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[1] Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem 
models is critical because errors in simulated GPP propagate through the model to 
introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, 
daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower 
sites across the United States and Canada. None of the models in this study match 
estimated GPP within observed uncertainty. On average, models overestimate GPP in 
winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP 
under dry conditions and for temperatures below 0°C. Improvements in simulated soil 
moisture and ecosystem response to drought or humidity stress will improve simulated 
GPP under dry conditions. Adding a low-temperature response to shut down GPP for 
temperatures below 0°C will reduce the positive bias in winter, spring, and fall and 
improve simulated phenology. The negative bias in summer and poor overall performance 
resulted from mismatches between simulated and observed light use efficiency (LUE). 
Improving simulated GPP requires better leaf-to-canopy scaling and better values of 
model parameters that control the maximum potential GPP, such as ɛmax (LUE), 
Vcmax (unstressed Rubisco catalytic capacity) or Jmax (the maximum electron 
transport rate). 
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1. Introduction 

[2] Terrestrial gross primary productivity (GPP) is the 
total photosynthetic uptake or carbon assimilation by plants 
and is a key component of terrestrial carbon balance. GPP 
is the main carbon input to terrestrial ecosystems, noting 
relatively minor inputs by dissolved organic carbon, as 
well as deposition by rainwater and sedimentation [Chapin 
et al., 2006]. GPP depends on climate, climate variability, 
disturbance history, water and nutrient availability, soil 
type, species composition, and community structure. 
Understanding how these factors influence GPP remains a 
challenge due to complex interactions and the difficulty in 
quantitatively measuring GPP directly at various temporal 
and spatial scales. Estimates of GPP are only available at 
eddy covariance flux tower sites for the past decade, so 
we depend on models to estimate GPP over long periods 
of time at regional and global scales, and to project future 
changes in GPP in response to climate change. 
[3] Any error in simulated GPP will propagate through the 

model, introducing errors in simulated biomass and fluxes. If 
simulated GPP is too low or too high, then predicted leaf 
area index, wood biomass, crop yield, and soil biomass may 
also be too low or high [Schaefer et al., 2008]. Net ecosys
tem exchange (NEE) is total ecosystem respiration (Reco) 
minus GPP, with a positive NEE indicating a net release of 
CO2 to the atmosphere. Autotrophic respiration depends on 
GPP and heterotrophic respiration depends on soil condi
tions and dead plant biomass, so errors in GPP readily 
propagate to errors in Reco and simulated diurnal and sea
sonal cycles of NEE. Through representation of stomatal 
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control on GPP and transpiration, errors in GPP introduce 
errors in simulated latent and sensible heat flux, which in 
turn can introduce error in simulated atmospheric circula
tion. GPP is a key carbon flux that needs to be simulated as 
accurately as possible to ensure the most reliable values of 
simulated biomass and surface fluxes. 
[4] We can classify GPP models into enzyme kinetic 

(EK), light use efficiency (LUE), or empirical models. EK 
models represent leaf-scale enzyme-kinetics with electron 
and product transport limits on simulated GPP [Farquhar 
et al., 1980; Caemmerer and Farquhar, 1981; Collatz 
et al., 1991]. Nearly all EK models include a representa
tion of stomatal conductance balancing GPP against water 
loss through leaf stomata [Collatz et al., 1991; Collatz et al., 
1992]. Most stomatal conductance models are based on 
empirical correlations between conductance, photosynthesis, 
and either relative humidity [Ball et al., 1987] or vapor 
pressure deficit (VPD) [Wang and Leuning, 1998]. LUE 
models estimate either GPP or net primary productivity 
(NPP) by multiplying incident photosynthetically active radi
ation (PAR) by a remotely sensed fraction of PAR absorbed by 
the vegetation (fPAR) and an energy to biomass conversion 
factor (typically called light use efficiency) [Monteith, 1972; 
Field, 1995; Prince and Goward, 1995; Landsberg and 
Waring, 1997; Goetz et al., 1999; Running et al., 2000; Sims 
et al., 2006;  Zhao et al., 2007; Sjöström et al., 2009; 
As-syakur et al., 2010]. Finally, empirical models use sta
tistical relationships between observed environmental con
ditions and GPP estimated from eddy covariance flux data, 
which is then expanded to regional or global scales using 
various reanalysis weather products [Beer et al., 2010].  
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These GPP models vary greatly in intended application, 
complexity, and their representation of physical and bio
logical processes. 
[5] The modeling community currently lacks a quantita

tive evaluation of multiple GPP models to gauge overall 
performance across different ecosystems and help prioritize 
long-term model development. Many modeling teams com
pare simulated NEE to observed NEE measured at single 
points using eddy covariance techniques [Baldocchi et al., 
2001; Grant et al., 2010]. Others compare against NEE for 
large regions estimated from transport inversions that are 
optimally consistent with observations of atmospheric CO2 

concentration [Gurney et al., 2002; Peters et al., 2010]. 
However, comparisons with observed NEE do not distin
guish between Reco and GPP and provide little information 
on model performance relative to GPP. Fortunately, NEE 
measured by eddy covariance techniques can be partitioned 
into Reco and GPP: a temperature function is tuned to 
nighttime Reco, the function is used to calculate daytime 
Reco, and the estimated GPP is the daytime Reco minus the 
daytime NEE [Desai et al., 2008; Lasslop et al., 2010]. 
There are assessments in the literature of how well terrestrial 
biosphere models simulate GPP, but they focused on a single 
or small number of models compared to GPP estimated from 
eddy covariance data at a small number of towers [e.g., 
Thornton et al., 2002; Schaefer et al., 2008; Verbeeck et al., 
2008]. These studies used different techniques to estimate 
GPP from observed NEE [Desai et al., 2008], making it 
difficult to differentiate between errors in the partitioning 
technique and true model-data mismatches. The evaluations 
were run at different sites and used different input weather, 
making it difficult to isolate input errors from true model-
data mismatches. The performance measures used in these 
evaluations are difficult to compare because most used 
qualitative performance criteria while those with quantitative 
performance measures used different statistical techniques 
and quantities. None of these model evaluations account for 
uncertainty in estimated GPP due to uncertainty in the eddy 
covariance data and partitioning techniques. The actual GPP 
value lies within the range defined by uncertainty, so the 
ideal performance target of any model is to match the 
observed GPP within uncertainty. These studies provide 
insight into the performance of individual models. However, 
the differences among evaluations make it very difficult to 
compare and synthesize the results to identify strengths and 
weaknesses common to all terrestrial biosphere models and 
to determine what changes will provide the greatest 
improvements in simulated GPP. 
[6] We hypothesize that model performance depends on 

1) model structure and 2) how models simulate GPP 
response to changing environmental conditions. Model 
structure refers to differences in how models represent var
ious physical and biological processes, such as LUE versus 
EK models. To test our hypotheses, we compared simulated 
GPP from 26 models against estimated GPP at 39 eddy 
covariance flux tower sites in the North American Carbon 
Program (NACP) site-level interim synthesis. Our analysis 
includes observation uncertainty to determine if the models 
hit the desired performance target: matching observed GPP 
within uncertainty. The number and variety of models and 
sites in the NACP site synthesis are sufficient to identify the 

strengths and weaknesses common to all GPP models and, 
most importantly, how to improve the models. 

2. Methods 

2.1. Estimated GPP 

[7] Our analysis used daily average GPP estimated at 
39 eddy covariance flux tower sites (Table 1). Observed 
NEE at all towers were processed and partitioned into GPP 
and Reco using standard techniques [Barr et al., 2004]. The 
NACP site synthesis included 47 tower sites, but we did not 
include those sites where the GPP partitioning was not done 
or the algorithm failed to converge. The chosen sites repre
sented eight major biome types across North America except 
tundra, with 24 sites from the AmeriFlux network and 
15 sites from the Fluxnet Canada Research Network/ 
Canadian Carbon Program. GPP partitioning was not done 
for tundra sites due to large data gaps in winter and the lack 
of nighttime data in summer to train the Reco model. NACP 
site synthesis used the International Global Biosphere Pro
gram (IGBP) biome classifications [Loveland et al., 2000]. 
Some models were designed for specific biome types, such 
as forest or agriculture sites only, so not every model sim
ulated all sites, resulting in a total of 627 simulations and an 
average of 16 simulations per site. 
[8] Observed, hourly NEE at each site was gap-filled 

and decomposed into hourly Reco and GPP using a standard 
procedure [Barr et al., 2004] and converted into 24-hour daily 
averages. Before processing, observed NEE was screened to 
remove outliers [Papale et al., 2006] and exclude data dur
ing periods of low turbulence based on a friction velocity 
threshold (A. G. Barr et al., Use of change-point detection 
for u*–threshold evaluation for the North American Carbon 
Program interim synthesis, manuscript in preparation, 2012). 
Reco was set equal to observed, nighttime NEE and fitted to 
an empirical model based on air and soil temperature using a 
moving window approach. The function was then used to 
calculate the daytime Reco, which was subtracted from day
time NEE to get GPP. Finally, gaps in GPP were filled using 
an empirical model that was tuned to the estimated GPP 
values. GPP was set to zero when the soil was frozen and the 
air temperature was below 0°C, assuming air temperature 
represents the temperature of the entire system. The parti
tioning procedure occasionally produced negative GPP 
values at dawn and dusk at most sites and occasionally for 
entire days at the dry, grassland sites. The negative GPP 
values typically greatly exceeded estimates of random 
uncertainty and probably resulted from errors in the Reco 

temperature response or the fact that the partitioning algo
rithm did not account for influences of soil moisture on GPP. 
We set all negative GPP values to zero and transferred the 
flux to Reco to maintain the observed NEE, and recalculated 
the daily average GPP. One third of the models used a daily 
time step, so we calculated the daily average as the average 
rate of GPP over a 24-hour period using both estimated and 
gap-filled values. 
[9] Although treated here as “observed” GPP, they are not 

strictly observed, but rather estimated from observed tower-
based NEE. The GPP includes all the strengths, weaknesses, 
and assumptions of the original NEE observations. The 
energy budget at flux towers does not balance because the 
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Table 1. Summary of Site Characteristics 

Longitude Latitude Start Stop Number 
Site IGBP Classa Description (deg) (deg) (yr) (yr) Models Reference(s) 

CA-Ca1 ENF Campbell River, Mature Douglas-fir -125.3 49.9 1998 2006 23 Krishnan et al. [2009]; 
Humphreys et al. [2006] 

CA-Ca2 ENF Campbell River, Douglas-fir, clearcut -125.3 49.9 2001 2006 8 Krishnan et al. [2009]; 
Humphreys et al. [2006] 

CA-Ca3 ENF Campbell River, Douglas-fir, juvenile -124.9 49.5 2002 2006 8 Krishnan et al. [2009]; 
Humphreys et al. [2006] 

CA-Gro MF Groundhog River -82.2 48.2 2004 2006 17 McCaughey et al. [2006] 
CA-Let GRA Lethbridge Grassland -112.9 49.7 1997 2007 22 Flanagan and Adkinson [2011] 
CA-Mer WET Eastern Peatland, Mer Bleue -75.5 45.4 1999 2006 18 Roulet et al. [2007] 
CA-Oas DBF BERMS, Old Aspen -106.2 53.6 1997 2006 23 Krishnan et al. [2006]; 

Barr et al. [2006] 
CA-Obs ENF BERMS, Old Black Spruce -105.1 54.0 2000 2006 22 Krishnan et al. [2008]; 

Kljun et al. [2006] 
CA-Ojp ENF BERMS, Old Jack Pine -104.7 53.9 2000 2006 18 Kljun et al. [2006] 
CA-Qfo ENF Quebec, Mature Black Spruce -74.3 49.7 2004 2006 17 Bergeron et al. [2008]; 

Bergeron et al. [2007] 
CA-SJ1 ENF BERMS, Jack Pine, 1994 Harvest -104.7 53.9 2002 2005 7 Zha et al. [2009] 
CA-SJ2 ENF BERMS, Jack Pine, 2002 Harvest -104.6 53.9 2003 2006 8 Zha et al. [2009] 
CA-SJ3 ENF BERMS, Jack Pine, 1995 Harvest -104.6 53.9 2005 2006 7 Zha et al. [2009] 
CA-TP4 ENF Turkey Point, Mature -80.4 42.7 2002 2007 17 Arain and Restrepo [2005]; 

Peichl and Arain [2006] 
CA-WP1 WET Western Peatland, LaBiche River -112.5 55.0 2003 2007 14 Flanagan and Syed [2011] 
US-ARM CRO ARM, Southern Great Plains -97.5 36.6 2000 2007 17 Fischer et al. [2007] 
US-Dk3 ENF Duke Forest, Loblolly Pine -79.1 36.0 1998 2005 17 Oren et al. [2006]; 

Stoy et al. [2006] 
US-Ha1 DBF Harvard Forest, EMS Tower -72.2 42.5 1991 2006 23 Urbanski et al. [2007] 
US-Ho1 ENF Howland Forest, Main Tower -68.7 45.2 1996 2004 23 Richardson et al. [2009] 
US-IB1 CRO Fermi Lab, agriculture -88.2 41.9 2005 2007 16 Post et al. [2004] 
US-IB2 GRA Fermi, prairie -88.2 41.8 2004 2007 17 Post et al. [2004] 
US-Los WET Lost Creek -90.0 46.1 2000 2006 12 Sulman et al. [2009] 
US-Me2 ENF Metolius, Intermediate-aged Ponderosa Pine -121.6 44.5 2002 2007 20 Thomas et al. [2009] 
US-Me3 ENF Metolius, Ponderosa Pine, young (2) -121.6 44.3 2004 2005 8 Vickers et al. [2009] 
US-Me5 ENF Metolius, Ponderosa Pine, young (1) -121.6 44.4 1999 2002 8 Law et al. [2001] 
US-MMS DBF Morgan Monroe State Forest -86.4 39.3 1999 2006 16 Schmid et al. [2000] 
US-MOz DBF Missouri Ozark -92.2 38.7 2004 2007 17 Gu et al. [2006] 
US-Ne1 CRO Mead, Irrigated maize -96.5 41.2 2001 2006 17 Verma et al. [2005]; 

Suyker and Verma [2010] 
US-Ne2 CRO Mead, Irrigated maize or soybean -96.5 41.2 2001 2006 17 Verma et al. [2005]; 

Suyker and Verma [2010] 
US-Ne3 CRO Mead, Rainfed -96.4 41.2 2001 2006 23 Verma et al. [2005]; 

Suyker and Verma [2010] 
US-NR1 ENF Niwot Ridge -105.5 40.0 1998 2007 17 Monson et al. [2002]; 

Monson et al. [2005] 
US-PFa MF Park Falls/WLEF -90.3 45.9 1995 2005 14 Davis et al. [2003] 
US-Shd GRA Shidler -96.7 36.9 1997 2000 15 Suyker et al. [2003] 
US-SO2 CSH Sky Oaks, Old -116.6 33.4 1998 2006 16 Luo et al. [2007] 
US-Syv MF Sylvania Wilderness Area -89.3 46.2 2001 2006 15 Desai et al. [2005] 
US-Ton WSA Tonzi Ranch -121.0 38.4 2001 2007 15 Ma et al. [2007] 
US-UMB DBF UMBS -84.7 45.6 1999 2006 22 Gough et al. [2008] 
US-Var GRA Vaira Ranch -121.0 38.4 2000 2007 17 Ma et al. [2007] 
US-WCr DBF Willow Creek -90.1 45.8 1998 2006 16 Cook et al. [2004] 

aIGBP biome class definitions: CRO, Croplands; CSH, Closed Shrublands; DBF, Deciduous Broadleaf Forest; ENF, Evergreen Needleleaf Forest; GRA, 
Grasslands; MF, Mixed Forests; WET, Permanent Wetlands; WSA, Woody Savannas. 

eddy covariance technique captures small-scale turbulent 
fluxes less than 1 km, but can underestimate latent and 
sensible heat fluxes due to large-scale eddies on the order of 
10 km [Foken, 2008]. Assuming similarity with the lack of 
surface energy balance closure, the measured NEE might be 
between 15 and 20% less than the actual values [Foken, 
2008], indicating a potential underestimate of GPP. Eddy 
covariance techniques can underestimate nighttime Reco, 
depending on the threshold used to filter out Reco under 
stable conditions, also resulting in an underestimate of GPP. 
The empirical formulation for Reco used to estimate GPP 
from NEE assumed air temperature represents the tempera
ture of the entire system, underestimating GPP when the 

canopy temperature is greater than zero and the air temper
ature is less than zero. Last, the partitioning algorithm did 
not account for how soil moisture and other factors control 
Reco, resulting in errors in the estimated GPP (as evidenced 
by occurrences of negative GPP at some grassland sites). 
[10] Total GPP uncertainty included gap filling algorithm 

uncertainty, partitioning uncertainty, random uncertainty, 
and threshold friction velocity (u*) uncertainty, summed in 
quadrature. Summing in quadrature assumes that these 
sources of error are uncorrelated. We did not correct for 
potential biases due to the lack of energy closure or under
estimates of Reco at night. Random and u* filtering uncer
tainty was estimated using a Monte Carlo technique 
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Table 2. Summary of Model Characteristics 

Model Number Sites Time Step Soil Layersa Phenologyb Nitrogen Cycle GPP Modelc Leaf-to-Canopy Reference 

AgroIBIS 5 Hourly 11 Prognostic Yes EK Big-Leaf Kucharik and Twine [2007] 
BEPS 10 Daily 3 Semi-prognostic Yes EK 2-Leaf Liu et al. [1999] 
Biome-BGC 33 Daily 1 Prognostic Yes EK 2-Leaf Thornton et al. [2005] 
Can-IBIS 24 Hourly 7 Prognostic Yes EK 2-Leaf Liu et al. [2005] 
CN-CLASS 28 Hourly 3 Prognostic Yes EK 2-Leaf Arain et al. [2006] 
DLEM 30 Daily 2 Semi-prognostic Yes EK 2-Leaf Tian et al. [2010] 
DNDC 5 Daily 10 Prognostic Yes LUE Big-Leaf Li et al. [2010] 
Ecosys 35 Hourly 15 Prognostic Yes EK 2-Leaf Grant et al. [2009] 
ED2 24 Hourly 9 Prognostic Yes EK 2-Leaf Medvigy et al. [2009] 
EDCM 9 Daily 10 Prognostic Yes LUE Big-Leaf Liu et al. [2003] 
ISAM 13 Hourly 10 Prognostic Yes LUE 2-Leaf Yang et al. [2009] 
ISOLSM 9 Hourly 20 Observed No EK 2-Leaf Riley et al. [2002] 
LoTEC 10 Hourly 14 Prognostic No EK Big-Leaf Hanson et al. [2004] 
LPJ 26 Daily 2 Prognostic No EK Big-Leaf Sitch et al. [2003] 
MODIS_5.0 38 Daily 0 Observed No LUE Big-Leaf Heinsch et al. [2003] 
MODIS_5.1 37 Daily 0 Observed No LUE Big-Leaf Heinsch et al. [2003] 
MODIS_alg 39 Daily 0 Observed No LUE Big-Leaf Heinsch et al. [2003] 
ORCHIDEE 32 Hourly 2 Prognostic No EK Big-Leaf Krinner et al. [2005] 
SiB3 28 Hourly 10 Observed No EK Big-Leaf Baker et al. [2008] 
SiBCASA 32 Hourly 25 Semi-prognostic No EK Big-Leaf Schaefer et al. [2009] 
SiBcrop 5 Hourly 10 Prognostic Yes EK Big-Leaf Lokupitiya et al. [2009] 
SSiB2 39 Hourly 3 Observed No EK Big-Leaf Zhan et al. [2003] 
TECO 32 Hourly 10 Prognostic No EK 2-Leaf Weng and Luo [2008] 
TRIPLEX 6 Daily 0 Observed Yes LUE Big-Leaf Peng et al. [2002] 

aZero soil layers indicate the model does not have a prognostic submodel for soil temperature and moisture. 
bObserved phenology means the model uses remote sensing data to determine leaf area index (LAI) and gross primary productivity (GPP). Semi-

prognostic means that remote sensing data is used to specify either LAI or GPP, but not both. 
cGPP model types: EK (enzyme kinetic) and LUE (light use efficiency). 

[Richardson and Hollinger, 2007; A. G. Barr et al., manu
script in preparation, 2012]. A. G. Barr et al. generated a 
synthetic flux time series using the gap-filling algorithm, 
randomly introduced artificial gaps, added noise, and then 
refilled the gaps. Repeating the process 1000 times for each 
site-year produced probability distribution functions with the 
2.5 and 97.5 percentiles representing uncertainty. Assuming 
the GPP uncertainty due to the gap-filling algorithm was the 
same as that for NEE, the GPP gap filling uncertainty was 
the fraction of filled GPP values for each day times the stan
dard deviation of multiple algorithms [Moffat et al., 2007]. 
Partitioning uncertainty was based on the standard deviation of 
multiple partitioning algorithms [Desai et al., 2008].  Total  
uncertainty generally increased with the magnitude of GPP 
and varied from a minimum of �1 mmol m-2 s -1 in winter to 
2–4 mmol m-2 s -1 in summer. Random uncertainty dominated 
over other sources of uncertainty, ranging from �90% of total 
uncertainty in summer months to �50% of total uncertainty in 
winter months. 

2.2. Modeled GPP 

[11] Our analysis used simulated GPP from 24 different 
models (Table 2) plus two model averages. We used the 
model characteristics in Table 2 as covariates to determine if 
the different representations of physical and biological pro
cesses produce statistically significant differences in model 
performance relative to GPP. All the EK models included 
the effects of stomatal conductance and all but two used the 
Ball-Berry stomatal conductance model [Ball et al., 1987]. 
The leaf-to-canopy column indicates whether the strategy for 
scaling from a single leaf to the entire canopy accounts for 
the effects of diffuse light on shaded leaves (2-leaf) or not 
(big-leaf). To determine if resolving the diurnal cycle 
improved performance, we included the ensemble average of 

all models and the average of all models that resolved the 
diurnal cycle. Including the two ensemble averages at each 
site, we have a total of 627 simulations or 4242 site-years of 
model output with an average of 23 simulations per model. 
[12] We included estimates of MODIS GPP from Collec

tion 5.0 and Collection 5.1, [Heinsch et al., 2003; Running 
et al., 2004]. We extracted a 3 by 3 pixel window of 8-day 
maximum composite GPP values at 1 km2 spatial resolution, 
with the center pixel containing the tower site [Distributed 
Active Archive Center for Biogeochemical Dynamics, 
2010]. We filtered out low quality pixels using the simple 
binary quality control flag to remove the effects of potential 
cloud contamination and averaged the rest of the pixels to 
represent the GPP at each site. We linearly interpolated 
between 8-day composite values to obtain daily GPP. 
[13] The MODIS GPP from Collection 5.0 and Collec

tion 5.1 were not based on observed meteorology, so we 
also calculated GPP using gap-filled observed weather and 
the MODIS algorithm [Heinsch et al., 2003; Running et al., 
2004]: 

GPP ¼ 0:45ɛmaxFSW fPARSVPDST ; ð1Þ 

where ɛmax is the maximum light use efficiency, FSW is 
the incident shortwave radiation flux, fPAR is the absorbed 
fraction of PAR, SVPD is the VPD scaling factor, and ST is 
the air temperature scaling factor. SVPD represents the GPP 
response to drought and humidity stress and ST represents 
the GPP response to temperature, with both varying between 
zero and one. We used the MODIS Biome-Property-Look
Up-Table [Zhao and Running, 2010] and daily fPAR values 
interpolated from the monthly mean GIMMSg NDVI data 
set [Tucker et al., 2005]. Although the complexity and 
sophistication varies widely, all the models have a GPP 
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formulation similar to MODIS: a peak potential rate times 
the amount of absorbed light, multiplied by a series of 
scaling factors representing how GPP responds to changing 
environmental conditions. The scaling factors represent the 
ratio of actual to a reference or optimal GPP and vary 
between zero and one. 
[14] All models used gap-filled observed weather from each 

tower site [Ricciuto et al., 2009; http://www.nacarbon.org/ 
nacp/] with input parameters and biophysical characteristics 
derived from local observations, such as soil texture. Missing 
air temperature, atmospheric humidity, shortwave radiation, 
and precipitation data were filled using DAYMET [Thornton 
et al., 1997] or the nearest available climate station in the 
National Climatic Data Center’s Global Surface Summary of 
the Day (GSOD) database. Daily GSOD and DAYMET data 
were temporally downscaled to hourly or half-hourly values 
using the phasing from observed mean diurnal cycles calcu
lated from a 15-day moving window. When station data were 
unavailable, a 10-day running mean diurnal cycle was used 
[Ricciuto et al., 2009; http://nacp.ornl.gov/docs/Site_Synthe
sis_Protocol_v7.pdf]. The models were run for as many years 
as required, repeating the gap-filled weather, until they 
reached steady state initial conditions where Reco balances 
GPP and the average NEE over the entire simulation is near 
zero. The steady state assumption influences Reco, but has little 
or no effect on simulated GPP. All models used their standard 
values for various biophysical parameters except LoTEC, 
which used optimized parameter values obtained through data 
assimilation [Ricciuto et al., 2011]. 

2.3. Model Performance 

[15] We quantified model performance using a statistical 
analysis of model-data residuals using daily average GPP. 
We first calculated residuals: 

ri ¼ ðGPPsi - GPPoiÞ; ð2Þ 

where ri is the residual for the i
th model-data pair, GPPsi is 

simulated daily average GPP, and GPPoi is estimated daily 
average GPP. Bias is the residual mean and the Root Mean 
Square Error (RMSE) is the residual standard deviation. X2 

is the mean of residuals normalized by uncertainty: 

  X1 n ri 
2 

X 2 ¼ ; ð3Þ 
n 

i¼1 
ɛi

where n is the number of residuals and ɛi is the uncertainty 
for the i th daily average estimated GPP. We filtered out 
0.1% of daily estimated GPP values with ɛi ≤ 0.3 mmol 
-2 -1m s which produced extreme outlier X2 values that 

skewed our results. Such unrealistically small ɛi values 
occasionally occurred when GPP was near zero. We did not 
filter out daily average GPP values based on the number of 
filled values per day because these values have higher 
uncertainty and a proportionally lower influence on X2. 
[16] The ideal target for any model is X2 < 1.0, which 

means, on average, the residuals are less than uncertainty or 
the model matches observations within measurement 
uncertainty. Variations of X2 within this target range have no 
meaning relative to model performance. A model with an X2 

value of 0.8, for example is not “better” than a model with an 
X2 value of 0.9, since both models show no statistically 

significant differences with observations. Consequently, we 
identified performance categories based on ranges of X2 

values. An X2 value of ≤1.0 indicated good model perfor
mance. An X2 value between 1.0 and 2.0 indicated marginal 
model performance, where the model-data mismatch is on 
the order of two times the observation uncertainty. An X2 

value of >2.0 indicated poor model performance, where the 
model-data mismatch is several times the observation uncer
tainty. An X2 value of 9, for example, indicates that the model-
data mismatch is, on average, three times the uncertainty. 
[17] To test our hypothesis that model structure influence 

performance, we aggregated the performance measures by 
model, model characteristic, site, and month-of-year. To 
identify any statistically significant differences in perfor
mance based on how the models represented various physi
cal and biological processes, we aggregated performance 
measures by the model structural characteristics listed in 
Table 2. To evaluate seasonal variation in performance 
parameters, we aggregated by month-of-year, where January 
is the average of all Januaries, February the average of all 
Februaries, etc. 
[18] To test our hypothesis that model performance 

depends on how they represent the GPP response to chang
ing environmental conditions, we compared observed and 
simulated environmental response curves. We sorted the 
daily average GPP values into bins based on daily average 
values of input driver variables and calculated the mean, 
standard deviation, and uncertainty of the daily average GPP 
for each bin. We focused on downwelling shortwave radia
tion flux, air temperature, and relative humidity. The relative 
humidity response function reflects the reduction in GPP due 
to stomatal closure under drier atmospheric conditions. 
VPD, the difference between saturated and actual water 
vapor pressure, also reflects stomatal closure, but varies with 
temperature such that the range and magnitude varies among 
sites. Relative humidity always varies between zero and one 
and greatly simplifies our analysis by allowing easy com
parison among sites. More importantly, 16 of the 20 models 
in this analysis that account for stomatal conductance used 
the Ball-Berry stomatal conductance model, which is based 
on relative humidity. Each model’s mathematical formula
tion and associated parameters values determined the shape 
of the simulated response curves. We compared simulated 
and observed shape characteristics, such as slope, to isolate 
those model formulations or parameters that determine 
model performance. The response function for each driver 
variable differs slightly from site to site and is only weakly 
correlated to response functions for other driver variables. 
For example, the optimal temperature for GPP is different 
for each site but does not depend on humidity or light. 
Consequently, we made no attempt to remove covariance 
between driver variables. 

3. Results 

3.1. Performance Summary 

[19] None of the models in this study achieved a good 
X2overall performance of less than one for all sites 

(Figure 1). LoTEC, which was optimized against flux data 
and DLEM achieved marginal performance, while SSIB2 
and TECO had large X2 values due to large biases. Generally 
speaking, higher RMSE resulted in higher X2, but the 
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Figure 1. Overall model performance per model for all 
sites as defined by (a) X2, (b) root mean squared error 
(RMSE), and (c) bias. The models are arranged in order of 
increasing X2 and color-coded for enzyme kinetic (EK), light 
use efficiency (LUE) and model means. An X2 value of <1.0 
indicates good performance, an X2 value of 1.0–2.0 indicates 
marginal performance, and an X2 value of >2.0 indicates 
poor performance. 

relationship was weak because X2 accounts for uncertainty 
and bias while RMSE does not. There was no relationship 
between model bias and either RMSE or X2. The RMSE fell 
within a narrow performance range, with a mean and stan
dard deviation of 2.8 ± 1.0 mmol m-2 s -1. On average, the 
models underestimated GPP (negative bias) with a mean 
bias of -0.3 mmol m-2 s -1, but the spread between models 
was very large compared to the mean, with a bias standard 
deviation of ±0.6 mmol m-2 s -1. 
[20] Figure 2 shows that models, on average, under

estimated GPP in summer (negative bias) and overestimated 

GPP in winter, spring, and fall (positive bias). These sea
sonal biases of opposite sign tended to cancel, resulting in 
the lower overall biases seen in Figure 1. Figure 2 shows the 
average monthly bias, but every month showed both positive 
and negative biases for individual models with standard 
deviations ranging from two to ten times the mean bias. The 
estimated GPP is smaller in spring and fall, with corre
spondingly smaller uncertainties, which magnified the rela
tively small model biases to produce slight peaks in X2 in 
spring and fall. The models performed worst in the summer 
and the best in winter, indicating the models properly shut 
down GPP during winter, but the real challenge is to capture 
GPP dynamics during the growing season. 
[21] The models generally performed the best at forest 

sites and the worst at crop, grassland, and savanna sites 
(Figure 3). The models did not show good overall perfor
mance at any site, but did show marginal performance at 
seven sites. The models performed best for deciduous 
broadleaf, mixed forest, and evergreen needleleaf biome 
types and all of the ten sites with the best overall perfor
mance were forest. The spread in performance within biome 
types was broad: two of the ten sites with the worst perfor
mance were evergreen needleleaf forest sites. However, 
seven of the ten sites with the worst model performance 
were crop, grassland or savanna sites. 
[22] The models showed a large spread in both the mag

nitude and timing of the simulated GPP seasonal cycle, as 
indicated by the large spread in Figure 4. The models cap
tured the basic observed seasonal pattern in GPP with near-
zero values in winter and a peak value in mid-summer, so 
the standard deviation of the seasonal cycle is an alternative 
measure of seasonal amplitude. Consequently, the radial 

Figure 2. The monthly average bias in (a) simulated GPP 
and (b) monthly X2 based on all 627 simulations from all 
models. An X2 < 2.0 indicates marginal performance. 
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Figure 3. Overall performance per site for all models as 
defined by (a) X2, (b) RMSE, and (c) bias. The sites are 
arranged in order of increasing X2 and color-coded by biome 
type. 

distance in Figure 4 is effectively the ratio of simulated to 
estimated seasonal amplitude of GPP, an alternative measure 
of bias. Ratios less than 1.0 indicate the model under
estimates the GPP seasonal amplitude (negative bias). The 
models had standard deviation ratios ranging from 0.5 to 1.4, 
which means the simulated GPP ranged from 50% to 140% 
of estimated GPP. The models showed correlations between 
0.6 and 0.9, indicating they varied widely in how well they 
captured the timing of the estimated GPP seasonal cycle, 
regardless of how well they captured the magnitude. For 
example, LOTEC, ISOLSM, and LPJ all had standard 
deviation ratios near one, consistent with the low biases seen 
in Figure 1. However, these three models showed progres
sively smaller correlations and correspondingly larger X 2, 
indicating that simulated phenology and associated phasing 
of the GPP seasonal cycle played an important role in 
determining overall model performance. 

[23] The two model means showed the highest correlation 
with observations. This indicates that model-data mis
matches associated with the timing of the GPP seasonal 
cycle can partly cancel out when averaging the results from 
multiple models. Essentially, the ensemble mean gave better 
results than any single model alone. Although errors in 
timing cancel, an ensemble mean does not eliminate overall 
bias. The standard deviation ratios for the two model means 
in Figure 4 reflected the overall, average negative bias of all 
the models in our analysis. Although there was positive bias 
in winter, spring, and fall, the negative bias in summer 
dominated and, on average, the models as a whole under
estimate GPP by 20%–30%. 
[24] These results complement and extend previous anal

yses from the NACP site synthesis. Richardson et al. [2012] 
found that overestimation of GPP in spring and fall resulted 
in models predicting the start of spring uptake about two 
weeks earlier than observed and the end of uptake in fall 
about two weeks later than observed. Schwalm et al. [2010] 
found models simulate NEE better at forest sites than 
grassland sites. The positive biases in spring and fall can 
help explain the decreased model performance relative to 
NEE in spring and fall [Schwalm et al., 2010]. Under
estimating GPP in summer can explain the peaks in the 
spectral signature of NEE residuals at the annual time scale 
[Dietze et al., 2011]. Our results and those from prior studies 
indicate that seasonal biases in simulated GPP can help 
explain problems in simulating seasonal changes in NEE. 
[25] Overall, there was a very large spread in model per

formance. On average, a single model showed good perfor
mance at 12% of the sites, marginal performance at 26%, 
and poor performance for the rest. Nearly every model had 
one “outlier” site where it performed considerably worse 
than the other sites, with X2 values often exceeding 20. 
Conversely, nearly all models showed good or marginal 
performance at least one site. The spread in performance 
across sites was equally broad, with three outlier sites where 
none of the models performed well. The spread among 
models at a single site was also wide: each site, on average, 
had two good simulations, four marginal simulations, and 
two outlier simulations with X2 > 20. 

3.2. Model Structure 

[26] Model performance did not depend on model struc
ture, as defined by the model characteristics in Table 2. We 
did not find any statistically significant relationships 
between performance and how models represent various 
physical and biological processes (Table 3). In all cases, the 
difference in mean values between model groups was much 
smaller than the standard deviation within groups such that 
none of the differences were statistically significant. For 
example, LUE models performed better then EK models, but 
when excluding SSIB2 and TECO, which had large biases, 
EK models performed better than LUE models. Essentially, 
EK and LUE models performed equally well in simulating 
observed GPP. The performance difference for a daily ver
sus hourly time step was consistent with the difference 
between EK and LUE models, since nearly all EK models 
use an hourly time step. The same was true for the other 
model structural characteristics: models that include a 
nitrogen cycle, a soil model, shaded leaves, or prognostic 
phenology performed equally well as models that do not. 
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Figure 4. Taylor plot by model for all sites. A Taylor plot is a polar plot where the cosine of the angle 
from the x axis is the correlation coefficient between simulated and observed gross primary productivity 
(GPP). The correlation coefficient measures how well the simulated GPP captures the phasing and timing 
of the observed GPP. The radial direction is the ratio of simulated to observed standard deviation. The 
green lines represent RMSE normalized by standard deviation. An ideal model would have a standard 
deviation ratio of 1.0 and a correlation of 1.0 (point A). 

[27] We found no significant relationships, but this does not 
mean that model structure does not influence performance. 
Sprintsin et al. [2012], for example, clearly demonstrate that 
accounting for diffuse light and changing from a big-leaf to a 
2-leaf formulation improved BEPS performance. However, 
SiB is a big-leaf model and performed just as well as BEPS. 
The lack of significant relationships means that model per
formance is dominated by some other aspect of model design 
not represented by the model characteristics in Table 3, such as 
how models simulate GPP responses to changing environ
mental conditions. 

3.3. Light Response 

[28] The poor overall performance and the negative bias in 
summer resulted from mismatches between simulated and 
observed LUE. The light response curve is GPP as a func
tion of downwelling shortwave radiation and its slope is the 
LUE. Figure 5 shows a light response curve based on dai
ly average GPP for US-Me2 which we chose because it 
had a large number of simulations and was typical of all 
sites. The uncertainty in Figure 5 was dominated by gap-
filling and partitioning uncertainty because the bin averaging 
tended to greatly reduce the random uncertainty. US-Me2 
is an evergreen needleleaf site with simulations from 

19 models with a marginal overall performance (X2 = 1.9). 
Five models had good performance (X2 ≤ 1.0), two showed 
marginal performance (1.0 < X2 ≤ 2.0), and the rest showed 
poor performance. Four out of the five models with good 
performance all had LUEs that matched observed values 
within uncertainty. We saw no clear pattern in bias, with 

Table 3. Differences in Performance Based on Model Structural 
Characteristics (Value ± Standard Deviation) for All 627 Simulations 

RMSE Bias 
Characteristic Value c2 (-) (mmol m-2 s -1) (mmol m-2 s -1) 

GPP Model Type 
GPP Model Type 
Leaf-to-Canopy 
Leaf-to-Canopy 
Phenology 
Phenology 
Soil Model 
Soil Model 
Nitrogen Model 
Nitrogen Model 
Time Step 
Time Step 

EK 4.2 ± 3.9 2.4 ± 1.2 0.1 ± 1.2 
LUE 3.2 ± 2.3 2.8 ± 1.7 -0.9 ± 1.3 

Big-Leaf 3.7 ± 3.2 2.6 ± 1.5 -0.3 ± 1.4 
2-leaf 4.2 ± 3.8 2.4 ± 1.2 -0.1 ± 1.3 

Observed 3.1 ± 2.5 2.3 ± 1.3 -0.3 ± 1.2 
Prognostic 4.8 ± 4.1 2.7 ± 1.4 -0.1 ± 1.4 

No 3.3 ± 2.6 2.6 ± 1.7 -0.6 ± 1.4 
Yes 4.2 ± 3.8 2.4 ± 1.2 0.0 ± 1.3 
No 4.1 ± 3.6 2.5 ± 1.4 -0.1 ± 1.3 
Yes 3.7 ± 3.3 2.5 ± 1.4 -0.3 ± 1.3 
Daily 3.5 ± 3.0 2.7 ± 1.6 -0.7 ± 1.3 
Hourly 4.3 ± 3.8 2.4 ± 1.2 0.2 ± 1.2 
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Figure 5. The light response curve for US-Me2 showing 
simulated and observed GPP as a function of downwelling 
shortwave radiation. The gray bar indicates uncertainty in 
the observed GPP response to shortwave radiation. 

each model under-predicting GPP at some sites and over-
predicting at others, but the spread in simulated GPP among 
models at US-Me2 was typical of all sites. 
[29] Bias decreased as the ratio of simulated to observed 

LUE approached one (Figure 6). We calculated the observed 
and simulated LUE as the regression of GPP versus short
wave radiation flux with a Y-intercept forced to be zero. 
Both the observed and simulated light response curves were 
noisy, so we forced the Y-intercept to be zero to guarantee 
that GPP was zero for zero incident shortwave light. The 
LUE ratio was simulated LUE divided by observed LUE, 
with a ratio less than one indicating the model under
estimated GPP (negative bias). The LUE ratios formed a 
diagonal line with near zero bias when the LUE ratio was 
one. Plots of LUE ratios for subgroups defined by the model 
structural characteristics in Table 2, individual models, and 
individual sites all showed the same pattern as in Figure 6: 
when the LUE ratio was one, the bias was zero. 
[30] To improve performance in simulated GPP, model 

developers should focus first on those parameters that 
determine the simulated LUE. The LUE is determined by the 
leaf-to-canopy scaling and a small number of parameters that 
define the maximum potential GPP. For the MODIS algo
rithm described above, for example, the LUE is determined 
by ɛmax, so a better value of ɛmax will improve performance. 
For other models, Vcmax (the unstressed Rubisco carboxyla
tion rate), a (quantum yield), or Jmax (the maximum electron 
transport rate) determine LUE. These maximum potential 
GPP parameters are either held constant for all sites, like in 
ECOSYS [Grant et al., 2009] or vary with biome or plant 
functional type (PFT), like SiB3 [Baker et al., 2008]. Models 
account for changing environmental conditions by multi
plying the maximum potential GPP by temperature, mois
ture, and humidity scaling factors that represent the ratio of 
actual to peak GPP. 
[31] How a model scales from a single leaf to an entire 

canopy also influences the simulated LUE. The maximum 
potential GPP parameters typically represent peak or optimal 
values for a single leaf at the canopy top. The leaf-to-canopy 
scaling factor represents the ratio of GPP for a single leaf to 
GPP for the entire canopy. A model assumes the distribution 
of leaf nitrogen and light levels within the canopy, and 

integrates from canopy top to bottom to calculate a leaf-to
canopy scaling factor. SiB and BEPS, for example, both 
assume the distribution of light is governed by Beer’s law 
[Sellers et al., 1996; Sprintsin et al., 2012]. Unfortunately, 
the leaf-to-canopy scaling and the maximum potential GPP 
parameters are coupled and can compensate, indicating that 
the model has to get both right to get the correct GPP. 
[32] Our results indicate that better LUE parameter values 

and leaf-to-canopy scaling will improve overall performance 
in simulated GPP, although we could not delve into indi
vidual models to identify the correct parameters and the best 
values. The number, nomenclature, definition, and units of 
the various parameters that define LUE differ widely among 
models. Model developers can use data assimilation of, for 
example, eddy covariance data to estimate parameter values 
[Hanson et al., 2004]. The LOTEC model illustrates the 
potential to improve performance by estimating the maxi
mum potential GPP parameters with data assimilation. 
However, due to differences among models, parameter 
values estimated for one model may not work in another. 
The TRY database of plant characteristics [Kattge et al., 
2011] includes observations of Vcmax, Jmax, and a com
piled from many studies that could potentially minimize 
these inter-model differences. The leaf-to-canopy scaling 
depends on the assumed variation of light levels and 
parameter values within the canopy, which may require 
additional field observations. For example, measuring leaf-
level nitrogen content, which determines Vcmax, is relatively 
easy, but what models need is canopy-level nitrogen content, 
which, unfortunately, is much more difficult to measure. 
Changes to how models treat the distribution of light within 
the canopy could improve the leaf-to-canopy scaling, such 
as better canopy radiative transfer models coupled to the 
GPP models or separating sunlit and shaded leaves, but 
developers have to demonstrate that such changes improve 
GPP performance. The observed LUE shows strong vari
ability within PFT classes and the biases may result from the 
fact that the models assume constant parameter values for 
each PFT. Although spatially explicit maps of LUE param
eter values currently do not exist, remote sensing of canopy 
nitrogen shows promise [Ollinger et al., 2008]. However, 
nitrogen in Rubisco is the variable of interest and relating 
total nitrogen to a canopy Vcmax in a way that will work for 
all models will require new theoretical development. 

Figure 6. GPP bias as a function of the ratio of simulated 
to observed LUE for summer (June–July–August) for all 
627 simulations. 
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Figure 7. Normalized humidity response curves for 
(a) US-Var and (b) US-Ha1 showing simulated and observed 
GPP as a function of relative humidity. The gray bar 
indicates uncertainty in the observed GPP response. All 
response curves are normalized such that the maximum 
value is 1. 

3.4. Humidity Response 

[33] We found that difficulties in simulating GPP under 
dry conditions can explain why models performed worse 
at grassland and savanna sites than forest sites. Figure 7 
shows normalized humidity response curves for the US-Var 
grassland and US-Ha1 deciduous broadleaf forest sites. We 
normalized the humidity response curves to emphasize the 
shape of the curves, which were typical of all sites: low GPP 
under dry conditions, an optimal GPP at 70%–80% relative 
humidity, and a decrease for higher humidity associated with 
colder temperatures. Models calculate lower GPP under 
stressed conditions using scaling factors that represent the 
ratio of stressed to optimal GPP. The scaling factors deter
mine the shape of the response curves in Figure 7, but the 
simulated LUE determines the GPP magnitude. Decreased 
GPP at low relative humidity can be caused either by 
humidity stress reducing stomatal conductance, high tem
perature stress, or drier soils with reduced water availability 
(drought stress). Half of the models overpredicted GPP at 
both sites under low humidity conditions (relative humidity 
less than 60%). Such dry conditions occurred only 23% of 
the time at US-Ha1, but occurred 46% of the time at US-Var, 
which has dry summers with near zero growth. Even though 
half the models did not capture GPP under dry conditions at 
both sites, the effect on performance was much stronger at 
US-Var because the dry periods occurred twice as often than 
at US-Ha1. This explains the poor performance at the ever
green needleleaf forest sites CA-SJ1 and CA-SJ2, where the 

dry periods occurred nearly as often as US-Var. Essentially, 
the more often the dry periods occurred, the worse the 
performance. 
[34] The NEE partitioning algorithm can partly explain the 

model-data mismatch at drier sites. The algorithm was not 
designed for drier sites where soil moisture has greater 
influence on Reco than temperature. Consequently the algo
rithm either did not converge or produced negative GPP, 
which we changed to zero as described above. However, 
filtering out these zero GPP values did not change model 
performance at these sites. The partitioning algorithm could 
be improved to account for moisture, but the models also 
need to improve simulated GPP under dry conditions. 
[35] Determining exactly how to improve simulated GPP 

under dry conditions was not possible in our analysis 
because the effects of drought and humidity stress are 
intertwined. Periods of low rainfall simultaneously reduce 
both soil moisture and atmospheric humidity, making the 
associated effects of drought and humidity stress on GPP 
difficult to separate. Models that account for drought stress 
typically calculate a GPP scaling factor using either input 
precipitation or plant water availability from simulated soil 
moisture [Schaefer et al., 2008; Potter et al., 1993]. Models 
that account for humidity stress either calculate a GPP 
scaling factor based on humidity or directly reduce stomatal 
conductance [Heinsch et al., 2003; Baker et al., 2008]. Thus, 
overpredicting GPP under dry conditions could result from 
problems with the simulated soil moisture, the calculation of 
plant water availability, or the representation of humidity 
stress. 
[36] To complicate matters, a model’s representation of 

humidity stress can compensate for poor representation of 
drought stress, and vice versa. For example, the MODIS 
algorithm above does not account for drought stress at all, 
but the humidity response was strengthened to compensate 
[Heinsch et al., 2003], such that MODIS reproduced the 
shape (but not magnitude) of the observed humidity 
response curves. Determining whether models should 
improve simulated soil moisture, drought stress, or humidity 
stress requires a simultaneous analysis of simulated and 
observed soil moisture, latent heat flux, and GPP, which is 
beyond the scope of our analysis. 

3.5. Temperature Response 

[37] Figure 8 shows a typical temperature response func
tion for the evergreen needleleaf forest site, US-Ho1, which 
had simulations from 23 models and a marginal overall 
performance (X2 = 1.8). US-Ho1 was the site closest to the 
“average” temperature response function for all sites. The 
observed optimal temperature for GPP was 19°C and aver
age across all sites was 20 ± 5°C. Differences between 
simulated and observed GPP near the peak or optimal tem
perature reflected differences in simulated and observed 
LUE in summer, as described above. For US-Ho1, GPP 
shut down for daily average temperatures below -6.5°C and 
the average low temperature cutoff across all sites was -6 ± 
3°C. Cutoff temperatures below zero reflected conditions in 
spring and fall where daytime temperatures were above 
freezing to allow photosynthesis while the nighttime tem
peratures were below freezing, resulting in a negative 
daily average air temperature. The average winter season at 
US-Ho1, defined as the time with daily average temperature 
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Figure 8. The temperature response curve for US-Ho1 
showing simulated and observed GPP as a function of daily 
mean air temperature. US-Ho1 is the site closest to the aver
age response for all sites. The gray bar indicates uncertainty 
in the observed GPP response to air temperature. 

below 0°C, was 92 days and the average for all sites was 75 ± 
47 days. 
[38] Temperature was the dominant control of the seasonal 

variation of GPP at most sites. The simulated start of GPP in 
spring and the stop of GPP in fall is a representation of 
phenology. Models primarily use temperature to control 
phenology, but how this is done varies widely. Some models 
using growing degree days to predict bud burst in spring 
while others simply shut down GPP below a lower temper
ature limit. How models simulate GPP at temperatures near 
0°C determined the start and stop of the simulated growing 
season. 
[39] The models tended to overpredict GPP at low tem

peratures: half of all simulations predicted more than double 
the observed GPP at temperatures below 0°C. The obser
vations indicated that no more than 0.8 ± 0.6% of total 
annual GPP occurred in winter, but the models simulated 
anywhere from 0% to 15% of the annual GPP in winter. Part 
of this may have resulted from the partitioning algorithm 
itself, which set GPP to zero when the soil and the air tem
perature are below zero. However, observations indicate this 
is realistic since the recovery of photosynthesis after freezing 
temperatures can be delayed for weeks with repeated expo
sure to frost and cold and frozen soils limit root uptake of 
water and stomatal conductance [Strand and Öquist, 1985; 
Waring and Winner, 1996]. Overpredicting GPP under cold 
conditions explained the positive biases in winter, spring, 
and fall, which in turn resulted in uptake starting earlier than 
observed in spring and later than observed in fall. 
[40] Better low temperature inhibition functions will 

improve simulated GPP in winter, spring, and fall and 
improve simulated phenology. Most models use an expo
nential or “Q10 ” response function to represent the effects of 
low temperature on GPP: 

T-Tref 
10ST ¼ ðQ10Þ ; ð4Þ 

where ST is a temperature scaling factor applied to GPP, T is 
temperature (°C), and Tref is a reference temperature (°C). All 
models based on the Farquhar et al. [1980] EK model, for 
example, use this type of formulation. Most models have a 

second exponential function with separate Q10 and Tref values 
to reflect reduced GPP for high temperatures. Combined, the 
low and high temperature functions produce an optimal 
temperature for simulated GPP. The combined temperature 
scaling factor represents the ratio of actual to optimal GPP 
and varies between zero and one. The simulated LUE deter
mined GPP magnitude under optimal conditions in mid
summer, but the temperature scaling determined the seasonal 
cycle in simulated GPP and simulated phenology. The exact 
values of Q10 and Tref vary widely between models and we 
made no attempt to determine which values are correct. 
[41] The positive bias in winter, spring, and fall resulted 

from the fact that the Q10 function alone will never reach zero 
no matter how cold the temperature, so those models using 
this type of formulation without a frost inhibition function 
over predicted GPP at low temperatures. The frost inhibition 
function is an additional scaling factor that shuts down GPP 
below a specified threshold temperature [Kucharik and 
Twine, 2007; Li et al., 2010]. In addition, some models also 
include a GPP recovery period after the frost event [Baker 
et al., 2008; Schaefer et al., 2008]. Data on photosynthesis 
at low temperatures are relatively scarce, so developing a 
low-temperature inhibition function to incorporate the effects 
of nutrient and water availability in partially frozen soils may 
require more observations. Improving the modeled low 
temperature inhibition function will improve simulated GPP 
in spring and fall, and thus simulated phenology. 

4. Conclusions 

[42] None of the models in this study match estimated 
GPP within the range of uncertainty of observed fluxes. On 
average, the models achieved good performance for only 
12% of the simulations. Two models achieved overall mar
ginal performance, matching estimated GPP within roughly 
two times the uncertainty. Our first hypothesis proved false: 
we found no statistically significant differences in perfor
mance due to model structure, mainly due to the large spread 
in performance among models and across sites. The models 
in our study reproduced the observed seasonal pattern with 
little or no GPP in winter and peak GPP in summer, but did 
not capture the observed GPP magnitude. We found, on 
average, that models overestimated GPP in spring and fall 
and underestimated GPP in summer. Our second hypothesis 
proved true: model performance depended on how models 
represented the GPP response to changing environmental 
conditions. We identified three areas of model improvement: 
simulated LUE, low temperature response function, and 
GPP response under dry conditions. 
[43] The poor overall model performance resulted pri

marily from inadequate representation of observed LUE. 
Simulated LUE is controlled by the leaf-to-canopy scaling 
strategy and a small set of model parameters that define the 
maximum potential GPP, such as ɛmax (light use efficiency), 
Vcmax (unstressed Rubisco catalytic capacity) or Jmax (the 
maximum electron transport rate). The temperature, humid
ity, and drought scaling factors determined temporal vari
ability in simulated GPP, but the LUE parameters 
determined the magnitude of simulated GPP. To improve 
simulated GPP, model developers should focus first on 
improving the leaf-to-canopy scaling and the values of those 
model parameters that control the LUE. 
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[44] Many models overpredicted GPP under dry condi
tions, explaining why, on average, models performed worse 
at grassland and savanna sites than at forest sites. The 
importance of this to model performance increases at sites 
where drier conditions occur more frequently. Since dry 
conditions occur more frequently at grassland and savanna 
sites than at forest sites, models tended to perform worse at 
grassland and savanna sites compared to forest sites. 
Improving how models simulate soil moisture, drought 
stress, or humidity stress can improve simulated GPP under 
dry conditions. 
[45] Many models overpredicted GPP under cold condi

tions, partly explaining the positive bias in simulated GPP in 
winter, spring, and fall. The estimated GPP completely shut 
down for daily average temperatures less than -6°C, but the 
Q10 formulation used by many models did not shut down 
GPP under cold or frozen conditions. The simulated GPP 
started too early in spring and persisted too late in fall, 
resulting in a positive bias and phasing errors in phenology. 
Using an ensemble mean can cancel out errors in phenology, 
but does not cancel out bias. Improving or imposing a low 
temperature inhibition function in the GPP model will 
resolve the problem. 
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