al. 2003a, b) to capture critical
measurements not included in core FIA protocols.
The regeneration study was incorporated into the
existing FIA sample and plot design, where the
sampling intensity is approximately one plot for every
6,000 acres of area (Reams et al. 2005). Each sample
plot consists of four 24-ft radius subplots, and within
each subplot is a 6.8-ft radius microplot (Bechtold
and Scott 2005). All trees with a diameter breast
height (dbh) of 5.0 in. and larger are measured on the
subplot, while information on saplings (1.0 in.≤dbh<
5.0 in.) and seedlings are collected on the microplot.
For the PRS, 1,549 plots (one plot per ∼18,000 acres)
were systematically selected from the existing FIA
sample to maintain the statewide spatial distribution.
This sample size was chosen based on field work
considerations (e.g., summer only) and assumed state-
level analytical output. On this subset of plots,
additional information was collected on forested lands
(USDA Forest Service 2007). In addition to the
regular suite of FIA variables, measurements included
a location-level evaluation of deer impact (as deter-
mined from browse intensity), seedling height class
and number, and percent cover of competing vegeta-
tion such as ferns, shrubs, and grasses (McWilliams et
al. 2002). At the time of this analysis, 807 plots had
received a second measurement (5-year interval).

Although the survey was implemented at the state
level, analyses at smaller spatial scales usually are
more useful. In 2003, a Deer Management Plan
(Pennsylvania Game Commission 2003) was institut-
ed to better manage for quality deer habitat across

Wildlife Management Units (WMUs). As such,
analyses are most useful when performed for sub-
populations defined by WMU boundaries. There are
22 WMUs statewide with areas ranging from approx-
imately 0.5–2.7 million acres (average area is roughly
1.3 million acres).

Analysis

For both the initial and subsequent measurement,
selected tree species regeneration within a range of
sizes occurring on microplots with 45–70% overstory
stocking density were the domain of interest (for
further explanation, see definitions of δijFA and δijF
below). The overstory stocking constraint defines a
density where favorable light conditions exist for
healthy understory development of native canopy
species (McWilliams et al. 1995). There were 244
species of interest—those considered capable of
forming a high canopy (a detailed list is available
upon request). For seedlings, the relative importance
of each stem was gauged by assigning a weight based
on its height. Seedlings were assigned to the
following height classes: <1 ft, 1.0–2.9 ft, 3.0–4.9 ft,
and ≥5.0 ft; with weights for each height class being
1, 2, 20, and 50, respectively, i.e., larger seedlings are
more important in assessing adequate regeneration
(McWilliams et al. 1995). The weights were chosen
using published regeneration guidelines (Sander et al.
1976; Marquis and Bjorkbom 1982) to work in
accordance with the regeneration thresholds used in
the SILVAH decision support program (Marquis et al.
1992). The number of weighted stems needs to be
assessed in the context of herbivory pressure. As
such, a microplot was considered adequately
stocked with regeneration if the sum of the
weighted seedlings exceeded the index established
for the level of deer impact (Table 1). If the sum of
weighted seedlings did not exceed the threshold, but
there existed a sapling having dbh 1.0–4.9 in., the
microplot was considered to have sufficient regen-
eration. Large-seeded species (e.g., oak) were coded
as “established” or “competitive” when root-collar
diameter attained 0.75 in. or larger. Research has
shown that root-collar diameter is the best indicator
of success, particularly under high deer impact or
fire scenarios (Brose 2008).

The cluster-plot design used by FIA (Bechtold and
Scott 2005) requires that results from each microplot i
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be summarized to a single observation for each plot j.
This summary is dependent upon the variable of
interest. If the variable of interest was forestland area
having 40–75% overstory stocking, the summary
would be the proportion of total microplot area that
contains forestland within the prescribed stocking
range. Similarly, for area having sufficient regenera-
tion, the summary would be the proportion of total
microplot area that is forested, 40–75% stocked, and
has adequate regeneration. For this paper, these are
respectively defined by:

yj ¼
X4

i¼1

dijFA=4

xj ¼
X4

i¼1

dijF=4

where

yj Proportion of plot j that is forested, 40–75%
stocked, adequate regeneration

xj Proportion of plot j that is forested and 40–
75% stocked

δijFA 1 if microplot i on plot j is forested and

40� 75% stocked; adequate ATSSR

0 otherwise

8
><

>:

δijF 1 if microplot i on plot j is forested and

40� 75% stocked
0 otherwise

8
><

>:

The ratio-of-means estimator of the proportion
of 40–75% stocked forestland that has sufficient

regeneration, bPR, is equivalent to the mean propor-
tion of plot area that is 40–75% stocked forestland
having adequate regeneration divided by the mean

proportion of plot area that is 40–75% stocked
forestland.

bPR ¼
P

yj
nP
xj

n

¼ y

x

The correlation between yj and xj due to both
measurements occurring on the same sample plot are
accounted for in the estimated variance (Cochran
1977),

V ðbPRÞ ¼ 1

nx2
s2y þ bP2

Rs
2
x � 2bPRsyx

� �

where

n Sample size
s2y Sample variance of the yj
s2x Sample variance of the xj
syx Sample covariance between the yj and xj

For computation of change in proportion of
forested area having adequate regeneration, measure-
ments at two points in time on the same sample plots
are used. With the estimation procedures outlined
above, the proportion of forestland having adequate

regeneration at each time can be calculated (bPR1 and
bPR2, respectively), and the change over the time
period is,

bPRΔ ¼ bPR2 � bPR1

with variance estimator that accounts for the correla-
tion due to using the same sample plots at each time
(Cochran 1977),

V ðbPRΔÞ ¼ V ðbPR2Þ þ V ðbPR1Þ � 2CovðbPR2; bPR1Þ
where

CovðbPR2; bPR1Þ ¼ 1

nðn� 1Þx2x1
Xn

j¼1

ðyj2yj1�bPR2yj1xj2

� bPR1yj2xj1 þ bPR2bPR1xj2xj1Þ

The standard error of the estimate is given by:

SEðbPRΔÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðbPRΔÞ

q

Having computed the estimate of change and the
associated error, the next step is to make inferences
regarding change occurring in the population. The
primary test is whether there was a statistically

Deer
impact

Weighted
seedlings
threshold

Very low 15

Low 30

Medium 50

High 100

Very high 200

Table 1 Weighted seed-
lings thresholds for suffi-
cient advance regeneration
by level of deer impact
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significant change in proportion of area of forestland
having adequate regeneration between the two time
periods. There are two types of erroneous conclusions
to avoid: (1) type I error determining the change in
the proportion was statistically different from zero
when actually it was not, and (2) type II error-
resolving there was no change in the proportion when
a change did occur (Di Stefano 2001). The type I error
rate (α) and type II error rate (β) represent the
probability of drawing the respective incorrect con-
clusions. The statistical power of a test (1-β) is the
probability that true change in the proportion of forest
area having sufficient regeneration will be detected.
The probability depends on the magnitude of the

change bPRΔ, α, n, the null mean, and the standard
deviation (s) of the sample data (Foster 2001). The null

mean is the value to which bPRΔ is being compared,
most commonly zero (no change). The standard

deviation was calculated as s ¼ SE bPRΔ

� � ffiffiffi
n

p
. Analy-

ses were conducted at two spatial scales: a statewide
assessment to evaluate overall conditions, and an
assessment for individual WMUs because this is the
scale at which the results are most useful to wildlife
managers. Table 2 provides a summary of pertinent
statistics by WMU and for the entire state.

The SAS POWER procedure (SAS Institute Inc.
2008) was used to analyze the observed data.
Additional power analyses were conducted to inform
what-if scenarios and provide readers with a broader
view of the relationships between the statistical power
and the various inter-related parameters.

Results

Statewide

With the data provided in Table 2, the power to detect
change in proportion of forestland with adequate
regeneration was evaluated for the state as well as for
individual WMUs. At the state level, the power to
detect the change in proportion of forestland having
adequate regeneration of −0.002 (assuming the
traditional α=0.05) as statistically different from zero
was 0.05, i.e., a type II error would be committed in
95% of the samples. These results should also be
interpreted in the context of practical vs. statistical
significance. Given that −0.002 is very close to zero,

one may consider −0.002≈0 for all practical purposes.
If one subscribes to this approximate equality, there is
no actual change in the proportion of area having
adequate regeneration and type II errors are not of
concern. It should be noted that it would be rare to
have a forest resource survey that indicates change is
exactly zero, thus type II errors do need to be
considered for most applications.

It also is instructive to evaluate the power in
relation to other factors. The power to detect
significant change from zero is decreased to 0.01
when α=0.01 and it is increased to 0.10 when α=
0.10. The assumption that −0.002≈0 helps illustrate a
particular point of interest-the minimum power
attainable is equal to α and this occurs at the null
value being tested against (often zero). Another factor
is the difference between the sample estimate
(−0.002) and the null value to be tested against. For
example, the deer population may have increased and
thus managers expected the proportion of area having
adequate regeneration to change by −0.05. As such, it
may be desirable to test whether the estimate from the
sample is different from the expected change. For α=
0.05, the results show that the power to detect a
significant difference under this scenario is 0.30. This
means that if a number of independent samples were
conducted, a type II error would be committed in 70%

of the samples, i.e., the hypothesis bPRΔ ¼ �0:05
could not be rejected. Figure 1 depicts the relation-
ships between statistical power at various α levels and
null values for the statewide evaluation.

A more general question of interest is how much
change in forestland area with adequate regeneration
must occur to conclude the change is significant. This
analysis uses zero for the null mean and Figure 1
depicts this relationship in the case when the observed
change approaches zero (i.e., −0.002≈0). With the
statewide sample size and standard deviation (s), the
power to detect significant changes in proportion of

forestland having adequate regeneration bPRΔ

� �
dif-

fers substantially with α. When α=0.01, the power to
detect a change of −0.03 is 0.04. In contrast, the
power to detect this same change improves to 0.34
when α=0.20. Generally, the power is relatively weak

(≤0.5) for detecting bPRΔ 6¼ 0 when the actual change
is smaller than −0.05. Obtaining statistical power in
the 0.7–0.8 range requires an actual change in area
proportion of 0.06–0.07.
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Besides selection of the α value, the primary factor
involved in improving power is sample size. In this
study, 807 remeasured plots were analyzed, and in the
next few years the sample will increase to approxi-
mately 1,500 plots with completion of the second
cycle of measurements. Knowing this, we can
estimate the statistical power for change detection
when all plots have been remeasured. Figure 2 shows

the power to detect bPRΔ 6¼ 0 when α=0.05 for a

range of sample sizes and bPRΔ. The power to detect a
change of −0.05 increases from 0.30 to 0.52 when the
sample size increases from 807 to 1,500. If the
number of plots involved in the study increased to
2,000, the power to detect a change of −0.05 would
be 0.64 and would be 0.81 for 3000 plots. With 3,000
plots, a type I error rate of 0.05 would yield a type II

Table 2 Summary of data for WMU and statewide for both initial and subsequent measurements with estimates of change (bPRΔ) and
standard deviation (s)

WMU n Time 1 Time 2 bPRΔ s

Forestland
proportion

Forestland
proportion
(40–75%)

bPR1 Forestland
proportion

Forestland
proportion
(40–75%)

bPR2

1A 32 0.490 0.304 0.378 0.491 0.266 0.419 0.041 0.778

1B 36 0.431 0.222 0.453 0.438 0.188 0.398 −0.055 0.921

2A 30 0.562 0.394 0.480 0.565 0.333 0.413 −0.068 0.982

2B 22 0.250 0.182 0.609 0.250 0.148 0.712 0.102 0.879

2C 52 0.673 0.404 0.557 0.670 0.420 0.577 0.020 0.953

2D 47 0.592 0.335 0.520 0.603 0.325 0.443 −0.077 0.849

2E 23 0.548 0.374 0.638 0.568 0.250 0.489 −0.149 1.232

2F 44 0.892 0.455 0.294 0.881 0.421 0.358 0.064 0.578

2G 76 0.833 0.476 0.443 0.836 0.467 0.364 −0.079 0.629

3A 22 0.636 0.227 0.550 0.636 0.443 0.603 0.053 1.474

3B 42 0.750 0.476 0.472 0.755 0.564 0.527 0.056 0.780

3C 36 0.729 0.313 0.433 0.750 0.438 0.552 0.118 1.035

3D 35 0.817 0.571 0.588 0.809 0.486 0.540 −0.047 0.758

4A 30 0.617 0.325 0.635 0.617 0.392 0.590 −0.044 0.899

4B 32 0.562 0.267 0.674 0.547 0.281 0.576 −0.098 1.366

4C 34 0.559 0.235 0.500 0.544 0.228 0.484 −0.016 1.491

4D 50 0.627 0.250 0.405 0.632 0.273 0.421 0.016 1.116

4E 33 0.313 0.194 0.556 0.316 0.238 0.484 −0.072 0.950

5A 24 0.179 0.135 0.519 0.167 0.083 0.750 0.231 1.320

5B 57 0.211 0.118 0.407 0.211 0.053 0.250 −0.157 2.544

5C 36 0.274 0.189 0.221 0.247 0.132 0.461 0.240 1.518

5D 14 0.000 0.000 – 0.000 0.000 – – –

Statewide 807 0.564 0.314 0.482 0.564 0.311 0.480 −0.002 0.960

Fig. 1 Power to detect change in proportion of area having
adequate regeneration (bPRΔ) for selected type I error rates (α=
0.01, 0.05, 0.1, 0.15, and 0.2) using 807 remeasured plots in
Pennsylvania
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error rate of about 0.20 when bPRΔ ¼ �0:05. From an
operational standpoint, doubling the sample size
would require relatively large additional expense,
which may not be feasible.

Wildlife management unit

The results among WMUs exhibited high variability
(Table 2), primarily due to specific WMU character-
istics and as an artifact of the decreased sample sizes

attributable to the smaller spatial extent. The bPRΔ

values were mostly within ±0.10, however the range
of values was from −0.157 to 0.240. The more
extreme values occurred in WMU having relatively
small amounts of forestland (5A, 5B, 5C). Values for
s covered a range of approximately 0.5–1.5, with
many values near 1.0. An evaluation of power to

detect bPRΔ 6¼ 0 generally applicable at the WMU
spatial scale was conducted assuming s=1.0 and n=
40 (Figure 3). For the most commonly selected alpha
levels, such as α=0.05 or α=0.10, only marginal
power is obtained even when relatively large changes
in proportion of forestland having adequate regener-

ation (bPRΔ � 0:20) are found in the data. Although
power is increased at larger α levels (α=0.20), the

type II error will still be about 0.3 when a bPRΔ ¼ 0:1
is obtained from the sample.

Perhaps the most important evaluation to consider
at the WMU scale is how the relatively small sample

sizes affect power to detect bPRΔ 6¼ 0. Assuming s=
1.0, the ability to detect significant differences from

zero for bPRΔ ¼ �0:05 and bPRΔ ¼ �0:10 was evalu-
ated for various α levels (Figure 4). Given that most
of the WMU sample sizes are below 50 plots, it is

unlikely that a conclusion of bPRΔ 6¼ 0 will be drawn

for the magnitude of bPRΔ found in these data.

Figure 4a shows that power to detect bPRΔ ¼ �0:05
as being statistically different from zero is less than
0.2 for most α values. Only slight improvements are

realized for detecting bPRΔ ¼ �0:10 as being statisti-
cally different from zero (Figure 4b), where power
will be less than 0.3 in most cases. These are general
results applicable at the WMU scale. WMUs having

Fig. 3 Power to detect change in proportion of area having
adequate regeneration (bPRΔ) for selected type I error rates (α=
0.01, 0.05, 0.1, 0.15, and 0.2) when the standard deviation (s)=
1.0 and the sample size (n)=40

Fig. 2 Power to detect
change in proportion of area
having adequate regenera-
tion (bPRΔ) at various sample
sizes (n) using the statewide
standard deviation (s)
estimate=0.96 and type I
error rate (α)=0.05. Note
that a symmetric pattern
would be found for positive
sample means
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relatively small s and large n will have higher
probabilities of detecting change. For example, in

WMU 2G where bPRΔ � �0:08, s=0.629, and n=76
plots, the power to avoid a type II error is nearly 0.44
for α=0.20.

Discussion

Assessing current regeneration status is important for
understanding the present state of the forest ecosys-
tem and the long-term ability to sustain native forests.
In response, landscape-level management activities
designed to manipulate regeneration are implemented,
e.g., control of browsing populations, herbicides, or
prescribed fire (Brose 2008; Loftis 1985). To assess
the effectiveness of these activities, a test against a
null mean of zero (no change) is appropriate. In the
context of type I errors, an erroneous conclusion
would result in the continuation of a management
strategy that had no effect. In the case of a type II

error, a strategy that truly had an impact would be
deemed ineffective and likely discontinued. Thus,
continued implementation of strategies that genuinely
influence regeneration success requires avoidance of
type II errors.

Because of the management implications for high
type II error rates, more attention should be given to
statistical power in the study planning process.
Results shown here can provide guidance on appro-
priate sample sizes for detecting various levels of
change in proportion of area where regeneration is
satisfactory. Assessments for “average” populations

(s≈1.0), when bPRΔ ¼ 0:05 is considered a level of
change that should be detected, indicates approxi-
mately 2300 plots would be needed to conclude that
bPRΔ 6¼ 0 if acceptable error rates were α=0.1 and β=
0.2 (power=0.8). Obtaining these same error rates for
other populations requires evaluation for the given
amount of variability (s). In this study, the smallest
standard deviation (s=0.578) would require 800 plots,
whereas the largest standard deviation encountered
(s=1.491) and would require nearly 5,500 plots (note
the areal extent of the population of interest does not
influence the sample size calculation). These two
extremes illustrate the wide range of sampling
requirements that may be encountered for different
populations. When designing the study, these statis-
tics need to be considered in the context of resources
available to conduct the study. If the desired sample
sizes are unattainable, the power for reduced sample
sizes should be calculated and a reassessment of the
study plan undertaken. For instance, if population
boundaries are expected to remain unchanged over
time, one may consider different sampling intensities
among populations; with more samples being devoted
to areas with high variability. Another option would
be to reconsider the requisite error rates—perhaps the
initial specification was a best-case scenario, while a
smaller amount of statistical power may be accept-
able. Ultimately, a determination needs to be made as
to the wisdom of conducting the study given the
power attainable.

In the selection of a sample size, a critical piece of
information that will often be missing is the standard
deviation (s). It was noted during the course of
analyses that a relationship existed between the
standard deviation (s) and the proportion of the area
that contained forestland. The nonlinear correlation as

Fig. 4 Power to detect change in proportion of area having
adequate regeneration (bPRΔ) at various sample sizes (n) for
selected type I error rates (α=0.01, 0.05, 0.1, 0.15, and 0.2) and
the standard deviation (s)=1.0 when a bPRΔ ¼ �0:05, and b
bPRΔ ¼ �0:10
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described by the regression of forestland proportion
on s via a power function is shown in Figure 5 (R2≈
0.33). Generally, the value of s increases as the
proportion of forestland area decreases. One reason
may be that populations with smaller forested areas
are more likely to be fragmented and regeneration on
these fragments is more variable than for larger, more
contiguous forest areas. The proportion forestland
relationship with s may be unduly influenced by the
point representing s≈2.5; however, there is no reason
to believe it is not a valid observation. Nonetheless,
the trend provides general guidance for survey
planning purposes. More accurate estimates of stan-
dard deviation for new study areas may be obtained
from other sources of information or a pilot study.

When sample sizes are already fixed, analysts
should attempt to strike an appropriate balance
between error rates and the objectives of the study.
In many cases, selection of the α value is the primary
focus, while β is nearly always ignored. Furthermore,
the focus on α has resulted in the adoption of α=0.05
for most research analyses (Di Stefano 2001). Given
that β increases as α decreases, setting a small value
for α often results in limited ability to avoid type II
errors. In the context of regeneration, it could be
postulated that prevention of type II errors is of equal
(or perhaps greater) importance than avoidance of
type I errors. In the case of a type I error, ineffective
management strategies would be continued despite no
actual change in area having adequate regeneration. In
contrast, a type II error would likely result in
abandonment of management practices that were
genuinely improving resource conditions. Analysts
should weigh the resulting negative social, economic,
and environmental impacts associated with each of
these errors to determine whether the primary empha-

sis should be on α or β when other factors are already
predetermined.

It may also be useful to consider alternative metrics
that may impart similar interpretation or knowledge,

but have different statistical properties than bPRΔ. To

develop estimates of bPRΔ, classification thresholds are
applied to each microplot—this results in information
loss compared to the continuous variable(s) on which
the classification is based. The information loss
translates into a reduction of statistical power,
which makes detecting differences more difficult
(McCaffrey and Elliott 2008). It may be worthwhile
to investigate other metrics, such as a direct analysis
of weighted stems, to evaluate if any improvement in
probabilities of detecting change may be obtained.
While the use of other metrics could possibly be
advantageous for change detection, meaningful inter-
pretations of these metrics are also needed; for
instance, how does one evaluate estimates of change
in weighted stems without considering the associated
herbivory pressure.

Conclusion

The statewide analyses showed that when change in
proportion of forestland having sufficient advance
regeneration is less than 0.05, it is likely to go
undetected as being statistically significant. The
problem is exacerbated when analyses are undertaken
for the WMUs, where sample sizes are substantially
reduced. For these smaller populations, even substan-

tial shifts (bPRΔ > 0:20) are unlikely to be identified as
significant change. These outcomes illustrate the
importance of balancing sample size with the desired
spatial scale of analyses. In this particular case,
analysis at the WMU level was implemented long
after the study was designed. However, it is a useful
reminder that sufficient sample sizes are needed at the
desired scale of analytical resolution.

As forest managers employ various management
techniques designed to improve regeneration of
desirable tree species, continuing assessments of the
efficacy of these activities are prudent. Under an
adaptive management framework, activities that do
not produce intended effects should be compared to
alternative methods. However, when type II error
rates are high, it is likely that actual improvements in
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regeneration will go undetected and the methods that
lead to these improvements may be dismissed. To
enhance the ability to identify methods that have a
positive impact on regeneration, analysts should
consider accepting larger type I error rates than are
typically adopted. This will increase the probability of
detecting change (smaller type II error rates) and
foster continued implementation of management
methods that contribute to regeneration success. As
such, analysts should give more attention to the type
II error rate during the planning phase, where
approximate type I and type II error rates for proposed
sample sizes can be fully explored prior to study
initiation. For studies already implemented, if alter-
native metrics can be developed that impart essential-
ly the same information, comparisons should be made
to identify those that achieve the smallest error rates.
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