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Abstract The US Forest Service’s Forest Inven-
tory and Analysis (FIA) program collects infor-
mation on trees in areas that meet its definition
of forest. However, the inventory excludes trees
in areas that do not meet this definition, such as
those found in urban areas, in isolated patches,
in areas with sparse or predominantly herbaceous
vegetation, in narrow strips (e.g., shelterbelts),
or in riparian areas. In the Great Plains States,
little is known about the tree resource in these
noninventoried, nonforest areas, and there is a
great deal of concern about the potential impact
of invasive pests, such as the emerald ash borer.
To address this knowledge gap, FIA’s National In-
ventory and Monitoring Applications Center has
partnered with state cooperators and others in a
project called the Great Plains Initiative to design
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and implement an inventory of trees in nonforest
areas. The goal of the inventory is to characterize
the nonforest tree resource using methods com-
patible with those of FIA so a holistic understand-
ing of the resource can be obtained by integrating
the two surveys. The goal of this paper is to de-
scribe the process of designing and implementing
the survey, including plot and sample design, and
to present some example results from a reporting
tool we developed.
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Introduction

The Agricultural Research, Extension, Education
and Reform Act of 1998 (16 USC 1642(e)) called
for the US Forest Service’s Forest Inventory and
Analysis (FIA) program to conduct annual forest
inventories. The law mandates that FIA conduct
a comprehensive and consistent forest inventory
using a core set of measurements across all lands
and ownerships, that 20% of inventory plots in
each state be measured each year, that the data
and analyses are made available annually, and that
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comprehensive state forest resource assessments
be produced every 5 years.

FIA plots are distributed relatively uniformly
across a grid of cells formed by a hexagonal tessel-
lation of the nation, with each plot representing
at most 2,428 ha. Data collected on each plot
include information on land use and ownership
type. Tree-level and certain forest and site-level
attribute data are collected only on portions of
plots that meet FIA’s definition of forest: areas
that are at least 0.4 ha in size, have certain geo-
metric properties (e.g., at least 36.6 m wide), are
at least 10% current or former stocking level,
and are not subject to activities like mowing or
understory clearing that would prevent natural
regeneration (U.S. Forest Service 2007).

FIA produces estimates of several forest pa-
rameters and creates statistical and analytical
reports that are used by many stakeholders, in-
cluding local, state, national, and international sci-
entists, land managers, and other decision makers
(Gillespie 1999). For example, in order to fulfill
mandates set out by the Forest and Rangeland
Renewable Resources Planning Act of 1974
(RPA), FIA provides data and analyses to the
national RPA assessment that is conducted pe-
riodically (U.S. Forest Service 2000; Smith et al.
2004). Other products include each state’s annual
and 5-year comprehensive analytical report (e.g.,
Piva et al. 2009a, b).

FIA data have often been applied to nontra-
ditional forestry assessments like those required
by the agroforestry community (Perry et al. 2008),
forest health community (Krist et al. 2007), forest
carbon inventories (Chen et al. 2011) and vege-
tation classification studies (Franklin 2002). How-
ever, because tree data are not collected in areas
that do not meet the FIA definition of forest, it is
difficult to apply FIA’s tree data results to areas
with little or no forest land use. FIA does produce
estimates of the total area by land use (Smith et al.
2004), but tree data within the nonforest areas are
completely lacking.

The Great Plains states of North Dakota, South
Dakota, Nebraska, and Kansas (hereafter re-
ferred to as the Plains States) are approximately
97% nonforest (Smith et al. 2004), and consist
mostly of agricultural and grassland vegetation
communities. Plains State resource agencies have
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recognized the lack of available information on
the nonforest tree (NFT) resource and how this
knowledge gap might hinder wise management of
these areas. The US Forest Service periodically
conducts assessments of forest health in the Plains
States and has identified a number of forest health
concerns, including flood damage, ice storms, in-
vasive species encroachment, and various insect
and other plant diseases (U.S. Forest Service
2009a, b, ¢, d). Of particular concern is the spread
of the emerald ash borer (EAB) (Agrilus pla-
nipennis Fairmaire), which, since being identified
in 2002 near Detroit, Michigan, has been found in
Illinois, Indiana, Kentucky, Maryland, Minnesota,
Missouri, Ohio, Pennsylvania, and Wisconsin, and
as far north as Quebec and Ontario Canada. Al-
though EAB has yet to be confirmed in the Plains
States (as of January 2010), this region has some
of the greatest relative density (percent of the
total basal area) of EAB hosts (Fraxinus spp.),
with mostly green ash (Fraxinus pennsylvanica
Marsh.) found along riparian areas, in conserva-
tion tree plantings, and as a common tree in the
communities across the plains (Fig. 1). Hansen
and Hoffman (1988) report that green ash is a
significant component of the vegetation in the
northern Plains States. Ball et al. (2007) showed
that ash is the most commonly planted street tree
in South Dakota. Poland and McCullough (2006)
identified potential ecological impacts of damage
to the ash resource, including loss of cover and
mast for wildlife, thermal effects, and soil erosion.
In addition to the ecological effects they report,
economic impacts, which nationally could run into
the billions of dollars, include costs of removal,
replanting, and control efforts.

In response to these concerns, state forestry
agencies in the Plains States, with funding as-
sistance from the US Forest Service’s State and
Private Forestry group, are assessing the potential
economic and ecological impacts of EAB-induced
ash mortality. This project, called the Great Plains
Tree and Forest Invasives Initiative (GPI), has
several objectives, including a characterization
of the existing NFT resource, the identification
of mitigation needs and utilization opportunities,
and the development of educational materials
to help land managers and land owners cope
with potential impacts (Nebraska Forest Service
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Fig. 1 Map of US
counties with occurrence
of emerald ash borer

as of April 2011

. Emerald Ash Borer

Occurrence (as of April 2011)

2007). To meet the first objective, FIA’s National
Inventory and Monitoring Applications Center
(NIMAC) helped design the inventory, process
the data, and create a reporting tool to provide in-
formation that will characterize the NFT resource
and supplement the information that FIA collects
on the tree resource in forested areas.

The goals of the inventory included obtaining
state-level estimates of NFT parameters, including
area of land with different classes of NFT land
use and estimates of total amounts of several
continuous variables (e.g., area estimates by the
primary function [benefit] the windbreaks pro-
vide, volume, and tree counts by species or genus
grouping). An additional component of the inven-
tory, not reported here, focused on NFTs in urban
areas, with results serving as input to the Urban
Forests Effects (UFORE) model, which, among
other things, assigns estimates of value to urban
forest components (Nowak and Crane 2000). This
paper describes how NIMAC extends traditional
FIA plot and sample design methodology to the
nontraditional Plains States NFT inventory.

Methods

NIMAC and Plains States forestry officials un-
dertook a planning process that identified desired
outcomes, precision requirements of NFT para-
meter estimates, existing FIA data sources, and
new variables that were required to meet goals.
The result of this process was the choice of a plot
design that represents a tradeoff between a desire

for compatibility with FIA methodology and cost
effectiveness in the field. The field plot consisted
of a single, 0.067-ha circular plot on which a va-
riety of FIA, UFORE, and other site and tree-
level attributes were recorded (Table 1). A single
plot was chosen over the FIA four-subplot de-
sign (U.S. Forest Service 2007) to enhance field
efficiency—the objective was for the field crews,
which had varying levels of experience, to have
minimal set-up time for each plot relative to the
reduced set of information recorded on trees. The
FIA field guide, data recorder software program,
and database storage system were adapted to ac-
commodate the Plains States variables.

Field crew training was coordinated with state
forestry and FIA staff using the GPI inven-
tory field guide (available upon request from
the authors) we developed. In 2008, field crews
were hourly summer employees supervised by
state forestry personnel in Kansas, Nebraska, and
South Dakota; North Dakota used existing state
forestry staff. Most of the data collection occurred
between mid-May and the end of August. Each
two-person crew visited 100-150 plots. In 2009,
the same approach was used in Kansas, Nebraska,
and North Dakota; South Dakota elected to
employ a consulting forestry team to measure
their 200 plots. Crews were able to collect data on
between one and four plots per day.

Tree data were only collected on plots that
had trees that were not in what FIA defines as a
forested condition. “Conditions” are portions of
plots that are akin to landscape patches, and are
delineated using criteria related to land-use type,
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Table 1 A listing of the attribute data collected on the GPI plots

Type Attribute Plot type
Plot GPS coordinates UR
Plot Rural or urban plot UR
Condition Primary land use?® UR
Condition Windbreak width (3-m increments) R
Condition Windbreak condition® R
Condition Windbreak age R
Condition Planted vs. natural U,R
Condition Function of trees® R
Condition NFT land use present/absent R
Condition Canopy cover class U
Condition Owner group (private or federal/state/local) UR
Tree Species U.R
Tree Diameter (2.54-cm increments) UR
Tree Height to location of diameter measurement U,R
Tree Height to base of the live crown (1.5-m increments) U
Tree Height to top of tree (1.5-m increments) UR
Tree Crown dimensions—perpendicular axis lengths (1.5-m increments) U
Tree Foliage present/absent U
Tree Crown light exposure class U
Tree Crown dieback class U,R
Tree Distance and azimuth to 3 nearest buildings U,R

On each plot, different types of data were collected. Plot data characterize the entire plot area. Condition data characterize
contiguous areas that are formed using land use delineation rules. Tree level data are those collected on trees not found in

conditions that would be classified by FIA as forest
U urban, R rural

4This attribute consists of 17 anthropic and natural classes and include inaccessible and denied access areas

bGood, fair, or poor, based on criteria including % live trees, windbreak completeness, density of trees, presence of invasives,
evidence of diseases, presence of regeneration, and expected longevity

“Tree planting functions include farmstead, field or livestock windbreak, living snowfence, home acreage planting, wildlife
habitat planting, abandoned farmstead, planted riparian buffer, natural riparian forest buffer, or narrow wooded strip

ownership, and certain forest compositional and
structural attributes (U.S. Forest Service 2008).
The plot center and each tree were assigned one
of the condition-level attributes (Table 1). This
allows not only for the production of estimates of
the total area of each of the condition variables,
but also for the use of these variables for grouping

and thus partitioning the estimates into domains
(categories). For example, one could generate es-
timates of the total area of each owner group, and
the number of trees by owner group.

Figure 2 depicts the process for establishing
and conducting the inventory. An assessment of
the field data collection budget for the summer

Fig. 2 A flow chart of the
GPI inventory design

Create the NLCD-based subarea (canopy/no
canopy) layer.

Optimally allocate PI points into subareas and
conduct the PI.

process N

Using Pl results and an FIA analogue, create Pl
strata and optimally allocate rural plots to
strata. Randomly add urban plots to GIS-
derived urban areas.

Conduct ground inventory. Based on results for
KS and NE, reconfigure strata for windbreaks
—>| andreassign plots, and add new plots. For ND
and SD, allocate new plots using year 1
proportions.

@ Springer

\4

Collect year 2 data. Process data and report

results using an adaptation of the PC
Evalidator tool.




Environ Monit Assess (2012) 184:2465-2474

2469

months of 2008 (first year of data collection) re-
vealed that in each state 100 rural plots and 200
urban plots could be measured with the existing
funding, which was divided equally among the
states. For the urban areas, which had a different
sample design and intensity due to the needs of
the UFORE project, a GIS file representing urban
area boundaries was derived from the US Census
Bureau’s Tiger Line Files (U.S. Census Bureau
2002), and individual state cooperators reviewed
the list of resulting urban areas in order to elimi-
nate areas that did not meet the definition of “ur-
ban” they chose for the project. From the resulting
list, plots were randomly chosen from the set of
urban area polygons using a GIS-based random
point generation procedure. Within a state, all
urban areas were thus treated as a single esti-
mation unit, with larger urban areas being more
likely to contain more plots.

For rural areas, the small number of plots com-
pounded the concern that the attributes of inter-
est, which are associated with NFT land use, are
only represented in about 1% of the overall land
area of the four states based on estimates from a
photointerpretation (PI) that FIA does in support
of its ground inventory. In situations where there
is potential to collect less costly information on a
large number of elements in the population and
to collect more costly, direct measurements of the
attribute of interest on a subset, multi-phase sam-
pling is suggested (Cochran 1977). For example,
Holmgren et al. (1994) performed a study in which
multi-phase sampling was found to be effective
at characterizing the NFT resource in Africa. We
chose a stratified, two-phase sample design for the
NFT survey of the rural areas of the Plains States.

The first step in the process was to partition
each state into two subareas (canopy and no
canopy) using a derivative of the National Land
Cover Dataset (NLCD). NLCD is a set of satellite
image-based products produced by a consortium
of federal agencies, led by the US Geological
Survey (Homer et al. 2007). These products are
comprised of 30-m pixels, each labeled with a
land-cover category, percent impervious surface,
and percent canopy cover estimates. To create
the subareas, a “focal” spatial filtering approach,
which is akin to a low-pass filter, was applied to
the percent canopy cover map. For each 3 x 3

block of pixels in the image (the focal window),
the count of pixels with any estimated canopy
cover in them was assigned to the center pixel of
the block. The focal window was then shifted over
one pixel, the count summarization was repeated,
and the process was repeated for each pixel in the
image. This resulted in an image containing pixel
values of 0 (no canopy cover in the focal window)
to 9 (all nine input pixels contained canopy cover).
This image was then recoded into the final sub-
area map: values of 0 were assigned to subarea 1,
and all other values were assigned to subarea 2
(Fig. 3). For the four-state area, approximately
90% of the area fell into subarea 1, which we
considered more likely to be devoid of trees.

The next step was to select elements within
each subarea for the first phase of the two-phase
sample. Phase 1 consisted of a large number of
PI plots overlaid on circa 2006 National Aerial
Imagery Program (NAIP) imagery, with a diff-
erent intensity in each subarea. Each PI plot con-
sisted of 21 uniformly spaced points located within
the footprint of potential ground plots—a 0.067-
ha circle. Twenty-one points were chosen based
on prior experience and a tradeoff between time
cost per plot and completeness of area coverage
for NFT assessment. The land use (using FIA
definitions [U.S. Forest Service 2007]) of each of

&

Fig. 3 a A depiction of the original extent of the binary-
coded NLCD canopy map—the area within the dotted
boundary was labeled as containing tree canopy. b The
original canopy area, and the shaded area that extends
beyond the original extent of canopy, produced by a spatial
filtering method. The dark, shaded area represents sub-
area 2 (canopy) on the image, and the remaining area
represents subarea 1 (no canopy)
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the 21 points was assessed and the count of points
falling in the NFT land use category was recorded
for each PI plot.

Based on consultation with PI specialists and
a pilot assessment of the PI methodology, it was
determined that the project budget allowed for
18,000 PI plots to be completed for each state.
We chose the proportion of these 18,000 plots per
subarea per state using optimal (Neyman) alloca-
tion to minimize the variance of estimates given
the number of PI and ground samples available
(Cochran 1977). To determine these optima, exist-
ing FIA ground plots were first assigned a subarea
by intersecting them with the subarea map in a
GIS. The variance of the binary-coded land use
category (NFT/other) of the center of the FIA
plot was then calculated for each subarea. These
variances were used to optimally allocate PI plots
to each subarea.

Within each of these subareas, the phase 1
samples were assigned values of 0-21 via PI based
on the potential NFT land-use count. Phase 2 of
the two-phase sample was established by opti-
mally choosing ground plots from within phase
1 strata created from these PI results in a spa-
tially balanced manner (Lister and Scott 2008).
To create the phase 1 strata, stratum breakpoints
were established across the range of PI values
(0-21). The stratum breakpoints were chosen us-
ing FIA plot data as an analogue, taking advan-
tage of the “percent forest” value assigned by field
crews to each FIA plot. We assumed that the per-
cent forest estimate on FIA plots is analogous to
the proportion (out of 21) NFT land use assigned
to a PI plot. Using that assumption, we heuris-
tically assessed how collapsing the FIA percent
forest value into various configurations of three
strata served to lower the variance of estimates of
total number of trees and cubic foot volume from
the FIA plots. This stratum creation procedure
was iteratively performed with different break
points, looking for configurations that led to hav-
ing at least ten GPI plots per stratum, and to the
most variance reduction of estimates of both FIA
attributes.

Once we arrived at a stratum configuration
that generally met these criteria in each state, we
translated the stratum boundaries from the FIA
percent forest scale (0~100% forest land use) to PI
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plot scale (0-21 NFT points/plot). This yielded at
most three strata, which we defined as “no trees”,
“low trees”, and “high trees”, based on the num-
ber of NFT PI points found on the plot. We then
used the resulting PI plot stratum boundaries, as-
sociated stratum areas, and FIA attribute variance
estimates to optimally allocate GPI ground plots
(phase 2) into each stratum. No ground plots were
sampled in the first stratum of each subarea (the
“no trees” stratum, which had 0 NFT points).
These strata were assumed to have no NFT be-
cause of the high quality of the imagery and the
cost of sampling the stratum.

To assess the relationship between the ex-
pected sampling error (from the FIA plots) and
that obtained by stratifying the GPI plots us-
ing the FIA-based stratum boundaries, we calcu-
lated diagnostic statistics (slope, y-intercept, and
coefficient of determination) of a simple linear re-
gression line describing the relationship between
the sampling errors for estimates of total numbers
of trees for each estimation unit.

Due to an increased interest in the status
of windbreaks in Kansas and Nebraska, a re-
configuration of the phase 1 strata was performed
prior to allocating plots for year 2. We accom-
plished this by reinterpreting each PI plot that
had any NFT measured on them during phase 1
(i.e., the low and high trees strata) and relabeling
them with the GPI land use category (Table 1).
For each subarea, the original set of strata in
each of these states were then reconfigured using
this new information into strata defined as “no
trees” ,”’low trees”, “low trees with windbreaks”,
“high trees”, and “high trees with windbreaks”.
The existing plots were reassigned to these strata.
New plots (173 in Nebraska and 190 in Kansas)
then were allocated to these new strata based on
the proportion of the phase 1 plots within the two
windbreak strata. For North Dakota, 100 plots
were randomly added to the urban areas and 50
plots were added across all strata of the rural areas
using the year 1 proportions. In South Dakota,
200 new plots were added across the rural subar-
eas and strata using the year 1 proportions as well.

Data collection ended during the fall of 20009.
Data were processed, stored in an Oracle data-
base and inserted in an adaptation of FIA’s PC
EVALIDator reporting tool (Miles 2009) for re-
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porting. EVALIDator is a Microsoft Access data-
base that stores data and generates reports using
a combination of innate Access functionality and
Microsoft Visual Basic for Applications scripting.
It is designed to use files that are based on the
FIADB, FIA’s publicly accessible database (U.S.
Forest Service 2008). Double sampling estimation
equations used by our modified version of EVAL-
IDator follow those presented in Cochran (1977).
For urban areas, which were treated as separate
estimation units, simple random sample estimates
were generated, allowing state-level totals to be
formed by combining estimates from the rural and
urban estimation units.

Results and discussion

A total of 36 state—subarea—stratum combinations
were used. An example of counts of plots per
subarea and stratum for 2008-2009 data are shown
in Table 2 for South Dakota; the other states
show similar patterns. The optimal allocation of
PI points clearly shifts points into subarea 2 due
to the higher variance of FIA plot values (not
shown) that occurred in this area (it contains only
8% of area, but 30% of the plots). Subarea 1
areas are those with no nearby canopy predicted
by NLCD. Generally, for an FIA plot to fall in this
area, either its classification as forest is anomalous
(for example, a clearcut) or the area’s tree canopy
signal is weak—its composition or configuration is
such that it confounded the NLCD canopy predic-

Table 2 An example of the count of PI point and plot
count for each subarea-stratum combination

South 0-21 Area PI plots Ground
Dakota splits (%) plots
Subarea 1 91.5 12,582 183
No tree 0 12,316 0
Low tree 1-6 151 69
High tree 7-21 115 114
Subarea 2 8.0 5,478 117
No tree 0 4,868 0
Low tree 1-8 328 48
High tree 9-21 282 69
Urban N/A 0.5 N/A 200

The 0-21 splits, or stratum boundaries, were chosen based
on boundaries obtained from an analogous FIA dataset

tion algorithm. From inspection of the NLCD and
NAIP imagery, we found that subarea 2 (areas on
or immediately next to pixels classified by NLCD
as containing tree canopy) generally had a strong
canopy signal—generally, a significant number of
well-defined tree canopies. Since this area had
most of the NFT resource, then it also had much
of the variability, and thus affected the optimal
allocation outcomes as shown.

We chose an innovative strategy for creating
strata from the PI results and allocating ground
plots out of necessity—we had no ground data
with which to estimate variance, create strata,
and weight the allocation. We assumed that the
relationship between the variance of attribute es-
timates from plots grouped by FIA percent forest
was analogous to that we would obtain in NFT
areas by grouping based on percent NFT measure-
ments from the PI. We adopted our assumption
that using an FIA analogue was likely a reason-
able strategy because both FIA forest and NFT
land encompass a broad range of tree densities,
and thus the relative locations of stratum bound-
aries from NFT data should parallel those from
FIA data.

The set of rural strata exhibited a wide range of
percentages of ground plots that contained NFT
land. For example, the percentage of plots per
stratum that had NFT land use on them ranged
from 32% (the low tree stratum in North Dakota)
to 91% (the high tree stratum in Kansas), with a
median of 76%. As expected, median percentages
of ground plots with trees were higher in the
high tree (80%) compared to the low tree strata
(67%). The less-than-perfect correspondence be-
tween field and PI identification of the NFT re-
source was expected and somewhat desirable—
the PI staff was instructed to err on the side of
labeling an area as NFT if there was ambigu-
ity, ensuring that few true NFT areas would not
be considered for inclusion in the field survey.
In urban areas, there was a much lower median
percentage (46% ); this low number was due to the
fact that urban plots were located at random, with
no attempt to prestratify.

Figure 4 depicts the relationship between the
sampling errors of stratum-level tree density esti-
mates expected from the FIA plots using the FIA
boundaries and those observed from the GPI data.
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Fig. 4 Relationship between observed (from the GPI sur-
vey) and expected (from analogous FIA data) sampling
errors. The FIA analogue was used to determine stratum
boundaries. Resulting variances were highly correlated
with those expected from FIA

The relationship is nearly 1:1 and the intercept of
a simple linear regression line that characterizes
the relationship is nearly zero. Although there is
significant scatter about the line, the strong posi-
tive correlation suggests that our use of the FIA
information as a pilot dataset with which to opti-
mize stratum assignments had merit. FIA data are
being used in this manner for planning purposes
in the US Forest Service’s National Forest System
(Scott 2009).

One example of output from our modified
EVALIDator program is that the number of ash
trees in the nonforest portion of the states falls
between 34% (in Nebraska) and 104% (in South
Dakota) of that in the forested portion (Table 3).
This is not surprising because ash trees are often
planted in wind breaks and around structures,

and are relatively well suited to the environmen-
tal conditions found in these states. Information
like this, which our EVALIDator reporting tool
can produce via a series of simple, menu-based
queries, will help Plains State stakeholders learn
more about tree species composition, species—
environment relationships, and the potential im-
pacts of forest health threats like the EAB in these
NFT areas.

Conclusions

We learned much from the process of planning
and establishing the Plains States NFT inventory.
The process of setting inventory goals and choos-
ing variables to meet these goals was an itera-
tive process. Frequent meetings with all interested
parties, as well as establishment of expectations
in light of the available budget, helped to ensure
that the inventory would efficiently provide the
answers to management questions.

Another finding was that PI of nearly 80,000
plots (1,680,000 individual points to assess) re-
quired a great deal of effort to develop an efficient
procedure, construct a manual, and manage and
train analysts. The task became more manageable
after we developed a GIS procedure that vastly in-
creased our productivity level and lowered costs.
In addition, photointerpreting plots in the Plains
States was less complex because the vast majority
of the plots assessed were completely devoid of
trees. The experience we gained in this work will
speed up future photo studies we conduct.

Table 3 An example of results from the EVALIDator reporting tool—GPI estimates can be compared to those obtained

from FIA data collected in forested areas

Inventory State No. ash Total no. Proportion
Trees SE (%) Trees SE (%) ash
GPI KS 14,306,127 65.77 178,756,851 9.63 0.08
NE 11,820,328 20.07 119,220,902 8.02 0.10
ND 34,427,005 18.66 85,011,866 11.27 0.40
SD 24,305,031 12.85 74,737,613 7.84 0.33
Total 84,858,491 14.20 457,727,232 4.95 0.19
FIA KS 41,932,111 18.40 752,785,938 5.32 0.06
NE 34,911,168 18.80 347,215,165 7.14 0.10
ND 79,151,049 14.33 331,378,919 10.82 0.24
SD 23,225,202 20.22 536,695,502 5.96 0.04
Total 178,188,470 8.86 1,968,075,524 3.42 0.09
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Finally, we learned that some of the existing
FIA infrastructure, including the field guide, data
recorder, and analytical software, is adaptable
for other FIA-like resource inventories. By going
through the process of adapting the FIA method-
ology to fit the NFT inventory, the project not
only benefits from using pre-existing infrastruc-
ture, but also from the potential for integration of
NFT results with those from FIA. That is, using
methods that are consistent with FIA allowed for
comparisons between forest and nonforest areas.
Approaches we developed in this study will be
used in future work to improve monitoring efforts
within FIA and possibly other agencies.
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