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ABSTRACT

The performance of a multimodel ensemble over the northeast United States is evaluated before and after

applying bias correction and Bayesian model averaging (BMA). The 13-member Stony Brook University

(SBU) ensemble at 0000 UTC is combined with the 21-member National Centers for Environmental Pre-

diction (NCEP) Short-RangeEnsemble Forecast (SREF) system at 2100UTC. The ensemble is verified using

2-m temperature and 10-m wind speed for the 2007–09 warm seasons, and for subsets of days with high ozone

and high fire threat. The impacts of training period, bias-correction method, and BMA are explored for these

potentially hazardous weather events using the most recent consecutive (sequential training) andmost recent

similar days (conditional training). BMA sensitivity to the selection of ensemble members is explored.

A running mean difference between forecasts and observations using the last 14 days is better at removing

temperature bias than is a cumulative distribution function (CDF) or linear regression approach. Wind speed

bias is better removed by adjusting the modeled CDF to the observation. High fire threat and ozone days

exhibit a larger cool bias and a greater negative wind speed bias than the warm-season average. Conditional

bias correction is generally better at removing temperature and wind speed biases than sequential training.

Greater probabilistic skill is found for temperature using both conditional bias correction and BMA com-

pared to sequential bias correction with or without BMA. Conditional and sequential BMA results are similar

for 10-m wind speed, although BMA typically improves probabilistic skill regardless of training.

1. Introduction

Operational ensembles are used to quantify forecast

uncertainty by employing different initial conditions,

physical parameterizations, and model cores. In this

manner, the spread of model solutions creates a repre-

sentative sample of all possible future outcomes from

which probabilistic forecasts can be derived. Unfor-

tunately, many ensemble members exhibit biases (Colle

et al. 2003; Eckel and Mass 2005; Jones et al. 2007) that

remain in the non-bias-corrected ensemble mean. Var-

ious bias-correction techniques are effective at removing

the average ensemble bias; including the running mean

bias removal (Stensrud and Yussouf 2003; Stensrud and

Yussouf 2005; Eckel and Mass 2005), the multivariate

regression model (Glahn and Lowry 1972; Mao et al.

1999; Wilson and Vallée 2002; Wilson and Vallée 2003;

Glahn et al. 2009), the Kalman filter (Libonati et al. 2008;

Müller 2011), gene expression programming (Bakhshaii

and Stull 2009), binning and correcting forecasts by value

(Hamill and Colucci 1998; Gallus and Segal 2004; Gallus

et al. 2007; Stensrud and Yussouf 2007), and the correc-

tion of model bias in a gridded format (Eckel and Mass

2005; Gallus et al. 2007; Stensrud andYussouf 2007; Yulia

2007; Mass et al. 2008; Glahn et al. 2009).

Planetary boundary layer (PBL) physics errors con-

tribute significantly to lower atmospheric model error

(Pleim 2007; Hu et al. 2010; Nielsen-Gammon et al.

2010), suggesting that bias correction may be important

when forecasting phenomena sensitive to near-surface

meteorological conditions. However, even after bias

correction, many ensembles exhibit insufficient spread

[i.e., are underdispersed; Eckel and Mass (2005); Jones
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et al. (2007)], which is worse in the lower atmosphere

(Hamill and Colucci 1997). There is a long history of

ensemble postprocessing techniques designed to im-

prove model spread and probabilistic scores, including

the prior rank histogram method (Hamill and Colucci

1998), Bayesian processor of forecast (Krzysztofowicz

and Evans 2008), ensemble reforecasts (Hamill et al.

2006), Bayesian model averaging (BMA; Raftery et al.

2005), ensemble ‘‘dressing’’ techniques (Wang and

Bishop 2005), extended logistic regression (Wilks 2009),

ensemblemodel output statistics (EMOS;Gneiting et al.

2005), and calibrated error sampling/randomly cali-

brated resampling (Eckel et al. 2012). For this study,

BMA is used to calibrate a multimodel ensemble, since

it is competitive with other calibrationmethods (Marrocu

and Chessa 2008). BMA, which will be described in more

detail below, corrects for ensemble underdispersion by

estimating each member’s contributing weight and fore-

cast uncertainty.

High wildfire threat and air pollution transport and

diffusion are examples of weather phenomena sensitive

to near-surface variables over the northeast United

States. Although wildfires are less common in the

northeast United States compared to other parts of the

country (National Interagency Fire Center 2010), they

pose a threat to lives and property due to a higher

population density. Summer high ozone in the densely

populated northeast U.S. area can be harmful to hu-

mans (Kinney and Ozkaynak 1991). Accurate simula-

tion of the near-surface weather conditions associated

with high fire threat and ozone days is desirable, since

meteorological model fields are used to produce fire

weather forecasts and to drive air quality models

(AQMs).

Previous fire weather modeling studies typically fo-

cused on particular events, such as the New Jersey

Double Trouble State Park wildfire (Kaplan et al. 2008;

Charney and Keyser 2010) and Australian wildfire

events (Mills 2005a,b; Mills 2008a,b), or over an entire

fire season for a region such as the Pacific Northwest

(Hoadley et al. 2004, 2006) and Alaska (Mölders 2008,

2010). While Mölders (2008, 2010) investigates the use

of ensemble techniques to enhance fire weather fore-

casts, bias correction is not an element of either study.

Schroeder et al. (1964) and Takle et al. (1994) in-

vestigate the synoptic atmospheric patterns associated

with high fire threat, but without employing numerical

weather prediction models for a more comprehensive

analysis. Potential differences in meteorological model

biases between these synoptic patterns and the seasonal

averages have not been investigated.

There is a long history of employing meteorological

models to drive AQMs in the literature [see, e.g.,

Seaman (2000) for a review of previous studies]. Sev-

eral recent AQM studies demonstrate how ensemble-

forecasting techniques coupled with bias correcting the

pollutant of interest can increase forecasting skill

(McKeen et al. 2005; DelleMonache et al. 2006;Wilczak

et al. 2006; Kang et al. 2008; Delle Monache et al. 2008;

Kang et al. 2010). Furthermore, high ozone days over

the northeast United States are linked to key synoptic

surface circulation patterns (Hegarty et al. 2007), such as

an offshore Bermuda high. However, ensemble perfor-

mance between high ozone days and the seasonal av-

erage are largely unknown.

There is growing evidence that model biases may be

related to the atmospheric flow pattern. Greybush et al.

(2008) find varying optimal ensemble member weights

dependent on the synoptic regime over the Pacific

Northwest. An analog technique developed in Hamill

et al. (2006) searches for historical days over the United

States with the smallest local root-mean-square differ-

ence to the current ensemble mean forecast using Global

Forecast System (GFS) reforecasts. Delle Monache et al.

(2011) use an analog method that matches previously

modeled Weather Research and Forecasting Model

(WRF) forecasts to the current forecast to improve 10-m

wind speed predictions by 20%–25% over the western

United States compared to nonanalog bias-correction

methods.

Although BMA generates calibrated forecasts when

verified over several consecutive months (Raftery et al.

2005), its performance has not been tested exclusively

for specific types of weather phenomena. Training BMA

with the most recent few weeks may not remove model

biases or improve ensemble dispersion if these phe-

nomena are sensitive to the synoptic flow regime. This is

particularly concerning for fire weather and poor air

quality days, which are likely associated with specific

flow patterns over the northeast United States (Takle

et al. 1994; Gaza 1998; Hegarty et al. 2007). Further-

more, BMA has not been tested over the highly popu-

lated and meteorologically complex northeast U.S.

region. This region has variable land-use characteristics

and is frequently influenced by different source air

masses (Green and Kalkstein 1996). Additionally, the

northeast United States is affected by mesoscale fea-

tures, including the sea-breeze circulation (Miller and

Keim 2003), convection (Lombardo and Colle 2010;

Murray and Colle 2011), and terrain-forced flows

(Gopalakrishnan et al. 2000; Carrera et al. 2009). The

effectiveness of a bias-correction method may also

depend on the model variable being considered.

BMA has mostly been tested on ensembles ranging

between 8 members (Raftery et al. 2005) and 18 mem-

bers (Wilson et al. 2007). Fraley et al. (2010) ran BMA

1450 WEATHER AND FORECAST ING VOLUME 27



with 86 members, although 80 members are exchange-

able (i.e., members that only differ in some random

perturbation of their initial conditions). The multimodel

ensemble in this study considers several model cores,

different model physics, and different initial conditions.

However, there is no clearly established best method for

running BMA with a large number of members, which

can result in overfitting since BMA estimates one weight

per ensemble member. In this case, it is desirable to

select a smaller subset of members for BMA.

This study will address the following motivational

questions:

* How do three different bias-correction methods

perform for 10-m wind speed and 2-m temperature

over a portion of the northeast United States?

* Can ensemble error be reduced for high ozone and

high fire threat events using a similar day (condi-

tional) bias-correction approach?

* Can conditional training with BMA improve results

on high ozone and fire threat days?

* How sensitive is BMA to the subset of members

selected from the total ensemble?

Although other calibration methods may give different

results, a major goal of this paper is to compare different

training period approaches rather than calibration

methods on high fire threat and ozone days.

Section 2 of this paper describes the multimodel en-

semble used, the selection criterion for high fire threat

and ozone days, and the postprocessing methods. Sec-

tion 3 presents the bias correction and BMA results for

the hazardous weather days and the sensitivity of post-

processing to the members selected in a multimodel

ensemble. Section 4 summarizes the results and makes

suggestions for future work.

2. Data and methods

a. Selection of high-impact weather events

High fire threat days are classified using the fire po-

tential index (FPI) from theWoodland Fire Assessment

System (WFAS; Burgan et al. 1998) when available and

the National Fire Danger Rating System (NFDRS;

Deeming et al. 1972) when FPI data are unavailable.

The FPI considers relative greenness (RG) maps de-

rived from the state of current vegetation, fuel moisture,

and the daily weather conditions to determine fire threat

on a scale from 0 to 100 (Preisler et al. 2009). The

NFDRS rates fire danger based on a complex combi-

nation of physical, statistical, and engineering equations

that consider the local meteorology, terrain height, and

fuel conditions. For this study, an FPI value of 50 or an

NFDRS rating of ‘‘high’’ is considered to be a high fire

threat event. A high fire threat day must have at least

10% of the inner domain (Fig. 1) experiencing high fire

threat, while the remainder of the inner domain has

moderate fire threat (FPI 21–50). Although it would be

useful operationally to select a more extreme fire threat

category, this would require several extra years of data

to determine statistical significance. High ozone days are

identified using in situ measurements from the Environ-

mental Protection Agency (EPA) Aerometric Infor-

mation Retrieval Now (AIRNow; EPA 1999) network

over the northeast United States (Fig. 1). A high ozone

day must have 10% or more of the regional stations

measuring an air quality index (AQI) of yellow or above

[daily maximum 8-h averaged ozone concentrations ex-

ceed 59 parts per billion (ppb)], while all other stations

must exceed 30 ppb.

b. Multimodel ensemble

The Stony Brook University (SBU) and National

Centers for Environmental Prediction (NCEP) Short

Range Ensemble Forecast (SREF) ensembles are

evaluated over the northeast U.S. domain shown in

Fig. 1 for the 2007–09 warm seasons (April–September).

The SBU ensemble consists of seven fifth-generation

Pennsylvania State University–National Center for

Atmospheric Research (NCAR) Mesoscale Model

(MM5; Grell et al. 1994) members and 6 WRF

(Skamarock et al. 2008) members at 36- and 12-km grid

spacing domains covering the eastern two-thirds of the

United States and the northeast United States, re-

spectively (see Fig. 1 in Jones et al. 2007). The SBU

ensemble combines different initial conditions and

physical parameterizations (convective parameteriza-

tion, boundary layer, and microphysics) to increase

forecast diversity (Table 1). The sea surface tempera-

ture (SST) initialization uses the U.S. Navy Optimum

Thermal Interpolation System (OTIS) SST. Soil mois-

ture for all WRF members and MM5 member four

(Table 1) is initialized with the North American Meso-

scale (NAM) model at 32-km grid spacing, while the

remaining MM5 members uses the GFS soil moisture

at 0.58 spacing.
The NCEP SREF is run at 32–45-km grid spacing at

0300, 0900, 1500, and 2100 UTC (Du et al. 2006). There

are four model cores [Eta, Regional Spectral Model

(RSM),WRFNonhydrostaticMesoscaleModel (NMM),

andAdvanced ResearchWRF (ARW)]. Initial condition

perturbations for the SREF implement a breeding tech-

nique similar to that in Toth and Kalnay (1997), and each

core uses different physics (Table 1). Except for the Eta

and RSM, SREF members sharing the same core can be

considered exchangeable.
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The SBU and SREF ensembles are verified for the

0000 and 2100 UTC run cycles, respectively, for the re-

gion shown in Fig. 1. A subset of the northeast United

States is selected based on its high population density

and neighboring woodland area (i.e., Catskills, Poconos,

Berkshires; Fig. 1). The predicted 2-m temperature and

10-m wind speed are verified with Automated Surface

Observing System (ASOS) observations. The 2-m spe-

cific humidity is verified for the SBU ensemble only

(archived moisture is not available for SREF at the time

of this study).

The verification and postprocessing of high-impact

weather focuses on the daytime period (1200–0000UTC),

since this is when peak high fire threat or ozone condi-

tions typically occur. Two adjacent forecast cycles are

used; the SBU (SREF) 36–48-h (39–51-h) forecast 1 day

prior to the high-impact event and the 12–24-h (15–27 h)

forecast on the day of the event. Model forecast data at

the four grid points surrounding the observation sites are

bilinearly interpolated to each ASOS location (Jones

et al. 2007).

c. Bias-correction methods

Three different bias-correction techniques are com-

pared using the ensemble forecasts: linear regression,

additive, and cumulative distribution function (CDF).

Linear regression uses the forecast variable as the

only predictor and does not consider spatial variations

[Wilson et al. 2007, their Eq. (4)]. The additive bias

correction determines the mean error in the training

period for each forecast hour and station separately

[Wilson et al. 2007, their Eq. (3)] before subtracting it

from the most recent forecast. Considering bias by sta-

tion improves the additive bias-correction mean abso-

lute error (MAE) by 5%–10%. The CDF method

comprises two steps; the first adjusts the CDF of the

model to the observations over the domain simulta-

neously (Hamill and Whitaker 2006) and a second step

FIG. 1. Domain used for the verification of high ozone and fire threat days over the northeast

United States (black border) and the ASOS stations (exes) and AIRNow stations (circles).

Shaded contours denote elevation while the text labels the mountainous regions of the Poco-

nos, Catskills, and Berkshires. Additional text shows the states of Maryland (MY), Delaware

(DE), New Jersey (NJ), Pennsylvania (PA), New York (NY), Connecticut (CT), Rhode Island

(RI), Massachusetts (MA), Vermont (VT), and New Hampshire (NH).
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bins the data by terrain elevation (at thresholds between

0 and 50, 50 and 100, 100 and 200, and greater than

200 m) and dominant land-use categories (i.e., urban,

mixed forest, water, etc.) to find the residual spatial

bias. Residual bias is calculated as the sum of the CDF-

corrected forecasts of a particular bin divided by the sum

of the observational values. The final bias-corrected

forecast is the inverse of the bias multiplied by the CDF-

corrected forecast for that elevation or dominant land

use. This extra step of removing spatial bias improves

MAE by an additional 2%–3%.

The sensitivity of the model state variable to bias

correction method is explored for temperature and wind

speed using a training window length of 14 days. The

training window is always kept separate from verifica-

tion by sorting the entire dataset in chronological order

and employing a sliding window approach. This ap-

proach begins by selecting the first 14 sorted days to

correct the 15th day. The sliding window then proceeds

to verify the remainder of the dataset 1 day at a time by

incrementally dropping the oldest day from the training

period while adding the most recent event. Comparing

training lengths of 7, 14, and 21 days shows improvement

up to, but not beyond, 14 days in length (not shown).

Additionally, two different methods for training the

statistics are examined. The first uses a training window

of the most recent consecutive 14 days (sequential

training) while the second uses the most recent similar

14 days (conditional training).

There is a discrepancy between ASOS stations that

report all sustained winds less than 1.5 m s21 as calm

(NationalWeather Service 1998), and the modeled wind

speed. For consistency, all modeled wind speed values

below 1.5 m s21 are set to zero. Without this adjust-

ment, the simulated winds less than 1.5 m s21 would

result in an artificially high model bias.

TABLE 1. Description of the SBU and SREF ensembles, including model used, microphysical schemes, PBL schemes, radiation schemes,

cumulus schemes, and initial conditions.

SBU and SREF

Members Model Microphysics PBL scheme Radiation Cumulus Initial condition

1 MM5 Simple ice MY Chemistry–Climate

Model 2 (CCM2)

Betts–Miller GFS

2 MM5 Reisner MY Cloud radiation Grell WRF-NMM

3* MM5 Simple ice MY CCM2 Kain–Fritsch Canadian

Meteorological

Centre (CMC)

4 MM5 Simple ice MRF Cloud radiation Grell WRF-NMM

5* MM5 Reisner MRF Cloud radiation Kain–Fritsch GFS

6 MM5 Simple ice Blackadar CCM2 Grell Navy Operational

Global Atmospheric

Prediction System

(NOGAPS)

7* MM5 Simple ice Blackadar CCM2 Grell GFS

8 WRF-ARW WRF six-moment,

three class (WSM3)

MYJ Rapid

Radiative

Transfer

Model (RRTM)

BMJ WRF-NMM

9 WRF-ARW WSM3 MYJ RRTM Kain–Fritsch NOGAPS

10* WRF-ARW WSM3 MYJ RRTM Kain–Fritsch GFS

11 WRF-ARW Ferrier YSU RRTM Kain–Fritsch WRF-NMM

12 WRF-ARW Ferrier YSU RRTM Grell GFS

13* WRF-ARW WSM3 YSU RRTM BMJ NOGAPS

14–16* WRF-ARW Ferrier YSU RRTM Kain–Fritsch GFS

17–19* WRF-NMM Ferrier MYJ Geophysical

Fluid Dynamics

Laboratory

(GFDL)

BMJ GFS

20–24* Eta 1 Ferrier MY GFS radiation BMJ NAM

25–29* Eta 2 Ferrier MY GFS radiation Kain–Fritsch NAM

30–34* RSM Zhao MRF GFS radiation Simplified

Arakawa–Schubert/

relaxed Arakawa-Schubert

(SAS SAS/RAS

GFS

* Includes those members for BMA-only experiments; SREF uses the control member only.
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d. Bayesian model averaging

BMA creates a posterior probability density function

(PDF) for each model variable [Raftery et al. 2005 their

Eq. (1)] as given by

p(y j f1,⋯ fk) 5 �
K

k51

wkgk(y j fk) , (1)

where f is the forecast, y is the observation, wk is the

probability of each ensemble member k being the best,

and gk is the conditional PDF of observation y being

correct given that member k is best. The frequency

distribution g varies depending on the state variable

being considered. This study applies BMA similar to

Raftery et al. (2005), including the assumption that

temperature is normally distributed. However, this

study separates bias correction from BMA and chooses

the best bias-correction method prior to BMA for each

model state variable.

BMA for wind speed is implemented in manner sim-

ilar to that of Sloughter et al. (2007) for precipitation and

Sloughter et al. (2010) for maximum wind speed, but

with a few adjustments. Sloughter et al. (2007, 2010)

assume the variance parameter is linearly related to the

model forecast. As with Schmeits and Kok (2010), di-

rectly estimating the variance parameter gives similar

results, and is used for this study. Sloughter et al. (2010)

assumes the gamma distribution’s mean follows a linear

relationship with the forecasted wind speed. This study

uses the bias-corrected modeled wind speed for the

gamma mean, since running BMA with the linear as-

sumption does not add any additional skill. However,

this assumption does not hold when the wind speed is

calm, since it results in unacceptable zero-valued gamma

means. Therefore, all zero-valued gamma means are

replaced with the average observed wind speed for each

ensemble member when the model-forecasted wind

speed is calm. In this manner, BMA can still calculate an

unbiased posterior PDF.

As in Sloughter et al. (2007), the wind speed BMA

posterior PDF consists of a mixture model that com-

bines a point mass at zero and the gamma distribution

for all other values. The point mass is described by

a logistic regression that calculates the probability of the

observed wind speed being calm given the forecast.

A power transformation is used to make the wind speed

data more Gaussian. The BMA fit to observations over

the northeast United States is optimized during the

daytime hours when the modeled wind speed data are

transformed to the 3/4th power (not shown).

The model weights and variance for BMA cannot

be solved analytically (Raftery et al. 2005) and are

estimated using the maximum likelihood technique

(Fisher 1922). This method seeks a set of parameter

values under which the observed data are most likely

to have happened. Our study uses the Differential

Evolution Adaptive Metropolis (DREAM) Markov

Chain Monte Carlo (MCMC) algorithm developed by

Vrugt et al. (2008). DREAM MCMC is designed to

work in a high-dimensional space and is more likely to

find the global maximum likelihood estimate than the

expectation-maximization method used in Raftery

et al. (2005).

As with bias correction, BMA separates the calibra-

tion window from verification, but is applied on a 28-day

sliding window of bias-corrected model forecasts. This is

within the 25–30-day training period recommended by

Raftery et al. (2005) and Sloughter et al. (2007, 2010).

BMA is evaluated using conditional and sequential

training with two consecutive cycles of ensemble model

runs between 1200 and 0000 UTC (SBU 12–24- and

36–48-h forecasts).

The DREAM MCMC algorithm did not converge

when considering all SBU and SREF members, even

after 15 000 iterations. Since this is likely caused by

overfitting, five members are selected from each of the

SBU and SREF ensembles. The five best SBUmembers

are selected in terms of lowest seasonally averaged

MAE within each PBL scheme (Table 1). The SREF

control members are used, since the perturbed members

had higher MAEs for temperature and wind speed (not

shown). Here, 11 unknown parameters are estimated by

iterating DREAM MCMC 2500 times; 10 weights for

each member and one variance parameter.

Statistical significance is determined via bootstrapping

(Wilks 2011), where resampling with replacement is

used to create a larger dataset. One thousand samples

from the dataset are randomly chosen in order to cal-

culate the 95% confidence intervals. Additionally, the

ensemble mean and smaller ensemble subsets for all

cases are calculated by averaging through all hours and

stations, before averaging across all members.

3. Results

a. Bias-correction methodology

Figures 2 and 3 show the performance of different bias

correction methods for 2-m temperature and 10-m wind

speed, respectively, averaged over all members during

the warm season. Ensemble mean 2-m temperature has

an increasingly negative mean error (ME) from 21.19

to 21.96 K between the 289- and 304-K thresholds

(Fig. 2a). All bias-correction techniques improve the cool

bias for all thresholds. However, the linear regression
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overcorrects for the warmest temperatures by giving

little weight to the forecast predictor and too much

weight to the intercept parameter. This adjusts the

model data closer to the average value (i.e., reduces

the forecast variance), as is found in Hamill (2007).

The additive bias correction has lower average MAE

(1.92 K) than the CDF (2.10 K) and linear techniques

(2.02 K; Fig. 2b). The differences in MAE between the

linear, CDF, and additive techniques are all statistically

significant.

Ensemble mean 10-m wind speed has a positive bias

that increases from 0.64 to 1.00 m s21 for thresholds

between 1.5 and 5 m s21 (Fig. 3a). The WRF Mellor–

Yamada Janji�c (MYJ) PBL, SREF-NMM, and SREF-

ETA members have the largest positive bias (averaging

1.90 m s21 at 5 m s21; not shown). Excluding these

members gives an ensemble bias of ;0.24 m s21 at the

5 m s21 threshold (not shown). The linear bias removal

has a growing negative bias with increasing threshold,

reaching 20.99 m s21 by 5 m s21 (Fig. 3a), while the

additive (0.10 m s21) and CDF (0.20 m s21) methods

have less bias. The linear bias correction is lower

(1.76 m s21; Fig. 3a) than the CDF (1.79 m s21) or ad-

ditive (1.93 m s21) methods for average MAE. How-

ever, the linear method suffers from the same reduction

in the variance problem as temperature, causing high

MAE (2.28 m s21) at 5 m s21. Although the linear

method performs best in terms of MAE for most

thresholds, the CDF method is preferred due to its

better performance at higher thresholds. In general,

similar results are achieved when using contingency

table bias to measure model bias, and equitable threat

scores (ETS) in addition to the logarithmic score to

measure model skill (Wilks 2011). However, the linear

bias-correction method performs worse for wind speed

in terms of ETS or logarithmic score thanMAE,with the

CDF method performing the best for wind speed (not

shown).

Accurate forecasts at higher thresholds are important,

since strong winds can contribute to the generation and

spread of wildfires (Charney and Keyser 2010) and af-

fect the dispersion and advection of pollutants (Seaman

and Michelson 2000). Given the results above, the re-

mainder of this paper will bias correct temperature

(wind speed) with the additive (CDF) method.

b. Bias correction applied to fire weather days

Temperature ME and MAE values are presented for

high fire threat days (Fig. 4). Results are grouped ac-

cording to PBL scheme within the SBU ensemble or

SREF model core and averaged for several different

periods: the warm season, fire threat days, fire threat

days with sequential bias correction, and fire threat days

with conditional bias correction. The ensemble mean

has a warm-season cool bias of 21.09 K (Fig. 4a), with

FIG. 2. Surface 2-m temperature (K) for (a)ME and (b)MAE by

threshold for raw (solid), linear bias correction (dashed), additive

bias correction (filled circles), and CDF bias correction (dotted).

Thin black horizontal line in (a) denotes zero bias.

FIG. 3. As in Fig. 2, but for 10-m wind speed (m s21).
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a bias of 22.45 K on fire threat days. The SBU’s MM5

MY and WRF MYJ members have the largest SBU

cold bias on high fire threat days (23.29 and 22.77 K,

respectively), while the SBU’s MM5 Medium-Range

Forecast (MRF) model and MM5 Blackadar (BLK)

members have cool biases of 21.18 and 21.05 K, respec-

tively. The sequential bias correction on fire threat days

has an ensemble mean cool bias (20.85 K), while condi-

tional bias correction has almost no bias (20.02 K). The

temperature MAE for high fire threat days is reduced for

conditional bias correction (1.85 K) compared to sequen-

tial training (2.06 K; Fig. 4b). The improvements in the

ensemblemeanME andMAE for conditional training are

statistically significant at greater than 95% confidence

compared to sequential training.

Ensemble-averagedmean error is plotted spatially for

the warm-season average (Fig. 5a), high fire threat days

(Fig. 5b), sequentially corrected high fire threat days

(Fig. 5c), and conditionally corrected high fire threat

days (Fig. 5d). This spatial plot is created by inter-

polating model biases for each station onto a 0.258 3
0.258 latitude–longitude grid. The model and observa-

tion must exceed the 298-K threshold for the mean error

to be calculated, although results for other thresholds

are similar. Warm-season biases are generally negative

(24.0 to 0.4 K), but cool biases are larger on high fire

threat days (27.2 to 21.5 K). Sequential bias correction

reduces the spread of potential biases (24.1 to 20.2 K),

but conditional bias correction removes the magnitude

and spread of the negative bias more effectively (22

to 1.2 K).

Warm-season biases with 2-m specific humidity

(Fig. 6) vary between 0.04 g kg21 for the WRF Yonsei

University (YSU) PBL members to 4.40 g kg21 with

the MM5 MY PBL (Fig. 6a). Schwitalla et al. (2008)

noted a strong daytime wet bias in specific humidity

using the MM5 MY PBL and attributed this bias to

weaker vertical mixing in the boundary layer. High fire

threat days have a larger positive moisture bias than the

warm-season average, with a 0.74 g kg21 (0.06 g kg21)

bias in the ensemble mean after sequential (condi-

tional) training. The difference between the sequential

and conditionally bias-corrected ensemble mean ME

and MAE is statistically significant, exceeding 95%

confidence levels.

Warm-season model biases vary between ensemble

members for 10-m wind speed (Fig. 7). For instance, the

MM5members have a small negative bias (;20.12 m s21),

while the WRF-MYJ, SREF-NMM, and SREF-ETA

members have significant positive biases (;1.22 m s21).

The ensemblemean on high fire threat days with sequential

bias correction has an ME of 20.55 m s21, which is

corrected with conditional training (;0 m s21). The

improvement in MAE between conditional (1.49 K)

and sequential bias correction (1.53 K) is not statisti-

cally significant, but the improvement in ME exceeds

95% confidence. Nonetheless, improving ME is im-

portant even without benefit to MAE, since model

bias can affect BMA’s ability to calibrate an ensemble

(section 3d).

Wind speed biases for the ensemble mean are pre-

sented spatially on high fire threat days (Fig. 8). The

warm-season average ensemble mean overestimates

wind speed (20.7 to 2.5 m s21), and to a lesser extent

for high fire threat days (20.9 to 2 m s21). Sequential

bias correction overcorrects wind speed bias, while

conditional training performs best. The lingering spa-

tial model biases appear to be related to geographical

location (Fig. 8d). For instance, the regions around

New York City, New York (KNYC), and Providence,

Rhode Island (KPVD), to Worchester, Massachusetts

(KORH), exhibit negative biases (20.7 to20.4 m s21),

while the mountainous areas of the Poconos and Berk-

shires have positive biases (0.5–1 m s21). Although the

CDF method bins together dominant land-use type and

elevation, this correction could be improved by consid-

ering other spatial features (Mass et al. 2008; Kleiber

et al. 2011).

FIG. 4. Histograms of (a) ME and (b) MAE for 2-m temperature

(K) for each ensemblemember subgroup that shares the same PBL

scheme in MM5–WRF and the model core in SREF showing the

raw warm season (dark blue), raw high fire threat (light blue), high

fire threat with sequential bias correction (yellow), and high fire

threat with conditional bias correction (red).
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c. Bias correction applied to high ozone days

High ozone days have a larger ensemble mean cool

bias for 2-m temperature (21.52 K) than the warm

season average (21.09 K; Fig. 9a). Sequential bias cor-

rection results in an ensemble mean bias of 20.42 K,

while conditional bias correction removes all but

10.03 K. This difference in ensemble ME is statistically

significant above the 95% confidence level, but the en-

semble MAE is degraded by 0.01 K (Fig. 9b; i.e., is not

significant). The bias in 10-m wind speed on high ozone

days shows a statistically significant improvement be-

tween conditional and sequential bias correction (by

0.12 m s21), but not for MAE (degrades by 0.02 m s21;

not shown). Spatial temperature (wind speed) biases for

high ozone days are similar to the high fire threat days in

Fig. 5 (Fig. 8; not shown).

High fire threat and high ozone datasets are largely

independent, with the former occurring predominately

in the spring and the latter almost entirely in summer. Of

FIG. 5. Spatial 2-m temperature ensemble mean error for the threshold exceeding 298 K for the (a) raw warm

season, (b) raw fire threat days, (c) fire threat days with sequential bias correction, and (d) fire threat days with

conditional bias correction.
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the 80 high fire threat model runs and 134 high ozone

model runs analyzed, there are only 16 model runs that

overlap.

d. Bayesian model averaging

BMA is applied to the hazardous weather days after

bias correction using a 28-day sliding window. BMA

with sequential training is called BMA-ST and BMA

implemented with conditional training will be referred

to as BMA-CT.

Probability integral transform (PIT; Raftery et al.

2005) of high fire threat and ozone events with BMA-ST

and BMA-CT are compared to bias-correction-only

rank histograms for 2-m temperature (Fig. 10) and 10-m

wind speed (Fig. 11). Additionally, the reliability index

(RI) of Delle Monache et al. [2006 their Eq. (2)] is cal-

culated to quantify the impact of bias and under-

dispersion, where lower values represent a flatter rank

histogram. Bias correction without BMA results in se-

verely underdispersed (U-shaped) temperature and

wind speed forecasts for all high fire threat and ozone

events. Sequential bias correction has a backward

L-shaped histogram, indicative of a negative bias. Ap-

plying BMA after bias correction removes most of the

underdispersion for temperature (Fig. 10) and wind

speed (Fig. 11) and also greatly lowers RI index values

(by 34.8% for temperature and 55.7% for wind speed,

on average). However, BMA-ST is still negatively biased

(Figs. 10b,d and 11b) compared to BMA-CT (Figs. 10a,c

and 11a) for all high fire threat days and high ozone

days with temperature. This is reflected in the lower RI

values for conditional versus sequential training, sug-

gesting that BMA cannot correct for lingering model

biases.

The influence of BMA is shown probabilistically using

reliability plots for high fire threat days exceeding the

4 m s21 and 6 m s21 thresholds (Fig. 12). Ensemble

underdispersion is evident for all cases using bias cor-

rection and no BMA, with lower (higher) forecasted

probabilities being too low (high) compared to the ob-

served relative frequency. BMA improves ensemble

reliability for all thresholds (Fig. 12). However, the

negative bias caused by sequential training on high fire

threat days (Figs. 7a and 11b) results in less accurate

probabilistic forecasts for BMA-ST (Figs. 12b,d) com-

pared to BMA-CT (Figs. 12a,c).

The dimensionless and positively oriented Brier

skill score [BSS; Wilks 2011, his Eq. (8.37)] is used to

assess probabilistic skill of BMA-CT and BMA-ST

referenced against sequential bias correction with no

BMA for multiple thresholds. Warm-season high fire

threat and high ozone days are considered between

286 and 300 K for temperature and 1.5 and 5.2 m s21

for wind speed. The stations, models, and days con-

sidered are identical for bias correction, BMA-ST,

and BMA-CT, allowing for a direct comparison among

all three postprocessing methods. Most thresholds for

temperature (Fig. 13) and all thresholds for wind speed

(Fig. 14) have BMA BSS values greater than zero at

95% confidence, demonstrating that BMA improves

FIG. 6. As in Fig. 4, but for 2-m specific humidity using only the

SBU ensemble on high fire threat days.
FIG. 7. As in Fig. 4, but for 10-m wind speed on high fire threat days.
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probabilistic scores regardless of training period. Re-

sults for temperature on high fire threat days reveal

statistically significant improvement in BMA-CT com-

pared to BMA-ST for all thresholds (Fig. 13a). High

ozone days have a similar benefit with BMA-CT, al-

though only the 294- and 295-K thresholds are statisti-

cally significant (Fig. 13b). There is little difference in

wind speed between BMA-CT and BMA-ST on high

ozone or fire threat days (Fig. 14).

e. Sensitivity of BMA to forecast hour

The impact of forecast hour on BMA is explored on

high fire threat and ozone days by rerunning BMA for

2-m temperature between SBU forecast hours 3 and 48

(6–51-h SREF). To obtain two diurnal cycles for high

fire threat, two subsequent model runs are postprocessed

and combined. BSS is used to assess BMA performance

for 2-m temperature by hour with sequential bias

FIG. 8. As in Fig. 5, but for 10-m wind speed on high fire threat days. In Fig. 8d, the green asterisks indicate the

locations of KNYC, KPVD, and KORH. The Poconos and Berkshire Mountains are also labeled.
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correction as a reference (Fig. 15). The BSS for BMA-

CT on high fire threat days varies diurnally and is nearly

out of phase with BMA-ST (Fig. 15a). As a result, the

probabilistic results with BMA-CT on high fire threat

days are significantly better than those with BMA-ST

between 1500 and 0000 UTC, but degrade BMA-CT

compared to BMA-ST between SBU forecast hours 30

and 33 (both exceeding 95% confidence). The poor

performance of BMA-CT compared to BMA-ST be-

tween hours 30 and 33 is a result of better performance

with the conditional (sequential) bias correction during

the day (night). Regardless, both BMA-ST and BMA-

CT generally improve upon sequential bias correction.

High ozone days with BMA-CT are not statistically

significantly different than BMA-ST for 2-m tempera-

ture for most hours (Fig. 15b), although both BMA

methods are generally better than bias correction alone.

f. Sensitivity of BMA to ensemble member selection

Unfortunately, the DREAM MCMC algorithm does

not converge on confident parameter estimates for the

entire 34-member ensemble, so a subset of 10 members

is selected. However, the best way to construct a de-

terministically and probabilistically skillful ensemble

using BMA is not immediately obvious. Raftery et al.

(2005) showed that BMA weights each member based

on its uniqueness and skill using different model initial

conditions. However, unique model cores with different

parameterized physics may also have useful informa-

tion. Therefore, members not included in sections 3d

and 3e may have useful information for BMA.

To test BMA’s sensitivity to member selection, five

SBU and five SREF members are chosen from the total

ensemble as described in section 2 (B10). This ensemble

is compared to five SBU and five SREF members that

are randomly selected from the total ensemble 1000

times (R10). R10 and B10 are compared for 2-m tem-

perature and 10-m wind speed after bias correction for

the 2007–09 warm seasons.

The difference between B10 and R10 in terms of

MAE, variance, and BSS (referenced against R10) is

calculated by threshold for temperature and wind speed

(Fig. 16). B10 has significantly lower MAE for both

temperature and wind speed (Figs. 16a,b), but is more

underdispersed (Figs. 16c,d). This affects the probabi-

listic results (Figs. 16e,f), particularly for wind speed,

where the R10 ensemble has better probabilistic skill.

Comparing B10 and R10 is an interesting test case for

ensemble calibration on the hazardous weather days,

since BMA should correct for underdispersion while

preserving the ensemble’s skill.

The sensitivity of BMA to member selection for each

hazardous weather day is tested by comparing 10 ran-

domly drawn members from the total ensemble (R10–

BMA) to the 10 best members (B10–BMA). The R10–

BMA and B10–BMA results are presented in terms of

BSS using 2-m temperature for high fire threat (Fig. 17a)

and high ozone days (Fig. 17b) referenced against the

sequential bias correction of R10–BMA. B10–BMA is

significantly better than R10–BMA on high fire threat

days for thresholds between 287 and 289 and 292 K

(Fig. 17a). For high ozone days, B10–BMA is signifi-

cantly better than R10–BMA for all thresholds between

288 and 299 K. Therefore, the B10 ensemble should be

used over R10 only when BMA is applied to correct for

ensemble underdispersion.

Previous studies have shown the benefits of combining

members from different ensembles (Cartwright and

Krishnamurti 2007; Candille 2009; Zsoter et al. 2009)

since increased forecast diversity captures uncertainties

in both the initial conditions and model physics. Three

additional ensembles derived from B10-BMA are used

to test the benefits of combining the SBU and SREF.

These ensembles include the five SBU members (B5–

SBU–BMA), the five SREF members (B5–SREF–

BMA) and a combined ensemble (B5–ALL–BMA) that

for each hazardous weather day randomly draws two

SBU members, two SREF members, and one member

that has an equal chance of being either SBU or SREF.

FIG. 9. As in Fig. 4, but for 2-m temperature (K) on high ozone days.
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Although the ensemble size is reduced in this setup, the

random drawing will eventually sample all 10 members.

This is confirmed by rerunning B5–ALL–BMA several

times with similar probabilistic results.

BSS values by threshold for high fire threat (Fig. 18a)

and high ozone (Fig. 18b) are plotted by threshold for

2-m temperature B5–SBU–BMA and B5–SREF–BMA,

with B5–ALL–BMA as the reference. Negative BSS

values correspond to better probabilistic scores for the

combined SBU–SREF ensemble. High fire threat days

benefit froma combined SBU–SREFensemble, except at

higher thresholds (greater than 298 K), while the SREF

(SBU) performs better than the combined ensemble at

lower (higher) thresholds for high ozone days (Fig. 18b).

In general, selecting skillful and unique members from

both the SBU and SREF ensembles for use in BMA

FIG. 10. PIT for 2-m temperature showing bias- (gray) and bias1BMA- (black) corrected prediction during (a),(b)

high fire threat and (c),(d) high ozone days using (a),(c) conditional and (b),(d) sequential training. The reliability

index for each rank histogram (see text for full description) is also included.
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improves the probabilistic results. This suggests thatmodel

diversity is important, even with a calibration method like

BMA. Given previous results, the members selected for

B10 are a good choice, but perhaps not the best one. Fraley

et al. (2010) noted that exchangeable members receive

similar BMA weights, suggesting that the overfitting

problem can be partially solved by fixing the weights

across all SREF members that share the same model core

(except for the Eta and RSM). More study is required to

test the applicability of running BMA on a 34-member

ensemble with the exchangeable member constraint.

4. Summary and conclusions

The postprocessing of 2-m temperature and 10-m

wind speed for the combined 13-member Stony Brook

FIG. 11. As in Fig. 10, but for 10-m wind speed.
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University (SBU) and 21-member National Centers for

Environmental Prediction (NCEP) Short Range En-

semble Forecast (SREF) ensemble is evaluated using

different bias-correction methods [additive, linear, and

cumulative distribution function (CDF)] and Bayesian

model averaging (BMA). Furthermore, the sensitivity of

model biases and postprocessing are explored for high

fire threat and ozone days over a subset of the northeast

United States. Postprocessing with 2-m specific humid-

ity (SBU ensemble only) is also explored.

High fire threat and ozone days have different model

biases for 2-m temperature and 10-m wind speed

compared to the warm-season average, which can

degrade attempts to calibrate an ensemble. Therefore,

bias correction and BMA are implemented using a

training window of the most recent 14 similar days (con-

ditional training) and compared to training using themost

recent 14 consecutive days (sequential training). Only

daytime forecast hours are used (1200–0000 UTC) for

two subsequent model runs initialized at 0000 UTC

(2100 UTC for the SREF) on the day of and the day

before the hazardous weather event. Additionally, BMA

uses a smaller ensemble consisting of the five best

performing SBU members (in terms of mean absolute

error) with a unique PBL and the five SREF control

members.

FIG. 12. Reliability diagrams for 10-mwind speed exceeding 4 m s21 for (a) conditional and (b) sequential training

and 6 m s21 for (c) conditional and (d) sequential training. The BMA-corrected (black dashed) and bias-corrected

(gray dashed) results are compared with the 1:1 line (solid black).
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The optimal bias correction depends on the model

state variable. The CDF (additive) bias correction per-

forms best for 10-m wind speed (2-m temperature). On

average, simulated high fire threat days are cooler,

moister, and less windy than the typical warm-season

average bias. High ozone days exhibit a cooler temper-

ature bias than the warm-season average. As a result,

conditional bias correction results in significant im-

provements in mean error over sequential training for

high ozone (with temperature and wind speed) and fire

threat days (with temperature, wind speed, and specific

humidity). There are also statistically significant im-

provements in MAE on high fire threat days for 2-m

temperature and 2-m specific humidity.

BMA is used to evaluate the benefit of conditional

training (BMA-CT) compared to sequential training

(BMA-ST). Statistically significant improvement in

Brier skill scores (BSS) with BMA-CT is most evident

on high fire threat days for 2-m temperature. Wind

speed results with BMA-CT and BMA-ST are similar

probabilistically for high fire threat and ozone events.

Future work is needed to determine the lack of any

conditional probabilistic benefit for wind speed on high

fire threat days, which might be improved by adjusting

how wind speed is implemented with BMA. Regard-

less of the model state variable or high-impact event,

BMA-ST and BMA-CT almost always improve the

ensemble probabilistic value compared to sequential

FIG. 13. BSSs for 2-m temperature by threshold for (a) high fire

threat days and (b) high ozone days. Sequential (gray) and condi-

tional (black) BMA results are referenced against sequential bias

correction. Thin black horizontal line denotes zero BSS.

FIG. 14. As in Fig. 13, but for 10-m wind speed.

FIG. 15. BSSs for 2-m temperature by forecast hour for (a) high fire

threat days and (b) high ozone days. Sequential (gray) and conditional

(black) BMAs are referenced against sequential bias correction. The

thin black horizontal line denotes zero BSS, while the dashed black

vertical line separates the day 0 forecast from the day 1 forecast.
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bias correction without BMA. This suggests that BMA

can still provide probabilistic value even when the

training period is not entirely representative of the day

being validated.

BMA performance on high fire threat and ozone days

varies as a function of forecast hour. For high fire threat

days, this is likely caused by amore effective conditional

bias correction during the daytime hours. This suggests

a potential physics problem in the lower level of the

modeled atmosphere in the presence of shortwave

radiation, perhaps caused by the parameterized plane-

tary boundary layer, land surface model, or radiation

scheme. For high ozone days, the difference between

BMA-CT and BMA-ST is generally not statistically

significant. Given the sensitivity of bias correction to

forecast hour, it may be beneficial to run BMA sepa-

rately for the daytime and nighttime hours.

The sensitivity of BMA to the members selected is

analyzed by comparing the 10-member ensemble used

earlier (B10) to 10 randomly selected members (R10).

FIG. 16. Difference between R10 and B10 for (a) MAE, (c) ensemble spread, and (e) BSS (referenced against R10)

for warm-season 2-m temperature. (b),(d),(f) As in (a),(c),(e) but for 10-m wind speed.
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Over the warm-season average, B10 performs better in

terms of MAE for wind speed and temperature, but is

consistently more underdispersed than R10. This nega-

tively affects the probabilistic value of B10 compared to

R10. A similar experiment is run for BMA, where 10

members are randomly selected for each high fire threat

and ozone day (R10–BMA) and compared to the best

ensemble (B10–BMA). In this case, B10–BMA usually

has more probabilistic value than R10–BMA, since the

underdispersion is corrected. This implies the members

selected for BMA are important and that picking skillful

and unique members can benefit postprocessing.

The SBU and SREF ensembles are combined in this

study, since additionalmodel cores are expected to bring

about greater probabilistic accuracy. This hypothesis is

tested by comparing two ensembles consisting of five

SBU and five SREF members each (B5–SBU–BMA

and B5–SREF–BMA, respectively), to a third ensem-

ble created by randomly drawing from the first two

(B5–ALL–BMA). High fire threat postprocessing with

temperature benefits from the combined SBU and

SREF ensemble, while results are more mixed with

high ozone days.

The presence of conditional model biases on days

important to human health and safety underscores the

importance of similar day postprocessing. Although

complex event-based postprocessing has been de-

veloped (Hamill and Whitaker 2006; Mass et al. 2008;

Delle Monache et al. 2011), methods designed to cap-

ture high fire threat or ozone days may be more bene-

ficial than selecting days of similar temperature and time

of year. It is important to be able to predict high fire

threat and ozone days operationally and understand

why model biases vary temporally.

Fortunately, atmospheric models when coupled with

air quality models (AQMs) show promising skill for pre-

dicting ozone, especially after bias correction (McKeen

et al. 2005; Wilczak et al. 2006; Delle Monache et al.

2006; Delle Monache et al. 2008; Kang et al. 2008; Kang

et al. 2010). For instance, Kang et al. (2010) shows

a category hit rate greater than 90% for bias-corrected

ozone exceeding 59 ppb (the high ozone day threshold

in this study) over the United States. Furthermore, prob-

abilistic ozone concentration can be inferred through en-

semble modeling of AQMs (McKeen et al. 2005; Delle

Monache et al. 2006; Wilczak et al. 2006; Delle Monache

el al. 2008).

Unfortunately, little research has been done with

the predictability of fire weather parameters over the

northeast United States. However, Mölders (2010) has

shown that WRF can be used to create a reasonably

well-forecast National Fire Danger Rating System

(NFDRS) over interior Alaska. Therefore, it might be

FIG. 17. BSSs for warm-season 2-m temperature by threshold for

(a) high fire threat days and (b) high ozone days. B10–BMA (black)

and R10–BMA (gray) are referenced against R10 with sequential

bias correction. The thin black horizontal line denotes zero BSS.
FIG. 18. BSSs for warm-season 2-m temperature by threshold for

(a) high fire threat days and (b) high ozone days. B5–SBU–BMA

(black) run with BMA and B5–SREF–BMA run (gray) with BMA

are referenced against B5–ALL–BMA. The thin black horizontal

line denotes zero BSS.
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feasible to create an operational high fire threat bias-

correction method that ‘‘turns on’’ when high fire

threat conditions (i.e., defined by widespread low hu-

midity and strong winds) are predicted within the next

48 h. This threshold would have to be adjusted based

on the original model biases.

Since high fire threat days are generally dry, they

provide a good test case to explore potential sources of

structural model error in the parameterized model

physics. A next step would be to examine the regimes

associatedwith high fire threat days and relate these flow

patterns to the model biases. Although this would not

isolate the bias source in the model physics, it can pin-

point a difficult to forecast regime. This will be a topic of

future work.

Acknowledgments. This work was supported by a re-

search joint venture agreement between Stony Brook

University and the U.S. Forest Service (08-JV-11242306-

093) and the New York State Energy Research and De-

velopment Authority (Agreement 10599). We appreciate

Christian Hogrefe’s suggestions to improve this manu-

script, PrakashDraiswamy for a list of high ozone days over

the northeast United States, Jasper Vrugt for providing his

BMAcode, JunDu for his help with the SREF system, and

Larry Bradshaw for his help with the WFAS data.

REFERENCES

Bakhshaii, A., and R. Stull, 2009: Deterministic ensemble forecasts

using gene-expression programming. Wea. Forecasting, 24,

1431–1451.

Burgan, R. E., R. W. Klaver, and J. M. Klaver, 1998: Fuel models

and fire potential from satellite and surface observations. Int.

J. Wildland Fire, 8, 159–170.

Candille, G., 2009: The multiensemble approach: The NAEFS

example. Mon. Wea. Rev., 137, 1655–1665.

Carrera, M. L., J. R. Gyakum, and C. A. Lin, 2009: Observational

study of wind channeling within the St. Lawrence River Val-

ley. J. Appl. Meteor. Climatol., 48, 2341–2361.
Cartwright, T. J., and T. N. Krishnamurti, 2007: Warm season

mesoscale superensemble precipitation forecasts in the

southeastern United States. Wea. Forecasting, 22, 873–886.

Charney, J. J., and D. Keyser, 2010: Mesoscale model simulation of

the meteorological conditions during the 2 June 2002 Double

Trouble State Park wildfire. Int. J. Wildland Fire, 19, 427–448.

Colle, B. A., J. B. Olson, and J. S. Tongue, 2003: Multiseason

verification of the MM5. Part I: Comparison with the Eta

Model over the central and eastern United States and impact

of MM5 resolution. Wea. Forecasting, 18, 431–457.

Deeming, J. E., J.W. Lancaster, M.A. Fosberg, R.W. Furman, and

M. J. Schroeder, 1972: The National Fire-Danger Rating

System. Rocky Mountain Forest and Range Experiment Sta-

tion Research Paper RM-84, USDA Forest Service, 165 pp.

Delle Monache, L., T. Nipen, X. Deng, Y. Zhou, and R. B. Stull,

2006: Ozone ensemble forecasts: 2. A Kalman filter predictor

bias-correction. J. Geophys. Res., 111, D05308, doi:10.1029/

2005JD006311.

——, and Coauthors, 2008: A Kalman-filter bias correction of

ozone deterministic, ensemble-averaged, and probabilistic

forecasts. Tellus, 60B, 238–249.

——, T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter

and analog schemes to postprocess numerical weather pre-

dictions. Mon. Wea. Rev., 139, 3554–3570.
Du, J., J. McQueen, G. DiMego, Z. Toth, D. Jovic, B. Zhou, and

H.-Y. Chuang, 2006: New dimension of NCEP Short-Range

Ensemble Forecasting (SREF) system: Inclusion of WRF

members. Preprints, Expert Team Meeting on Ensemble Pre-

diction System, Exeter, United Kingdom, WMO, 5 pp.

Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale,

short-range ensemble forecasting.Wea. Forecasting, 20, 328–350.

——,M. S. Allen, andM. C. Sittel, 2012: Estimation of ambiguity in

ensemble forecasts. Wea. Forecasting, 27, 50–69.
EPA, 1999: Air quality index reporting. 40 CFR Part 58/RIN 2060-

AH92, 21 pp. [Available online at http://www.epa.gov/ttn/

oarpg/t1/fr_notices/airqual.pdf.]

Fisher, R. A., 1922: On the dominance ratio. Proc. Roy. Soc. Ed-

inburgh, 42, 321–341.
Fraley, C., A. E. Raftery, and T. Gneiting, 2010: Calibrating mul-

timodel forecast ensembles with exchangeable and missing

members using Bayesian model averaging. Mon. Wea. Rev.,

138, 190–202.

Gallus, W. A., Jr., and M. Segal, 2004: Does increased predicted

warm season rainfall indicate enhanced likelihood of rain

occurrence? Wea. Forecasting, 19, 1127–1135.

——, M. E. Baldwin, and K. L. Elmore, 2007: Evaluation of

probabilistic precipitation forecasts determined from Eta and

AVN forecasted amounts. Wea. Forecasting, 22, 207–215.
Gaza, R. S., 1998: Mesoscale meteorology and high ozone in the

northeast United States. J. Appl. Meteor., 37, 961–977.

Glahn, B., M. Peroutka, J. Wiedenfeld, J. Wagner, G. Zylstra,

B. Schuknecht, andB. Jackson, 2009:MOSuncertainty estimates

in an ensemble framework. Mon. Wea. Rev., 137, 246–268.
Glahn, H. R., and D. A. Lowry, 1972: The use of model output

statistics (MOS) in objective weather forecasting. J. Appl.

Meteor., 11, 1203–1211.

Gneiting, T., A. E. Raftery, A. H.Westveld, and T.Goldman, 2005:

Calibrated probabilistic forecasting using ensemble model

output statistics and minimum CRPS estimation. Mon. Wea.

Rev., 133, 1098–1118.

Gopalakrishnan, S. G., S. B. Roy, and R. Avissar, 2000: An eval-

uation of the scale at which topographical features affect the

convective boundary layer using large eddy simulations.

J. Atmos. Sci., 57, 334–351.

Green, J. S., and L. S. Kalkstein, 1996: Quantitative analysis of

summer air masses in the eastern United States and an ap-

plication to human mortality. Climate Res., 7, 43–53.

Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of

the fifth-generation Penn State/NCAR Mesoscale Model

(MM5). NCAR Tech. Note NCAR/TN-398 1 STR, 128 pp.

Greybush, S. J., S. E. Haupt, and G. S. Young, 2008: The regime

dependence of optimally weighted ensemble model consensus

forecasts of surface temperature. Wea. Forecasting, 23, 1146–

1161.

Hamill, T. M., 2007: Comments on ‘‘Calibrated surface temperature

forecasts from the Canadian ensemble prediction system using

Bayesian model averaging. Mon. Wea. Rev., 135, 4226–4230.

——, and S. J. Colucci, 1997: Verification of Eta–RSM short-range

ensemble forecasts. Mon. Wea. Rev., 125, 1312–1327.

——, and ——, 1998: Evaluation of Eta–RSM ensemble probabi-

listic precipitation forecasts. Mon. Wea. Rev., 126, 711–724.

DECEMBER 2012 ER I CK SON ET AL . 1467



——, and J. S. Whitaker, 2006: Probabilistic quantitative pre-

cipitation forecasts based on reforecast analogs: Theory and

application. Mon. Wea. Rev., 134, 3209–3229.

——, ——, and S. L. Mullen, 2006: Reforecasts: An important

dataset for improving weather predictions. Bull. Amer. Me-

teor. Soc., 87, 33–46.

Hegarty, J., H. Mao, and R. Talbot, 2007: Synoptic controls on

summertime surface ozone in the northeastern United States.

J. Geophys. Res., 112, D14306, doi:10.1029/2006JD008170.

Hoadley, J. L., K. Westrick, S. A. Ferguson, S. L. Goodrick,

L. Bradshaw, and P. Werth, 2004: The effect of model reso-

lution in predicting meteorological parameters used in fire

danger rating. J. Appl. Meteor., 43, 1333–1347.

——, M. L. Rorig, L. Bradshaw, S. A. Ferguson, K. J. Westrick,

S. L. Goodrick, and P.Werth, 2006: Evaluation ofMM5model

resolution when applied to prediction of national fire-danger

rating indexes. Int. J. Wildland Fire, 15, 147–154.

Hu, X.M., J.W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation

of three planetary boundary layer schemes in theWRFmodel.

J. Appl. Meteor. Climatol., 49, 1831–1844.

Jones, M., B. A. Colle, and J. Tongue, 2007: Evaluation of a short-

range ensemble forecast system over the northeast United

States. Wea. Forecasting, 22, 36–55.
Kang, D., R. Mathur, S. T. Rao, and S. Yu, 2008: Bias adjust-

ment techniques for improving ozone air quality forecasts.

J. Geophys. Res., 113, D23308, doi:10.1029/2008JD010151.

——, ——, and ——, 2010: Real-time bias-adjusted O3 and PM2.5

air quality index forecasts and their performance evaluations over

the continental United States. Atmos. Environ., 44, 2203–2212.

Kaplan, M. L., C. Huang, Y. L. Lin, and J. J. Charney, 2008: The

development of extremely dry surface air due to vertical ex-

changes under the exit region of a jet streak. Meteor. Atmos.

Phys., 102, 63–85.

Kinney, P. L., and H. Ozkaynak, 1991: Associations of daily mor-

tality and air pollution in Los Angeles County. Environ. Res.,

54, 99–120.

Kleiber, W., A. E. Raftery, J. Baars, T. Gneiting, C. F. Mass, and

E. Grimit, 2011: Locally calibrated probabilistic temperature

forecasting using geostatistical model averaging and local

Bayesian model averaging. Mon. Wea. Rev., 139, 2630–2649.

Krzysztofowicz, R., and W. B. Evans, 2008: Probabilistic forecasts

from the National Digital Forecast Database. Wea. Fore-

casting, 23, 270–289.

Libonati, R., I. Trigo, and C. C. DaCamara, 2008: Correction of

2 m-temperature forecasts using Kalman filtering technique.

Atmos. Res., 87, 183–197.

Lombardo, K. A., and B. A. Colle, 2010: The spatial and temporal

distribution of organized convective structures over the

northeast United States and their ambient conditions. Mon.

Wea. Rev., 138, 4456–4474.

Mao, Q., R. T. McNider, S. F. Mueller, and H. M. Juang, 1999: An

optimal model output calibration algorithm suitable for objec-

tive temperature forecasting. Wea. Forecasting, 14, 190–202.

Marrocu, M., and P. A. Chessa, 2008: A multimodel/multianalysis

limited-area ensemble: Calibration issues. Meteor. Appl., 15,

171–179.

Mass, C. F., J. Baars, G. Wedam, E. Grimit, and R. Steed, 2008:

Removal of systematic model bias on a model grid. Wea.

Forecasting, 23, 438–459.

McKeen, S., and Coauthors, 2005: Assessment of an ensemble of

seven real-time ozone forecasts over eastern North America

during the summer of 2004. J. Geophys. Res., 110, D21307,

doi:10.1029/2005JD005858.

Miller, S. T. K., and B. D. Keim, 2003: Synoptic-scale controls on

the sea breeze of the central New England coast. Wea. Fore-

casting, 18, 236–248.

Mills, G. A., 2005a: A re-examination of the synoptic and meso-

scale meteorology of Ash Wednesday 1983. Aust. Meteor.

Mag., 54, 35–55.

——, 2005b: On the subsynoptic-scale meteorology of two extreme

fire weather days during the eastern Australian fires of Janu-

ary 2003. Aust. Meteor. Mag., 54, 265–290.

——, 2008a: Abrupt surface drying and fire weather. Part 1:

Overview and case study of the South Australian fires of 11

January 2005. Aust. Meteor. Mag., 57, 299–309.
——, 2008b: Abrupt surface drying and fire weather. Part 2:

A preliminary synoptic climatology in the forested areas of

southern Australia. Aust. Meteor. Mag., 57, 311–328.
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