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Statistical inference requires expression of an estimate in probabilistic terms, usually in the form of a confi-
dence interval. An approach to constructing confidence intervals for remote sensing-based estimates of net
deforestation is illustrated. The approach is based on post-classification methods using two independent for-
est/non-forest classifications because sufficient numbers of observations of forest/non-forest change were
not available for direct classification. Further, the approach uses a model-assisted estimator with information
from a traditional error matrix for the forest/non-forest classifications to compensate for bias as the result of
classification errors and to estimate variances. Classifications were obtained using a logistic regression model,
forest inventory data, and two dates of Landsat imagery, although the approach to inference can be used with
multiple classification approaches. For the study area in northeastern Minnesota, USA, overall pixel-level ac-
curacies for the year 2002 and 2007 forest/non-forest classifications were 0.85–0.88, and estimates of propor-
tion net deforestation for the 2002–2007 interval were less in absolute value than 0.015. However, standard
errors for the remote sensing-based estimates of net deforestation were on the order of 0.02–0.04, meaning
that the estimates were not statistically significantly different from zero. Particular attention is directed to the
potentially severe sample size and classification accuracy requirements necessary for estimates of net
deforestation to be detected as statistically significantly different from zero.

Published by Elsevier Inc.
1. Introduction

1.1. Background and motivation

Forest ecosystems are among the most biologically rich and genet-
ically diverse terrestrial ecosystems on earth. Of the 38 main classes
in Holdridge's (1947, 1967) life zone classification, more than half
(19 forest and two woodland formations) are dominated by trees.
The World Wildlife Fund (Dinerstein et al., 1995) identified 14
major earth habitat types of which seven are forest types. Depending
on definitions, 22–30% of the earth's surface is covered by forests and
wooded lands (FAO, 2005; GFW, 2006). Further, these lands provide
habitat for 70% of known animal and plant species (Matthews et al.,
2000) and contribute almost half the terrestrial net primary biomass
production (Groombridge & Jenkins, 2002). Thus, forests provide vital
economic, social, and environmental benefits by supplying wood and
non-wood forest products, supporting human livelihoods, supplying
clean water, and providing habitat for half the species on the planet.

The forestry sector also plays a vital role in the global greenhouse
gas (GHG) balance. The approximately 13 million hectares (ha) of
forest that are converted to other land uses annually worldwide
(FAO, 2005, p. 13) account for as much as 25% of anthropogenic
+1 651 649 5140.
s).

nc.
GHG emissions (Achard et al., 2002; Gullison et al., 2007). Conversely,
among the five economic sectors identified by the United Nations
Framework Convention on Climate Change (UNFCCC) as sources of
anthropogenic GHG emissions, only the Land Use, Land Use Change
Forestry (LULUCF) sector has the potential for removal of GHG emis-
sions from the atmosphere. The Intergovernmental Panel on Climate
Change (IPCC) estimated that this mitigation potential is as great as
50% of the total potential (Nabuurs & Masera, 2007, p. 543).

GHG emission accounting, as a form of carbon accounting, assesses
the scale of emissions from the forestry sector relative to other sec-
tors. Two primary approaches to emission accounting are common,
the stock difference or inventory approach and the gain-loss or activ-
ity approach (Köhl et al., 2009). With the stock-difference approach,
annual emissions are estimated as the mean annual difference in car-
bon stocks between two points in time. For countries with established
national forest inventories (NFI), the stock-difference approach is
fairly easy to implement. However, for countries without established
NFIs, particularly developing tropical countries with remote and inac-
cessible forests, the inventory approach may be prohibitively expen-
sive, even with external financial and logistical support. For these
countries, the gain–loss approach is an alternative; in fact, Giardin
(2010) asserts that the gain–loss approach is the most commonly
used approach for estimating GHG emissions for national measure-
ment, reporting, and verification (MRV) systems under the auspices
of the IPCC. With this approach, the net balance of additions to and re-
movals from a carbon pool is estimated as the product of the rate of
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land use area change, called activity data, and the responses of carbon
stocks for particular land use changes, called emission factors. Giardin
(2010) notes that MRV systems typically include ground-based in-
ventories for estimating emission factors and remote sensing-based
components for estimating activity data for forest area and forest
area change. The GOFC-GOLD Sourcebook (2010, Chapter 2) further
emphasizes the role of satellite remote sensing as an important tool
for monitoring changes in forest cover. Finally, Köhl et al. (2009)
and Watson (2009) assert that good practice requires that uncertain-
ty in estimates of emission factors and activity data should be
expressed in the form of 95% confidence intervals.

1.2. Methods review

Two basic premises underlie the use of multi-spectral remotely
sensed data for estimation of activity data in the form of land cover
change such as deforestation, afforestation, and reforestation: (1)
changes in land cover produce changes in radiance values, and (2)
changes in radiance caused by land cover change are large compared
to changes in radiance changes caused by other factors (Singh, 1989).
Thus, the essence of remote sensing-based change detection is “com-
paring the position of a pixel in spectral space between different
points in time” (Kennedy et al., 2009). Further, characterization of
the type, extent, and intensity of change depends on understanding
the link between the conversion, modification, and condition of land
cover and spectral variability (Hayes & Cohen, 2007).

Remote sensing-based change detection methods include two pri-
mary categories, trajectory analysis and bi-temporal methods. Trajec-
tory analyses use time series of three or more images to assess not
only the type and extent of change but also the progress, trend, or
temporal patterns of change over time (Kennedy, et al., 2007). Bi-
temporal methods entail the analyses of two images for different
dates and can be further separated into two subcategories. The first
subcategory, post-classification, entails comparison of two classifica-
tions that are constructed separately using remotely sensed data
from two dates (Coppin et al., 2004). The second subcategory, direct
classification, entails classification of change from ground observa-
tions of change and two sets of remotely sensed data that have
been merged into a single dataset (Hayes & Cohen, 2007).

For predicting change in categorical variables such as forest/non-
forest or classes of forest change, logistic regression models have
been used successfully. Fraser et al. (2003, 2005), and Fraser and
Latifovic (2005) used logistic regression with two-date change met-
rics obtained from SPOT and AVHRR data to map deforestation in
Quebec, Canada, resulting frommultiple causes including insect defo-
liation, burning, flooding, and harvest. Accuracies were greater than
90% with small omission and commission errors. Wulder et al.
(2006) used logistic regression with multi-date Landsat, topographic,
and solar radiation variables to detect deforestation in British Colum-
bia, Canada, resulting from the mountain pine beetle. Accuracy was
approximately 85%. In summary, logistic regression has been found
useful for predicting dichotomous or polychotomous classes of defor-
estation from a variety of causes in a wide range of geographic
regions.

The overwhelming majority of techniques for assessing the accu-
racy of classifications, including change classifications, regardless of
the data or classification method, are based on error or confusion ma-
trices and measures derived from them (Hayes & Sader, 2001;
Kennedy et al., 2009; Mas, 1999; Muchoney & Haack, 1994). Card
(1982) and Czaplewski and Catts (1992) extended error matrices to
inferences for the accuracies of individual class predictions. Of impor-
tance, error matrices and their associated indices and accuracies do
not constitute inferences in the form of the confidence intervals that
are required for activity data such as area of deforestation. For
single-date areal estimation, Walsh and Burk (1993) used error ma-
trices to compare the classical and inverse estimators specifically for
use with linear regression models, and Van Deusen (1994) used
error matrices as the context for investigating sampling schemes to
enhance estimates of change obtained from two thematic maps.

1.3. Objectives

The overall objective of the study was to develop an approach to
inference in the form of confidence intervals for estimates of net de-
forestation (Kauppi et al., 2006; Meyfroidt et al., 2010) using a combi-
nation of forest inventory and satellite image data. In this context, net
deforestation is defined as the net result of removals from and addi-
tions to forest cover and is distinguished from deforestation which
is simply the loss of forest cover. Although in the context of programs
aimed at reducing emissions from deforestation and forest degrada-
tion (REDD) only human-induced forest loss is considered deforesta-
tion, the focus of this study is simply net change in forest cover,
regardless of the cause. The overall objective was addressed using a
probability-based (design-based), model-assisted approach to con-
structing confidence intervals for estimates of net deforestation.
When deforestation is a rare event, which is often the case, and
when training data are acquired using equal probability sampling de-
signs, the number of observations of forest/non-forest change may be
insufficient to support a direct classification approach. Such was the
case for this study for which an average of only four plots per year
changed from forest to non-forest or vice versa. Therefore, only
post-classification approaches were considered. The study was con-
ducted using a logistic regression model with two dates of Landsat
Thematic Mapper (TM) imagery and multiple dates of forest invento-
ry data, although the approach to inference is applicable for use with
other approaches to classification.

2. Data

The study area was defined by the portion of the row 27, path 27,
Landsat scene in northern Minnesota, USA, that was cloud-free for the
two image dates, 16 July 2002 and 30 July 2007 (Fig. 1). Spectral data
in the form of the normalized difference vegetation index (NDVI)
transformation (Rouse et al., 1973) and the three tasseled cap (TC)
transformations (brightness, greenness, and wetness) (Crist &
Cicone, 1984; Kauth & Thomas, 1976) for each of the two image
dates were used.

Ground data were obtained for plots established by the Forest In-
ventory and Analysis (FIA) program of the U.S. Forest Service which
conducts the NFI of the USA. The program has established field plot
centers in permanent locations using a sampling design that is reg-
arded as producing an equal probability sample (McRoberts et al.,
2005). Each FIA plot consists of four 7.32-m (24-ft) radius circular
subplots that are configured as a central subplot and three peripheral
subplots with centers located at distances of 36.58 m (120 ft) and
azimuths of 0°, 120°, and 240° from the center of the central subplot.
In general, centers of forested, partially forested, or previously forest-
ed plots are determined using global positioning system (GPS) re-
ceivers, whereas centers of non-forested plots are verified using
aerial imagery and digitization methods. Each year between 2000
and 2004 approximately 246 plots were measured; the same plots
were remeasured at 5-year intervals between 2005 and 2009. Field
crews visually estimate the proportion of each subplot that satisfies
the FIA definition of forest land: minimum area of 0.4 ha (1.0 ac),
minimum crown cover of 10%, minimum crown cover width of
36.6 m (120 ft), and forest land use. Field crews also observe species
and measure diameter at-breast-height (dbh) (1.37 m, 4.5 ft) and
height for all trees with dbh of at least 12.7 cm (5 in.). Growing
stock volumes of individual measured trees are estimated using sta-
tistical models, aggregated at subplot-level, expressed as volume
per unit area, and considered to be observations without error.
Subplot-level proportion forest and volume data were combined
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Fig. 1. Study area in northeastern Minnesota, USA (portion of Landsat path 27, row 27
that was cloud free for both image dates).

Table 1
Error matrix.

Predicted class Total Producer's
Accuracy
(PA)

0
NFð Þ

1
Fð Þ

Observed class 0 (NF) n00 n01 n0+
n00
n0þ

1 (F) n10 n11 n1+
n11
n1þ

Total n+0 n+1 n
User's accuracy (UA) n00

nþ0

n11
nþ1

OA ¼ n00þn11
n
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with the values of the spectral transformations for pixels containing
subplot centers.

For construction of training and accuracy assessment datasets,
data for only the central subplot of each plot were used for this
study to avoid issues related to spatial correlation among observa-
tions for subplots of the same plot. For future reference, the term
plot refers to the central subplot of each FIA plot cluster. Additional
details regarding construction of training and accuracy datasets are
reported in Section 3.3.

3. Methods

3.1. Logistic regression

The relationship between a dichotomous response variable, Y (as-
sumes values y=0 and y=1), and continuous independent variables,
X, is often expressed in the form,

pi ¼ f Xi;βð Þ;

where i indexes population units, pi is the probability that yi=1, and
β is a vector of parameters to be estimated (Agresti, 2007). The func-
tion, f(Xi;β), expresses the statistical expectation of Y in terms of X
and β and is often formulated using the logistic function as,

pi ¼ f Xi;βð Þ ¼
exp

PJ
j¼1

βjxij

 !

1þ exp
PJ
j¼1

βjxij

 ! ; ð1Þ

where j=1, 2,…, J indexes the independent variables, and exp(.) is
the exponential function.
3.2. Inference

Probability-based inference, also characterized as design-based in-
ference, is based on three assumptions: (1) population units are se-
lected for the sample using a randomization scheme; (2) the
probability of selection for each population unit into the sample is
positive and known; and (3) the value of the response variable for
each population unit is a fixed value as opposed to a random variable.
Properties of probability-based estimators are based on random vari-
ation resulting from the probabilities of selection of population units
into the sample, thus the characterization of these estimators as
probability-based (Hansen et al., 1983).

With probability-based methods, observations and predictions of
a categorical response variable are both in the form of discrete classes.
For the categorical forest/non-forest variable, Y,

yi ¼ 0 if the non−f orest class is observed f or the ith population unit
1 if the f orest class is observed f or the ith population unit

�
ð2aÞ

and

ŷi ¼ 0 if the non−f orest class is predicted p̂ib0:5ð Þ f or the ith population unit
1 if the f orest class is predicted p̂i≥0:5ð Þ f or the ith population unit

�

ð2bÞ

where p̂i is the predicted probability of forest from Eq. (1).
An error matrix (Table 1) depicts the numbers or proportions of

observations and predictions by class and informs measures of accu-
racy: overall accuracy (OA), which is the proportion of observations
correctly classified; producer's accuracy (PA), which is the ratio of
the number of correct predictions and the total number of observa-
tions for a class; and user's accuracy (UA), which is the ratio of the
number of correct predictions and the total number of predictions
for a class (Congalton, 1991).

Error matrices do not directly provide variances for estimates of
class areas or proportions and, therefore, do constitute inferences in
the form of confidence intervals for parameters of populations
depicted by remote sensing-based classifications. Assuming a classifi-
cation, a probability accuracy assessment sample, and a properly for-
mulated error matrix, construction of a confidence interval requires
an unbiased or nearly unbiased estimator of the population parame-
ter of interest and a variance estimator.

For areal assessments, the objective is typically to estimate the
total area or proportion of a class of the response variable. Because
the estimate of the total area of a class is simply the product of total
area which is usually known and the estimate of the class proportion,
the focus of this study is estimation of the proportion.

Model-assisted estimators rely on observations for population
units selected for the sample and model predictions for population
units not selected for the sample. However, because the validity of
an inference is still based on the probability sample, the estimator is
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characterized as probability-based. A naïve model-assisted estimator
of proportion forest, μF, is,

μ̂ F;naive ¼
1
N

Xn
i¼1

yi þ
XN
i¼nþ1

ŷi

 !
; ð4Þ

where n is the sample size, N is the population size, and the popula-
tion has been indexed so that i=1,2,…,n denotes the sampled popu-
lation units with observations, yi, and i=n+1,n+2,…,N denotes the
non-sampled population units with predictions, ŷi. For equal proba-
bility samples, the bias associated with this estimator may be estimat-
ed as,

^Bias μ̂ F;naive

� �
¼ 1

n

Xn
i¼1

ŷi−yið Þ

¼ n01−n10

n
;

ð5Þ

where n01 and n10 are obtained from the error matrix (Table 1). The
model-assisted estimator (Särndal et al., 1992) for proportion forest,
μF, is defined as the difference between the naïve estimator and the
expectation of its bias estimate which, under the assumptions that
N is both large and much larger than n, can be approximated as,

μ̂ F ¼ 1
N

XN
i¼1

ŷi−
n01−n10

n
: ð6Þ

Under the assumptions that N is both large and much larger than
n, that the errors are independent, and that simple random sampling
was used, the variance of μ̂ F can be approximated as,

Vâr μ̂ Fð Þ ¼ 1
n
Vâr ŷi−yið Þ

¼ 1
n n−1ð Þ

Xn
i¼1

ŷi−yið Þ2−1
n

Xn
i¼1

ŷi−yið Þ
" #2( )

¼ 1
n n−1ð Þ n01 þ n10ð Þ−1

n
n01−n10ð Þ2

� �

¼ 1
n−1ð Þ 1−OAð Þ−Bias

∧
μ̂ F;naive

� �2� �
:

ð7Þ

When systematic sampling rather than simple random sampling is
used, variances may be overestimated (Särndal et al., 1992).
Eqs. (5)–(7) demonstrate that although error matrices do not consti-
tute inferences in the form of the required confidence intervals and
do not directly assess bias and precision of population parameters,
they do provide much of the information necessary for doing so
when using the model-assisted estimator.

For the forest class, an inference in the form of a confidence inter-
val is expressed as,

μ̂ F � t1−α
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂ Fð Þ

q
; ð8Þ

where t1−α
2
refers to the1− α

2 percentile of Student's t-distribution. For
applications for which either positive or negative estimates of net de-
forestation are of interest, such as NFIs, 1− α

2 would be commonly
used for constructing confidence intervals and testing hypotheses,
whereas for climate change applications for which primary interest
may be loss of forest area which corresponds to only negative values
of net deforestation, 1−α may be appropriate. For this study, 1− α

2
was used because of interest in any change in forest cover, not just
loss of cover. Of considerable importance, this approach to inference
using the model-assisted estimator as formulated using Eqs. (4)–(8)
can be used with multiple approaches to classification, although it
depends on accuracy assessment data obtained for an equal probabil-
ity sample.

For the post-classification approach to change assessment, the
estimator of net deforestation is,

Δμ̂ F ¼ μ̂ 2
F−μ̂ 1

F ; ð9Þ

where Δ denotes change, μF denotes proportion forest, and the super-
scripts denote times 1 and 2. The estimator of Var Δμ̂ Fð Þ is,

Vâr Δμ̂ Fð Þ ¼ Vâr μ̂ 2
F−μ̂ 1

F

� �
¼ Vâr μ̂ 2

F

� �
−2Côv μ̂ 2

F ; μ̂
1
F

� �
þ Vâr μ̂ 1

F

� �
:

ð10aÞ

Because μ̂ 1
F and μ̂ 2

F are estimates from single date classifications,
Vâr μ̂ 1

F

� 	
andVâr μ̂ 2

F

� 	
can be calculated using Eq. (7). If the two accuracy

assessment datasets are mutually independent, then Cov μ̂ 2
F ; μ̂

1
F

� 	 ¼ 0
with the result that,

Vâr Δμ̂ Fð Þ ¼ Vâr μ̂ 2
F

� �
þ Vâr μ̂ 1

F

� �
: ð10bÞ

When the accuracy assessment datasets consist of observations of
the same mapping units, albeit at different times, the covariance
cannot be assumed to be zero, but it can be estimated as,

Côv μ̂ 2
F ; μ̂

1
F

� �
¼ 1

n n−1ð Þ
Xn
i¼1

δ1i −�δ1
� �

δ2i −�δ2
� �

; ð11Þ

where δ1i ¼ ŷ1
i −y1i and δ2i ¼ ŷ2

i −y2i are classification errors, �δ1 and �δ2

are corresponding means of errors, and the superscripts again denote
times 1 and 2.

3.3. Training and accuracy assessment datasets

Four concerns must be addressed when constructing training and
accuracy datasets using the FIA plot data and Landsat imagery. First,
observations included in the training and accuracy datasets should
be independent; otherwise, accuracy assessments will be optimistic,
and the resulting confidence intervals will be too small. For this
study, independence is ensured by constructing training and accuracy
assessment datasets so that they contain no observations for any of
the same plots. Second, the forest and non-forest proportions for
the smaller 168.3-m2 plots may not adequately characterize the pro-
portions for the larger 900-m2 TM pixels containing the plot centers.
The concern is at least partially alleviated by using observations for
only completely forested and completely non-forested plots.

Third, FIA field crews classify plots on the basis of land use, not
land cover. Thus, plots whose tree cover has been removed are still
classified as forest if trees are expected to regenerate and if the land
use is expected to remain forest. A possible result is that a plot classi-
fied by a field crew as forest with respect to land use may, in fact, have
no forest cover due to recent harvest or other causes. If so, a forest
plot observation may be associated with spectral values characteristic
of non-forest. Alternatively, a non-forest observation may be arbi-
trarily assigned to the plot, but it may then be associated with spec-
tral values associated with forest if the harvest condition on the
smaller plot did not extend to the entire larger pixel. To alleviate
this concern, observations for plots classified by field crews as having
forest land use but with no volume are omitted from the remote
sensing analyses.

Fourth, the likelihood that the forest/non-forest status of a plot
changes between the plot measurement and image dates increases
as the elapsed time between the two dates increases. If such a change
occurs, a forest plot observation may again be associated with spec-
tral values characteristic of non-forest, and vice versa. To alleviate
this concern, the fact that each plot was measured on two occasions
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can be exploited. For example, the plots that were measured in 2000
are the same plots that were measured in 2005. Therefore, plots that
had forest or non-forest cover in both 2000 and 2005 are relatively
certain to also have had forest or non-forest cover, respectively, in
2002, the image date. The concern was alleviated by restricting the
remote sensing analyses to plots whose forest and non-forest obser-
vations did not change between 2000 and 2005, 2001 and 2006,
2003 and 2008, and 2005 and 2009. The effect of the latter action is
that forest and non-forest observations for plots included in the anal-
yses are same for both measurement dates. The situation for plots
measured in 2002 and 2007 is addressed below.

Subject to alleviation of the four concerns a training dataset and
two accuracy assessment datasets were constructed for each image
date. First, the data for plots measured in 2000 and again in 2005
and the data for plots measured in 2001 and again in 2006 were
pooled and randomly divided into two independent datasets, one
designated as the 2002 training dataset (T2002) and the other desig-
nated as the first 2002 accuracy assessment dataset (A2002-1). Similar-
ly, the data for plots measured in 2003 and again in 2008 and data for
plots measured in 2004 and again in 2009 were pooled and randomly
divided into two independent datasets, one designated as the 2007
training dataset (T2007) and the other designated as the first 2007 ac-
curacy assessment dataset (A2007-1). Of importance, these four
datasets are mutually independent because observations for no
plots, at either measurement date, are included in more than one
dataset. As a result, Vâr Δμ̂ Fð Þ may be calculated using Eq. (10b).

A second accuracy assessment dataset was constructed for each
image date. Subject to alleviation of the first three concerns, the
2002 plot observations were designated as the second 2002 accuracy
assessment dataset (A2002-2) and the 2007 plot observations
were designated as the second 2007 accuracy assessment dataset
(A2007-2). Three features of these two datasets are important. First,
no accommodation was made for the fourth concern for these
datasets. Because the exact plot measurement dates were not avail-
able, no determination could be made as to whether a plot was mea-
sured before or after the image date. As a result, even if the forest/
non-forest covers for a plot were the same for the 2002 and 2007
plot measurement dates, there is no assurance that they were the
same for the two image dates. However, because the plot measure-
ment and image dates were in the same year, the probabilities of
change in cover between the plot measurement and image dates
were small. Second, observations for the two datasets are indepen-
dent of observations for the two training datasets. Third, however,
observations for the two datasets are not independent because the
same plots that were measured in 2002 were also measured in
2007. Thus, the plot observations for these two accuracy assessment
datasets are likely to be positively correlated which results in
Côv μ̂ 2

F ; μ̂
1
F

� 	
> 0 so that Vâr Δμ̂ Fð Þ must be calculated using Eq. (10a).

The net effect of alleviating the concerns was to reduce the num-
ber of plots whose observations were used for the analyses from an
average of 246 to an average of 196 per year, a decrease of approxi-
mately 20%. For inferential purposes, the plots whose data were omit-
ted from the analyses to accommodate the concerns were considered
to be a random selection from the original FIA sample.
3.4. Analyses

3.4.1. Sample size determination
One result of the simple relationship between Vâr μ̂ Fð Þ, OA, and

Bias μ̂ F;naive

� �
as expressed by Eq.(7) is that accuracy assessment sam-

ple sizes, n, necessary for net deforestation of given magnitudes to be
detected as statistically significantly different from zero can be readily
calculated. For two classifications with the same OA and the same

^Bias μ̂ F;naive

� �
obtained from accuracy assessment datasets whose
observations are independent, net deforestation, d, may be equated
to the product of the standard error and the standard Gaussian qua-
ntile, Z, for the desired significance level to obtain,

d ¼ Z1−α⋅SE Δ̂μF

� �
¼ Z1−α⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂ 2

F

� 	þ Vâr μ̂ 1
F

� 	q

¼ Z1−α⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1−OAð Þ− ^Bias μ̂ F;naive

� �2
n−1

2
64

3
75

vuuuut

from which,

n ¼ 1þ
2⋅Z2

1−α⋅ 1−OAð Þ− ^Bias μ̂ F;naive

� �2� �
d2

; ð12aÞ

where α denotes the statistical significance desired; α=0.05 is often
selected. However, this value of n yields probability of only 0.50 that
net deforestation of d will be detected as statistically significantly dif-
ferent from zero at the α level. To increase this probability, commonly
characterized as statistical power, Eq. (12a) is modified to,

n ¼ 1þ
2⋅ Z1−α þ Z1−β

� �2⋅ 1−OAð Þ− ^Bias μ̂ F;naive

� �2� �
d2

; ð12bÞ

where 1-β denotes the probability that net deforestation, d, will be
detected as statistically significantly different from zero; β=0.20 is
often selected. A graph of the relationship between n and d for select-

ed values of OA and ^Bias μ̂ F;naive

� �
using 1-α=0.95 and 1-β=0.80

was constructed.

3.4.2. Accuracy assessment
The logistic regression model was fit to the T2002 and T2007

datasets, and the model parameters were estimated. For each dataset,
a lack of fit assessment was conducted using three steps: (i) the pairs
yi; p̂ið Þ were ordered with respect to p̂i obtained from Eq. (1), (ii) the
ordered pairs were aggregated into groups of size 15, and (iii) the
group means of the observations, yi, were graphed versus the group
means of the estimates, p̂i(Hosmer & Lemeshow, 1989).

For the 2002 classification based on model parameters estimated
from the T2002 dataset, error matrices were constructed using both
the A2002-1 and A2002-2 accuracy assessment datasets. Similarly, two
error matrices were constructed for the 2007 classification, one each
for the A2007-1 and A2007-2 accuracy assessment datasets. For each of
the four error matrices, PA, UA, and OA were calculated.

3.4.3. Estimation of net deforestation
The logistic regression model with parameters estimated from the

T2002 training dataset was used with the 2002 image data to construct
a forest/non-forest classification for the study area (Fig. 1), and
μ̂ 2002
F;naivewas calculated using Eq. (4). Using information from the two

error matrices based on the A2002-1 and A2002-2 accuracy assessment

datasets, two values of ^Bias μ̂ 2002
F;naive

� �
, were calculated using Eq. (5). Fi-

nally, two estimates, μ̂ 2002
F , from Eq. (6) and two variance estimates,

Vâr μ̂ 2002
F

� 	
, from Eq. (7) were then calculated. The same procedure

was used to obtain the comparable 2007 estimates, μ̂ 2007
F;naive,

^Bias μ̂ 2007
F;naive

� �
, μ̂ 2007

F , and Vâr μ̂ 2007
F

� 	
. For each image date, only one

naïve estimate could be calculated, but because there were two accu-
racy assessment datasets for each image date, two estimates of the
other parameters were calculated.
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Fig. 2. Accuracy assessment sample size for significance level of α=0.05 and statistical
power of 1-β=0.80.

Table 2
Error matrix for 2002 classification using A2002-2 accuracy assessment dataset.

Predicted class Total Producer's
Accuracy
(PA)

0
NFð Þ

1
Fð Þ

Observed class 0 (NF) 50 10 60 0.8333
1 (F) 18 117 135 0.8667

Total 68 127 195
User's accuracy (UA) 0.7353 0.9213 OA=0.8564
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Estimates of net deforestation, Δμ̂ F ¼ μ̂ 2007
F −μ̂ 2002

F , using Eq. (9)
and Vâr Δμ̂ Fð Þ using Eqs. (10a) and (10b) were calculated separately
for the combination of the A2002-1 and A2007-1 accuracy assessment
datasets and for the combination of the A2002-2 and A2007-2 accuracy
assessment datasets. Because the observations for the A2002-1 and
A2007-1 datasets were independent, Côv μ̂ 2002

F ; μ̂ 2007
F

� 	 ¼ 0 so that
Eq. (10b) could be used to calculate Vâr Δμ̂ Fð Þ. However, because
the A2002-2 and A2007-2 datasets include measurements of the same
plots, the variance estimate was calculated using Eq. (10a) with
Côv μ̂ 2002

F ; μ̂ 2007
F

� 	
calculated using Eq. (11). For the latter approach,

classification errors for the same plots were expected to be positively
correlated so that Côv μ̂ 2002

F ; μ̂ 2007
F

� 	
> 0 which, in turn, meant that

Vâr Δμ̂ Fð Þ for the second approach could be less than for the first
approach.

4. Results and discussion

4.1. Sample size determination

The relationship between accuracy assessment sample sizes, n,

OA, and Bias μ̂ F;naive

� �
, for magnitudes of net deforestation, d, that

can be detected as statistically significant at α=0.05 with statistical
power, 1-β=0.80, is depicted in Fig. 2. The graphs indicate that
large sample sizes, large OAs, or both, are necessary for estimates of
even moderately small magnitudes of net deforestation to be
detected as statistically significantly different from zero. Smaller
values of 1-α and 1-β would yield smaller values of n, as would accu-
racy assessment datasets with correlated observations such as for
A2002-2 and A2007-2. These sample size estimates are based on an as-
sumption of simple random sampling. Cluster sampling, which is
often used for forest inventories, would yield different sample size es-
timates, depending on factors such as the number of clusters, the
number of plots per cluster, and the correlation among observations
of plots for the same cluster.

4.2. Accuracy assessment

Assessment of the quality of fit of the logistic regression model to
the forest/non-forest observations indicated no serious concerns re-
garding lack of model fit.

Estimates of accuracy measures for the forest/non-forest classifi-
cations obtained from the error matrices (Table 2) varied: PAs for
non-forest ranged approximately from 0.78 to 0.83 and for forest
approximately from 0.86 to 0.93; UAs for non-forest ranged approxi-
mately from 0.73 to 0.84 and for forest approximately from 0.90 to
0.92; and OAs ranged approximately from 0.85 to 0.88. The OAs are
similar, although slightly smaller, than those reported for other stud-
ies in this region (Finley et al., 2008; Haapanen et al., 2004;
McRoberts, 2006) and for other studies using the logistic regression
model (Fraser & Latifovic, 2005; Fraser et al., 2003, 2005; Wulder et
al., 2006).

Several approaches may be considered for increasing OAs. First,
more accurate GPS receivers would increase the probability that gro-
und plots are associated with correct pixels. Misregistration of plots
and imagery is known to have serious detrimental consequences for
land cover classifications, particularly for land cover change classifi-
cations (Dai & Khorram, 1998; Magnussen, 2007). McRoberts (2010)
demonstrated that location errors characteristic of the GPS receivers
used by FIA field crewsmay result in nearly half of FIA plots being as-
sociatedwith incorrect Landsat pixels. Second, greater comparability
between the ground plot and pixel sizes would contribute to en-
hancing the model relationship by increasing the probability that
the plots adequately characterize entire pixels. Finally, a model
form that better characterizes the relationship between the plot ob-
servations and the pixel spectral transformations would contribute
to fewer misclassifications.

4.3. Estimates of proportion forest

Naïve estimates of proportion forest for the entire study area were
μ̂ 2002
F;naive ¼ 0:5937 and μ̂ 2007

F;naive ¼ 0:6435 with bias estimates in the range

−0:0321≤Bîas μ̂ Fð Þ≤0:0206 (Table 3). Estimates of proportion forest
obtained for the model-assisted estimator were μ̂ 2002−1

F ¼ 0:6258,
μ̂ 2002−2
F ¼ 0:6347, μ̂ 2007−1

F ¼ 0:6229, and μ̂ 2007−2
F ¼ 0:6230 with stan-

dard errors in the range 0:0241≤SE μ̂ Fð Þ≤0:0284. Coefficients of vari-
ation for estimates of proportion forest were in the range

0:0387≤ SE μ̂ Fð Þ
μ̂ F

≤0:0454 with slightly smaller values for the 2007

classification.
When estimating proportion forest using the simple random

sampling (SRS) estimators, observations for all 249 plots measured
in both 2002 and 2007 were used because issues related to wheth-
er forest/non-forest observations for the smaller plots adequately
represent the larger pixels are irrelevant. Plots with forest land
use observations but with no volume were considered to have
non-forest cover. The resulting confidence intervals in the form,
μ̂ F � t1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂ Fð Þ

p
, were 0.5963±0.0620 for 2002 and 0.5816±

0.0624 for 2007.

4.4. Estimates of net deforestation

Confidence intervals for estimates of net deforestation for the
entire study area, calculated as Δμ̂ F � t1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr Δμ̂ Fð Þ

p
, were

−0.0029±0.0746 for the A2002-1 and A2007-1 accuracy assessment
datasets with independent observations and −0.0117±0.0456 for
the A2002-2 and A2007-2 accuracy assessment datasets with positively

image of Fig.�2


Table 3
Estimates for proportion forest.

Date Plot-based estimates Remote sensing-based estimates

n μ̂ F SE μ̂ Fð Þ Training dataset μ̂ F;naive Accuracy assessment dataset n Biâs μ̂ F;naive

� �
μ̂ F SE μ̂ Fð Þ

2002 249 0.5963 0.0310 T2002 0.5937 T2002-1 187 −0.0321 0.6258 0.0284
T2002-2 195 −0.0410 0.6347 0.0272

2007 249 0.5816 0.0312 T2007 0.6435 T2007-1 194 0.0206 0.6229 0.0242
T2007-2 195 0.0205 0.6230 0.0241

Fig. 3. Change maps for approximately 19.4-km×13.5-km areas: dark green: F-F; tan:
NF-NF; bright green: NF-F; red: F-NF.
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correlated observations. The confidence interval for net deforestation
obtained using the SRS estimators and observations for all 249 plots
was −0.0148±0.0362. Although the SRS standard errors for esti-
mates of proportion forest for individual years were larger than
the corresponding model-assisted standard errors, the SRS stan-
dard error for the estimate of net deforestation was smaller than
the model-assisted estimates. This result partially reflects the
larger correlation, Côv μ̂ 2002

F ; μ̂ 2007
F

� 	
≈0:0008, between estimates of

proportion forest for the two years using the SRS estimators than
Côv μ̂ 2002

F ; μ̂ 2007
F

� 	 ¼ 0 which was assumed when using the model-
assisted estimators with the A2002-1 and A2007-1 accuracy assess-
ment datasets, and Côv μ̂ 2002

F ; μ̂ 2007
F

� 	
≈0:0004 calculated for the

A2002-2 and A2007-2 accuracy assessment datasets.
The plot-based SRS estimate and the two remote sensing, model-

assisted estimates of net deforestation were negative, meaning a net
loss of forest cover between the 2002 and 2007, although none of
the three estimates was statistically significantly different from zero.
Further, apart from correlation between the plot-based and remote
sensing-based estimates as a result of using the same data which
was ignored, no estimate was statistically significantly different
from either of the other two estimates.

An important potential advantage of the model-assisted estima-
tors is that the relationship between the remotely sensed data and
the ground plot data can be exploited to obtain smaller standard er-
rors of estimates. Although this potential was realized for estimates
of proportion forest, it was not realized for estimates of net deforesta-
tion. Failure to realize the potential can be attributed to multiple fac-
tors. First, the larger estimated covariance between the SRS estimates
of proportion forest for the two years than the model-assisted covari-
ance estimates contributed to a smaller SRS standard error as calcu-
lated using Eqs. (10a) and (10b). Second, less severe data filtering
as described in Section 4.2 would have increased the accuracy assess-
ment sample sizes, reduced the model-assisted standard error esti-
mates, and contributed to greater precision for the model-assisted
estimates of net deforestation. Third, larger OAs would also have
reduced the model-assisted standard errors.

The effects of sample sizes and classification accuracies on estimates
of net deforestation merit considerable attention. First, when the pro-
portion of plots whose land cover changes from forest to non-forest
is small, possibilities for direct classification of forest change and as-
sessment of accuracy for a change classification obtained from inde-
pendent forest/non-forest classifications are extremely limited. A
potential solution to this difficulty is to use a stratified sampling design
with strata based on expected change classes obtained from a prelimi-
nary change map, knowledge of transportation networks, or proximity
to population centers. However, because ground sampling is expensive,
the current tendency is to use existing data rather than initiate a sec-
ond, independent sampling effort. Second, the utility of the model-
assisted approach to produce more precise estimates of net deforesta-
tion than estimates based on plot data only requires large OAs resulting
from strong relationships between forest/non-forest observations and
remote sensing-based auxiliary variables. For small estimates of net de-
forestation to be detected as statistically significantly different from
zero, large accuracy assessment sample sizes may be required, even
with large OAs (Walsh & Burk, 1993).

Finally, an advantage of the remote sensing-based approach is that
a map depicting classes of forest change may be obtained as a by-
product, although the utility of the map may be influenced by esti-
mates of accuracy and bias (Fig. 3).
5. Conclusions

Three conclusions may be drawn from the study. First, a
probability-based (design-based), post-classification approach to for-
mulating inferences in the form of confidence intervals for remote
sensing-based estimates of net deforestation using the model-
assisted estimator has been derived and illustrated. Although the par-
ticular classification procedure used for illustrative purposes was
based on the logistic regression model, the approach to inference



401R.E. McRoberts, B.F. Walters / Remote Sensing of Environment 124 (2012) 394–401
may be used with multiple classification procedures. Second, remote
sensing-based estimates of net deforestation were small, less in abso-
lute value than 0.015, and were not statistically significantly different
from zero. Third, the relatively large accuracies and accuracy assess-
ment sample sizes necessary for meaningful magnitudes of net defor-
estation to be detected as statistically significant cannot be ignored.
This conclusion is particularly relevant for tropical deforestation stud-
ies for which accuracies may be small due to the lack of good training
data and accuracy assessment sample sizes may be small due to logis-
tical and financial constraints, particularly when forest lands are re-
mote and inaccessible.
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