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Measuring rates of spread during biological invasions is important for predicting where and when invading organisms will
spread in the future as well as for quantifying the influence of environmental conditions on invasion speed. While several
methods have been proposed in the literature to measure spread rates, a comprehensive comparison of their accuracy
when applied to empirical data would be problematic because true rates of spread are never known. This study compares
the performances of several spread rate measurement methods using a set of simulated invasions with known theoretical
spread rates over a hypothetical region where a set of sampling points are distributed. We vary the density and
distribution (aggregative, random, and regular) of the sampling points as well as the shape of the invaded area and then
compare how different spread rate measurement methods accommodate these varying conditions. We find that the
method of regressing distance to the point of origin of the invasion as a function of time of first detection provides the
most reliable method over adverse conditions (low sampling density, aggregated distribution of sampling points, irregular
invaded area). The boundary displacement method appears to be a useful complementary method when sampling density
is sufficiently high, as it provides an instantaneous measure of spread rate, and does not require long time series of data.

Understanding the mechanisms operating during the intro-
duction, establishment and spread of invading organisms is
critical to prevent their sometimes dramatic consequences
on agricultural, forest and urban ecosystems (Sakai et al.
2001, Liebhold and Tobin 2008). In many cases, however,
biological invasions are detected at a time when eradication
is no longer possible and efforts are directed toward reducing
and/or delaying the invader’s spread and ultimate impact
(Sharov et al. 2002a, b, Tobin et al. 2004). These later
efforts rely on a good understanding of the invading species’
population biology, and in particular on the factors
influencing spread into new environments (Sharov et al.
1999, Gilbert et al. 2004, Tobin et al. 2007a). An accurate
measure of the spread rate is therefore important for
evaluating the effect of different conditions and manage-
ment activities on the rate of invasion, as well as providing a
method for predicting where and when the invader will
spread in the future.

Several methods have been used to measure invasion
spread rates (Liebhold et al. 1992, Shigesada and Kawasaki
1997), but these methods have not been comprehensively
compared for the accuracy and variability of their estimates.
Recent studies in the dispersal ecology literature have
highlighted that inference of parameter values may be
influenced by the selection of the estimation method

(Edwards et al. 2007). One particular problem of compar-
ing methods for measuring spread rates is that even with
abundant empirical data, the true spread rate is never
known. For example, Tobin et al. (2007b) compared two
methods to measure the rate of spread of the gypsy moth
Lymantria dispar, and found no substantial difference in
estimates, but since they had no knowledge of the true rate
of spread, they are unable to assess whether both methods
were similarly accurate, or similarly biased. Likewise, Evans
and Gregoire (2007) compared three regression techniques
to derive the rate of spread from empirical data on the
spread of hemlock woolly adelgid Adelges tsugae but again
the true rate of spread was unknown.

The approach taken in this study was to compare the
performances of several spread rate measurement methods
using a set of simulated invasion data sets with known
theoretical spread rates. In these data sets, spread was
simulated using Fisher’s (1937) model of invasion (diffu-
sion and population growth limited by a carrying capacity),
with the incorporation of local, temporal and spatial
stochasticity (Shigesada and Kawasaki 1997). We simulated
invasion into a hypothetical geographical region, and
simulated sampling the geographical extent of populations
with various densities and distributions of sample locations
(e.g. representing county-level observations, or insect traps),

Ecography 33: 809�817, 2010

doi: 10.1111/j.1600-0587.2009.06018.x

# 2010 The Authors. Journal compilation # 2010 Ecography

Subject Editor: Pedro Peres-Neto. Accepted 30 November 2009

809



and various spatial configurations of the invaded region.
We compared how measures of the spread rate and their
variability were affected by the choice of spread rate
measurement method.

Methods and materials

Invasion models

1) Fisher stochastic model
We employed Fisher’s (1937) invasion model to simulate
spread with a known rate. Fisher’s model differs from the
more widely-known reaction-diffusion model of Skellam
(1951), in that it accounts for a limited carrying capacity
whereas Skellam’s model assumes unlimited exponential
growth. The deterministic formulation of the model is
divided into part, 1) population growth following Ricker’s
(1954) formulation of a classic discrete logistic population
model (eq. 1), 2) diffusion according to Fick (1855) (eq. 2).
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where Nt and Nt�1 are populations at time t and t�1, r is
the growth rate, Ki is the carrying capacity in point i, di,j is
the distance between point i and j, and D is the diffusion
coefficient. The model was discrete in time and space, with
space as a spatial grid of 1000 by 1000 cells. For ease of
interpretation, we set each cell as being 1 km2. One of the
computer processing limitations in implementing Fishers’
model in a discrete space is the need to build the
redistribution matrix used to estimate the population
spreading from each cell to every other cell in the spatial
grid (eq. 2). Performing a simulation over a 1000�1000
cell spatial grid would result in the need to build and store a
106�106 redistribution matrix. Even coded as one byte per
cell, the redistribution matrix would have a size of one
terabyte, which is far beyond the internal memory capacity
of a personal computer such as employed in this study.
However, there is a vast amount of wasted memory in the
classic redistribution matrix because the majority of
individuals dispersing from a given cell spread to the closest
cells (depending on the diffusion coefficient), i.e. not to
others more distant ones, and a large amount of cells
are actually empty. So, we proposed a moving-window
approach to circumvent the problem, in which the B0.1%
of individuals spreading over distance larger than the 99.9%
percentile (according to the Gaussian dispersal kernel, Kot
et al. 1996) was ignored.

We added three types of stochasticity to the model:
temporal stochasticity (to account for adverse/favorable
conditions affecting the entire population in a given time
step), spatially correlated stochasticity (to account for
spatially correlated temporal variation in habitat suitability)
(Hudson and Cattadori 1999), and uncorrelated random
spatial noise (to account for local variation in population
growth as well as measurement error). These different types
of stochasticity were included in the model in eq. 3 and
eq. 4
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where ot is temporal stochasticity (same value for all cells of
the matrix, but different values for each time step) following
a normal distribution (0,st), ol is the local stochasticity
�(0,sl) (different value in each cell and each time step),
and os is the spatially correlated stochasticity�(0,ss) (same
values for each time step, different values in each cell, but
closer cells have closer values than those distant apart). The
default values for standard deviations corresponding to
temporal, local and spatial stochasticity were respectively
0.20, 0.20 and 0.4. Spatially correlated stochasticity was
generated using unconditional Gaussian simulation that
generates values distributed over space that follow a random
normal frequency distribution with a specified spatial
covariance matrix. A spherical model was used to model
the spatial covariance structure of unconditional Gaussian
simulation of autocorrelated noise, with a range of 100 km,
a sill equal to 1, and no nugget effect (Supplementary
material Fig. S1). More details on unconditional Gaussian
simulation can be found in Pebesma (2004).

Invading populations were initialized at the centre cell of
the grid with a population level of 100 individuals (a
population level of zero was assigned to all other grid cells).
We assumed a growth rate r�1.0986, a carrying capacity
Ki�1000 for all locations, and a diffusion coefficient D�
10. The invasion model was iterated over 70 time steps.
Default parameter values were chosen such that invading
populations did not spread beyond the 1000�1000 km
domain, exhibited noticeable irregularity in the spatial area
of invasion, and exhibited population fluctuations around
the carrying capacity yet did not lead to frequent local
extinctions (Fig. 1). Supplementary material Fig. S2
illustrates the spatio-temporal distribution of simulated
population in one realization of the simulation.

2) Circular deterministic model
One problem arising with the Fisher stochastic model was
that the spread rate of simulations was known, but only
approximately. The radial rate of spread produced by the

Fisher model is only approximated by 2
ffiffiffiffiffiffi
rD

p
(Shigesada

and Kawasaki 1997). Consequently, the ‘‘expected’’ spread
rate arising from our model had to be estimated for each
simulation by regressing the square root of invaded area
against time based on the simulations in the entire 1000�
1000 cells matrix. Potentially, this could confuse the
interpretation of results because of ambiguity about the
baseline of expected spread rate to which each simulated
spread rate measurement method should be compared to.
We addressed this problem by also utilizing a separate
spread rate model in which spread was idealized simply as
circles of increasing radius over time. Population levels of
cells inside the circle were set to the carrying capacity
Ki�1000 and population levels in cells outside the circle
were equal to 0. At each time step, the circle radius was

incremented by the theoretical spread rate 2
ffiffiffiffiffiffi
rD

p
�6.629.

Simulations using concentric circles obviously did not
incorporate any stochasticity. All spread rate measurement
methods were applied to sample values extracted from both
invasion models.
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Idealized sampling conditions

Ideally, surveys to monitor the spread of an invading species
should cover the entire region, with spaced sampling
locations according to a particular design, and the sampling
density should be high enough to adequately estimate the
position of the invasion boundary. However, in practical
situations, surveillance data are often clustered (e.g. more
observations are located in highly populated areas), or
sparsely distributed. Empirical data may also cover an area
of irregular shape, spatially constrained by areas that can not
be invaded (e.g. sea, mountain). We attempted to repro-
duce these sampling conditions so that comparison between
spread rate measurement methods included comparisons of
how different methods may accommodate adverse sampling
conditions.

Four different shapes of the sampled area were tested. The
first configuration that was tested (Fig. 2A) was the idealized
situation of an invasion starting from the centre of an
unconstrained study area, which is rarely encountered with
empirical data. The second configuration simulated the
establishment of a surveillance sampling network at the edge
of an invaded area (Fig. 2B). This corresponded to a more
realistic situation encountered in several studies. The third
configuration simulated a situation in which the invasion
spreads through a corridor (Fig. 2C), or a situation where
the surveillance network is distributed along a transect. The
fourth configuration corresponded to a sampling network
with a very irregular shape (Fig. 2D), either constrained by
the geographical distribution of suitable habitat, or by the

distribution of sampling points in the hypothetical survey
program. All survey areas had an equivalent surface area of
100 000 km2. In addition, we evaluated the impact of
different distributions (regular, aggregated and random).

Species distribution atlases are typically organized in the
form of number of observation records per square, and
regularly spaced data are therefore frequent. Aggregated and
randomly distributed sampling is also often found in
empirical data, either resulting from some design, or caused
by field data collection constrains, or clumped distribution
of observers. The random distribution of sampling points
was generated by randomply selecting n points from a
1000�1000 grid. For the aggregated sampling, we
generated a grid of 1000 by 1000 points assigned spatially
correlated identification values using unconditional Gaus-
sian simulation (range�20 km, sill�0.5, nugget�0.5)
and then selected the n points with the highest values.

Finally, we also varied the densities of sampling points to
test the resistance of different method to reductions of the
sampling effort (low, medium and high and high densities
were tested, with respectively 200, 1000 and 5000 points/
100 000 km2, Supplementary material Fig. S3).

Due to practical computational constrains, it was not
possible to test spread rate measurements based on sampling
using all combinations of, spatial configuration (4 different
configurations), point distribution (regular, random and
aggregated) and density (3 different densities). Furthermore,
some combinations were considered less important. For
example, reducing the sampling density may have a sig-
nificant impact on the accuracy of spread measurement,

Figure 1. Change in total population over time (top left), change in population at point (�100, �100) from the centre (top right),
distribution obtained by the stochastic (bottom left) and circular (bottom right) invasion models at the last time step. All figures are
derived from one realization of the simulated invasion over 70 time steps in a 1000�1000 cells domain, with default parameters.
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which is interesting to establish and quantify, but this
relationship is not likely to be affected by different spatial
configurations. Therefore, we focused on a series of compar-
ison where other factors were kept constant, and for each
evaluation, we compared the results produced by the three
spread rate measurement methods, as detailed in Table 1. For
each set of parameters and stochasticity level (e.g. Fig. 1)
invasions were simulated 25 times, and for each simulated
invasion chronology, the distribution of sampling points was
simulated 25 times. A total of 625 spread rate measurements
were thus estimated per spread rate measurement method,
and then used to quantify the accuracy and variability of their
outcomes.

Spread rate measurement methods

Distance Regression. This method is perhaps the simplest to
implement as it does not require determining an invaded
area at different time steps, but rather, is based on the time
(e.g. year) a species was first detected in a series of sampling
points (Liebhold et al. 1992). The distance of these
sampling points to the assumed point of origin of the
invasion (generally the first point where a species was
found) is then regressed as a function of the time of first
detection, and the slope of the regression line provides the
estimated rate of spread. This method is particularly

suitable for observation data collected, for example, in a
series of municipalities. It is generally assumed that the
detection threshold is constant, i.e. that on average, the time
when a species is first detected corresponds to the time
when populations have exceeded some population thresh-
old, reflecting local establishment. In our simulations, we
extracted the population level in all sampling points at each
time step, selected those that were newly infested (points
where the population level for the first time exceeded a
population threshold of 250), and computed their distance
to the point of origin of the invasion in the study area. The
data from all time steps were then pooled together in a
single scatterplot of time vs distance, and the slope was
estimated by linear regression (Fig. 3).

Square Root Area Regression. This method is generally
used to derive the spread rate from historical maps of
invaded areas in different time steps (Skellam 1951). The
square root of the invaded area is plotted and regressed as a
function of time to estimate the rate (regression slope) of
spread. However, in many cases, surveillance data are point-
based (trapping sites, observation point, etc.) which must be
used to estimate invaded areas in each time step. We
accomplished the estimation of infested area using two
methods. In the first method, the infested area was estimated
from the number of sample points where the local
population level exceeded a threshold of 250 multiplied by
the overall number of km2 in the studied area/sampling

Figure 2. Spatial configuration of the sampled area in relation to the simulated invasion (represented here by the concentric circles):
square � center invasion (A), square � lateral invasion (B), corridor invaded by one of its side (C), irregular shape invaded by its side (D).
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points. In the second method, the infested area was
estimated via spatial interpolation from the sample point
locations, a method employed frequently in empirical
studies. Several methods are available to interpolate point-
based observations (e.g. moving-window averaging, inverse-
distance weighted, Kriging). However, in order to facilitate
the automated interpolation, we chose inverse distance
weighted method (IDW) so that there was no need to
estimate and model the spatial autocorrelation structure
for each simulation. In our simulations, we extracted the
population value at each survey point in each time step,
interpolated these values over all cells using IDW, defined
invaded area as all cells where the interpolated population
was �250, and calculated the area invaded at each time
step. For both versions of this method, the square root of the
invaded area was then plotted and regressed as a function of
time to obtain the radial rate of spread (Fig. 3).

Boundary displacement. This method estimates the
average displacement between pairs of consecutive invasion
boundaries along axes radiating from the invasion origin, or
perpendicular to the main invasion front (Sharov et al.
1997). The method also requires spatial delimitation of the
invaded area, with a boundary separating the invaded vs.
non-invaded area. In simulations, infested areas were
estimated via interpolation of survey point data at each
time step as described for the previous method. Then radial
axes were superimposed on the boundaries corresponding to
two consecutive distribution areas, and the distance between
the intersections of each axis and each boundary was

measured over all axes. The values from all pairs of
consecutive boundaries along the study period were
averaged to estimate the overall radial rate of spread (Fig.
4). We note that both the distance regression and boundary
displacement methods require knowledge of the point of
origin of the invasion.

Results

Under the most simple conditions (randomly located survey
points, highest sample density, regular/circular invasion),
all methods performed equally well (Fig. 4 bottom, 5000
survey points). Measures derived from the three methods
were nearly identical and exhibited very little variation.
However, sampling from simulations conducted using the
stochastic model yielded slightly different results among the
different sampling methods. The two methods utilizing
interpolation (square root area regression no. 2 and bound-
ary displacement) tended to overestimate the spread rate, but
the square root area regression no. 1 method tended to
underestimate it. Considering all four methods, only the
distance regression method performed adequately at provid-
ing an unbiased measure of the spread rate from the
stochastic model. However, all methods provide measures
within 5% of the expected spread rate.

As would be expected, decreasing sampling density
resulted in higher variability in spread rate estimates, but

Table 1. Comparison of spread rate measurement conditions, and factors kept constant in the comparison of the performance of the different
methods.

Varying conditions Other conditions kept constant

Sampling points distribution (aggregated, random, regular) Medium sampling density, centered square configuration.
Sampling density (low, medium, high) Random sampling distribution, centered square configuration.
Invasion configuration (irregular shape, long rectangle,

square � border, square � center)
Random sampling distribution, medium sampling density.

Figure 3. Steps involved in estimating the rate of spread according to the four methods tested in the study.
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all methods were not affected equally by sample size
(Fig. 4). The distance regression method appears to the least
adversely affected by small sample size, while the square root
area regression no. 1 and boundary displacement methods
were the most sensitive. For data generated using the circular
spread model (the only model for which the ‘‘true’’ spread
rate was precisely known), the boundary displacement
method performed particularly poorly at low sample sizes.

The distance regression method was also the least
sensitive to the distribution of survey points (Fig. 5). The
mean estimate from the distance regression method was
always very close to the expected spread rate under
aggregative, regular and random distributions of survey
points and for data generated from both the stochastic and
the circular models. However, in the case of the circular
model, all four methods produced little bias in estimates. In
the case of the stochastic model, sampling via regular and
random distributions produced similar results.

Aggregative distribution of sampling points resulted in a
particularly high level of variability of estimates using the
square root area no. 1 method applied to data from both the
circular and stochastic models.

Irregularity in the shape of the invaded area had a large
negative effect on the accuracy of rate estimates from all
methods except distance regression and boundary displace-
ment (Fig. 6). In the simplest configuration of spread from
the center, all methods performed equally well. But when
spread was measured over more irregular areas, both of the
square root area methods provided gross under-estimates of

the true rate of spread. The boundary displacement method
was least affected by irregularities in the shape of the area,
though the distance regression method was nearly as good
in many cases. One should note that this may result from an
incorrect assignment of the point of origin that is used by
the distance regression method. In the algorithm, the point
of origin is the first point in the study area where
the population was higher than the threshold. Using the
stochastic invasion model, there may have been considerable
error in locating this point of origin, hence affecting the
regression method, while in the deterministic circular
model, this would not be a problem.

Discussion

Predictions of future spread are often in high demand in
order to make management decisions in anticipation of a
species’ arrival. For example silvicultural decisions for
managing forest stands are often predicated on the number
of years remaining before a specific forest exotic insect or
disease is expected to arrive (Waring and O’Hara 2005).
Predictions of future spread may be based either on
simulations using a mechanistic model or extrapolations
from past patterns of spread (Hastings et al. 2005, Liebhold
and Tobin 2008). While process-based models may be the
only choice for some organisms, in many systems, there
may exist historical data from which a rate of spread can be
estimated and applied to predict future invasion.

Figure 4. Spread rate measured for varying sampling point densities, based on the stochastic (top) and circular (bottom) spread models.
These were obtained with a random distribution of points using the square � center invasion configuration. The hatched area corresponds
to the distribution of spread rate estimates calculated from the exhaustive (all cells) data set.
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Figure 5. Spread rate measured from varying sampling point distributions, based on the stochastic (top) and circular (bottom) spread
models. These were obtained with an intermediate density of sampling points (1000) using the square � center invasion configuration.

Figure 6. Spread rates measured for varying invasion configurations, based on the stochastic (top) and circular (bottom) spread models.
These were obtained with an intermediate density of sampling points (1000) distributed randomly.

815



There are several issues that may complicate estimation
of spread rates. First, there may be many situations where
spread rates are not constant through time. For example,
Weber (1998) found that in about half of plant invasions
analyzed, the rate of spread increased through time, while in
the other half spread was approximately constant. Simple
reaction-diffusion models are known to asymptotically
produce constant radial rates of spread, while more complex
mechanisms are known to sometimes produce nonstation-
ary rates of spread (Shigesada and Kawasaki 1997, Hastings
et al. 2005). Despite the existence of more complex patterns
and mechanisms of spread, the simple reaction-diffusion
model provides a remarkably realistic representation of
spread in many invading species (Andow et al. 1990,
Shigesada and Kawasaki 1997). In addition, one may partly
control for temporal variation in spread rates by constrain-
ing the measurement of spread rates to a limited number
of years. Another complicating factor in the spread of
invading species may be the presence of spatial anisotropy.
As a result of landscape heterogeneity that affects either
population growth or dispersal, the spread of some species
may be unequal among different directions from the point
of origin of the invasion (Andow et al. 1993, Evans and
Gregoire 2007, Morin et al. 2009).

As described here, there are several approaches to
estimating spread rates and there can be several complications
in this process. As is the case in many applied ecological
problems, the ability to make precise estimates may be
limited both by the quantity and quality of data. In virtually
all estimation procedures, more data yields more precise
estimates, and this is certainly the case with estimation of
spread rates from historical survey data (Fig. 4). Among the
four methods evaluated here, the distance regression method
was preferable when sample sizes were low; at the lowest
sample size tested, it provided the most accurate estimates.
The two methods that utilized spatial interpolation, the
square root area regression no. 2 method and the boundary
displacement method, both were adversely affected by the
availability of a small sample size. The strong negative effect
of small sample sizes on the accuracy of spatial interpolation
is well known (Isaacs and Srivastava 1989) and it is therefore
understandable that these methods would not perform well
with small sample sizes.

Overall, the distance regression method appeared to
provide the most reliable estimates of spread rate. As
described above, it provided the most accurate and precise
measure even with low sample sizes, both for the circular
model and the stochastic model. Similarly, it’s accuracy was
not adversely affected by deviation from a regular or random
distribution of sampling points. Even when the sampling was
constrained to an irregular area, the distance regression
method performed well, though the boundary displacement
method performed as well, or in some cases better. The two
methods based on area both performed poorly when the
sampling configuration deviated from simple spread from the
center. As previously noted by Shigesada and Kawasaki
(1997), any irregularity in the habitat (e.g. the intrusion of
a large lake or ocean) means that the change in the square root
area will not be proportional to the increase in the radius of
the same area. While controlling for those changes may be
relatively easy if the invaded area has a non-circular but

regular shape (e.g. a cone), it may become difficult to
compensate for more complex shapes.

A further advantage of both the distance regression and
boundary displacement methods is that they can be more
easily adjusted to test for spatial anisotropies by measuring
spread rate using different spatial subsets with different
orientations to the origin. In conditions where sampling
density is sufficient, the boundary displacement method has
an additional advantage of allowing estimation of the
instantaneous spread rate in different regions of the newly
invaded area. As pointed out by Tobin et al. (2007b), the
method is desirable when information on the temporal and
spatial variation in spread rate is needed. For example, Tobin
et al. (2007a) used the boundary displacement method to
analyze spatial and temporal variation in the radial rate of
spread of the gypsy moth in N. America and to relate this to
spatiotemporal variations in Allee effects. Another example is
the study Sharov et al. (1999) where the boundary displace-
ment method was used to examine the correlation of the
instantaneous spread rate of gypsy moth in N. America with
climate and other landscape characteristics of the newly
invaded area. In addition, the boundary displacement
method does not require a long time-series of observation,
and could be used to implement a quick measure of spread
rate for an invasion that is in the first stages of invading a
new region. For example, Cameraria ohridella first invaded
Germany in the years 1996�1999 before entering France
from the east (Gilbert et al. 2004, 2005). France needed to
quickly measure the rate of spread of the species in its
landscape and use these estimates to design a dense network
of observations and pheromone traps along the expanding
population front of C. imicola in order to monitor spread
over three consecutive years, (Augustin et al. 2004).

Evans and Gregoire (2007) argued that the application
of ordinary least squares regression in the distance regres-
sion method leads to an under-estimation of the true spread
rate. Their argument was that because it is impossible to
have negative distances, the scatter of points is constricted
and they suggested applying Tobit regression in order to
correct for this problem. Evans and Gregoire (2007) did not
compare the performance of ordinary least squares regres-
sion with Tobit regression to confirm their theory.
However, our empirical finding here that ordinary least
squares regression provided an unbiased estimate of the true
spread rate does not support their conclusion.

Thus, we may conclude that the distance regression
method is generally the most robust and reliable method for
estimating spread rates, especially when sample sizes are
constrained, and the invaded area has an irregular shape.
Nevertheless, there still may be some situations in which the
boundary displacement method may be desirable, as long as
large sample sizes are available. One such situation is when
the origin of the invasion is unknown. In contrast to the
boundary displacement method, the distance regression
method requires the identification of the origin of the
invasion. An exploratory analysis carried out using the
default configuration (square � center invasion configura-
tion, medium density, random sampling) and where error
was introduced in the location of the invasion origin
demonstrates a strong dependency of the distance regression
method to a correct spatial allocation of the origin (Fig. 7).
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Further work would be required to explore in more details
the causes underlying the bias in the distance regression
method estimates by examining the dependency on the
selection of the correct starting point in varying conditions.
Furthermore, the method by which we extract a sub-domain
from an invasion taking place over a larger domain implicitly
assumes that populations keep developing independently
outside the sub-domain. Whilst this may be realistic in some
circumstances (e.g. sampling was only in a sub-region), it
may not be in others (e.g. spread is constrained to the sub-
domain surrounded by non-suitable habitat) in which the
regression method may appear more suitable even in
conditions where the invaded area has an irregular shape.
Finally, we could also use the same framework to test
different adaptive sampling strategies aiming at optimizing
the cost-benefit of sampling (e.g. densities varying as a
function of distance to the invasion front).
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Figure 7. Spread rates measured using misallocated invasion origin.
These were obtained with an intermediate density of sampling
points (1000) distributed randomly using the square � center
invasion configuration. The invasion origin was misallocated by
simulating it’s distribution following a uniform distribution of x
and y coordinates.
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