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-NN) estimation and prediction technique is widely used to produce pixel-level
predictions and areal estimates of continuous forest variables such as area and volume, often by sub-
categories such as species. An advantage of k-NN is that the same parameters (e.g., k-value, distance metric,
weight vector for the feature space variables) can be used for all variables, whether continuous or categorical.
An obvious question is the degree to which accuracy can be improved if the k-NN estimation parameters are
tailored for specific variable groups such as volumes by tree species or categorical variables. We investigated
prediction of categorical forest attribute variables from satellite image spectral data using k-NN with
optimisation of the weight vector for the ancillary variables obtained using a genetic algorithm. We tested
several genetic algorithm fitness functions, all derived from well-known accuracy measures. For a Finnish
test site, the categorical forest attribute variables were site fertility and tree species dominance, and for an
Italian test site, the variables were forest type and conifer/broad-leaved dominance. The results for both test
sites were validated using independent data sets. Our results indicate that use of the genetic algorithm to
optimize the weight vector for prediction of a single forest attribute variable had a slight positive effect on
the prediction accuracies for other variables. Errors can be further decreased if the optimisation is done by
variable groups.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Current, accurate, and detailed assessments of forest resources are
crucial for forest management, international reporting, and sustain-
ability assessments. The national forest inventories (NFI) conducted in
Europe, North America, and elsewhere are regarded as important
sources of comprehensive information for these purposes. Because
complete, enumerative inventories are prohibitively expensive, NFIs
have traditionally sampled populations of interest and calculated
estimates of forest resources using probability-based estimators.
Satellite imagery has been demonstrated to be a particularly useful
source of ancillary data that can be used to decrease NFI sampling
intensities, increase the precision of the probability-based estimates,
and complement tabular estimates with maps depicting the spatial
po),
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distribution of forest resources (McRoberts, 2006; McRoberts et al.,
2002, 2005; Reese et al., 2003; Tomppo, 1991; Tomppo & Halme,
2004).

Forest inventory programs observe a combination of continuous
variables such as volume, basal area, and tree density and categorical
variables such as forest/non-forest, forest type, and site fertility.
Mapping applications typically entail constructing statistical models
of relationships between forest attribute variables and ancillary
variables including satellite image spectral variables, and then
predicting values for the attribute variables for image pixels. To
preserve consistency among predictions of diverse inventory vari-
ables, multivariate statistical modelling approaches are necessary.
Unfortunately, parametric multivariate statistical methods for con-
structing models generally assume that values of the forest attribute
variables follow Gaussian distributions, an assumption that is violated
for many inventory variables. Thus, multivariate, non-parametric,
nearest neighbour techniques have enjoyed increasing popularity for
forest inventory mapping and estimation applications (McRoberts
et al., 2007; Muinonen & Tokola, 1990; Tomppo, 1990).

For nearest neighbours techniques, the set of image pixels that
contain centres of inventory plots for which forest attribute variables
have been observed is designated the reference set; the set of image
pixels for which predictions of these variables are desired is
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designated the target set; and the space defined by the ancillary
variables is designated the feature space. Observations of the feature
space variables are available for all reference set and all target set
pixels. Feature space variables are often derived from satellite image
spectral data, although topographic, climatic, and soil variables are
also used. Predictions for forest attribute variables for target set pixels
are calculated as linear combinations of values for the reference set
pixels that are nearest or most similar in the feature space with
respect to a selected distance metric. A variety of distance metrics
have been used including Euclidean or weighted Euclidean distance
(Franco-Lopez et al., 2001; McRoberts et al., 2007; Reese et al., 2003;
Tokola et al., 1996; Tomppo, 1996; Tomppo & Halme, 2004),
Mahalanobis distance, and metrics based on canonical correlation
analysis (LeMay & Temesgen, 2005; Temesgen et al., 2003) and
canonical correspondence analysis (Ohmann & Gregory, 2002).

Nearest neighbours techniques have been used for a wide variety
of forest inventory applications including imputing values for missing
observations in inventory databases (LeMay & Temesgen, 2005;
Moeur & Stage,1995; Temesgen et al., 2003), mapping forest attributes
using the spectral values of satellite imagery (Franco-Lopez et al.,
2001; McRoberts et al., 2007), increasing the precision of probability-
based forest inventory estimates (Baffetta et al., 2007; McRoberts
et al., 2002; Tomppo, 1991, 1996), and model-based inference
(Magnussen et al., 2009-this issue; McRoberts et al., 2007). The
majority of studies using forest inventory data have focused on
predicting continuous variables: volume by species, age, height, basal
area, mean diameter in Finland (Tomppo, 2006; Tomppo & Halme,
2004); age, height, and volume in Sweden (Holmström & Fransson,
2003; Nilsson, 1997; Reese et al., 2003); volume, stocking, diameter,
height, and basal area in Ireland (McInerney et al., 2005); proportion
forest area, basal area, volume, and tree density in the USA (McRoberts
et al., 2007); area and volume by stand age, diameter, and tree species
dominance classes in China (Tomppo et al., 2001), volume and volume
by species in Germany (Diemer et al., 2000), volumes of log products
in New Zealand (Tomppo et al., 1999); and basal area, leaf area index,
and volume by species in Italy (Bertini et al., 2007; Chiavetta et al.,
2007; Maselli et al., 2005). Nearest neighbours techniques have been
used operationally by the Finnish NFI since 1990 (Katila & Tomppo,
2001; Tomppo, 1990). The Swedish NFI has been constructing
statistical and map products using nearest neighbours techniques on
a 5-year basis since 2001 and is currently developing an annual
product. Swedish government agencies such as the Swedish National
Forestry Board, County Administrative Boards, and the Environmental
Protection Agency use the products for small area estimation,
identifying valuable areas in forest reserves, and wildlife habitat
evaluation and modelling (Reese et al., 2003; Tomppo et al., 2008).

Although reports of predicting categorical forest inventory vari-
ables using nearest neighbours techniques are fewer, some have been
published in recent years: forest type and land cover in the USA
(Franco-Lopez et al., 2001; Haapanen et al., 2004), forest type in
Austria (Koukal et al., 2007), species groups in Norway (Gjertsen,
2005), and classes of site variables in Finland (Tomppo, 2006).

Use of nearest neighbours techniques has not been restricted to
forest inventory or even natural resources applications. However,
applications in other disciplines frequently emphasize prediction of
categorical variables and combine nearest neighbour techniques with
genetic algorithms (GA) for selecting weights for the feature space
variables (e.g., He et al., 2000; Romualdi et al., 2003). GAs mimic
Darwinian natural selection and evolution (Goldberg, 1989; Holland,
1975). They beginwith a large, initial population of randomly generated
sets of weights. In each generation, individuals are evaluated with
respect to their fitness, and those with greater fitness are more likely to
be selected for the next generation. In subsequent generations,
individuals are combined and modified to produce offspring which are
then evaluated for fitness. Typically, the individuals in the population
converge to a near-optimal set of weights over multiple generations.
Applications of combinations of nearest neighbours techniques and GAs
range over a wide diversity of disciplines: e.g., prediction of classes of
water molecules with respect to protein–water interactions (Raymer
et al., 1997), prediction of classes of soil samples with respect to
agricultural growth environments (Punch et al., 1993), prediction of
classes of childrenwith developmental delay into individual syndromes
based on facial characteristics (Boehringer et al., 2006), and recognition
of handwritten digit strings (Oliveira et al., 2003).

Tomppo and Halme (2004) used a k-Nearest Neighbour (k-NN)
techniquewith a GA to optimise selection of weights for spectral feature
space variables to predict volume by species for Landsat Thematic
Mapper (TM) pixels. They characterized k-NN with feature space
variables optimised using a GA as improved k-NN (ik-NN). Variables in
the optimisation function includedmean square errors andmean biases
for volume predictions by species for reference set pixels. Although
implementation of the GAwas computationally intensive, the resulting
feature spaceweights reducedmean biases by factors ranging from0.69
to nearly 1.00. The optimal weight vector was used to predict all forest
attribute variables and to calculate plot expansion factors.

Categorical inventory variables have received increased recent
attention for forest inventory applications. The Ministerial Conference
on the Protection of Forests in Europe (MCPFE) (MCPFE,1997, 2003a,b)
includes area by forest type as an indicator for a criterion related to
maintaining forest resources, and the Montréal Process (MPCI, 2007)
includes the same indicator for a criterion related to maintaining
ecosystem biodiversity. Forest type has been widely used as an
inventory variable in North America and in Mediterranean and central
European countries; it is used less in Nordic countries, although it was
added recently to accommodate international reporting requirements.
In addition, Action E43 (Harmonisation of the national forest
inventories of Europe) (COST E43, 2007) of the Cooperation in the
fields of Science and Technology in Europe programme has selected
forest type as a core variable for biodiversity assessment. Finally,
commercial forest enterprises are frequently interested in estimates of
volume by tree species composition, forest type, and site fertility
classes to support forest management planning activities such as
planning regeneration to sustain wood production.

The overall objectives of the study were technical in nature: (1) to
investigate distance metrics for the k-NN technique for use in
prediction of the classes of land characteristics for Landsat TM and
ETM+ pixels, (2) to investigate use of ik-NN, and (3) to compare the
results obtained for the Finnish and Italian test sites using different
options. Two categorical variables were selected for each country:
dominant tree species and site fertility class for Finland and forest type
and conifer/broad-leaved dominance for Italy.

2. Material

2.1. Finnish data

2.1.1. Satellite imagery
The cloud-free portions of two adjacent Landsat 7 ETM+ images, path

186, rows 16 and 17, from June 10, 2000, were used. Both images were
rectified to the national coordinate system by fitting a second order
regression to the coordinates of 50 control points identified from both
satellite images and base maps. The nearest neighbour method was used
to re-sample images to a pixel size of 25-m×25-m. The absolute values of
the residuals in themodel used for geo-rectification ranged from0.3pixels
to 0.6 pixels. For predicting forest attribute variables, data for spectral
bands 1–5, 7–9 and all ratios of these bands were used. Landsat 7 ETM+
imagery includes the 60-m×60-m resolution thermal band 8 and the 15-
m×15-m panchromatic band 9 that are not included with Landsat 5 TM
imagery. ETM+ band 6 includes the same information as band 8 but is
calibrated for water and, therefore, was not used for this study. The
thermal band can be expected to provide information on site fertility, and
thus also on tree species composition. Band weights obtained using
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GA optimisation are expected to accommodate discrepancies be-
tween field plot and pixel information caused by the coarser spatial
resolution of this band. Such discrepancies can be interpreted as
measurement error. The method reported by Tomppo (1992) was
used with a digital elevation model to remove the effects of the variation
of the angle between sun illumination and terrain normal (see Section 3.1).

2.1.2. Field data from 9th Finnish NFI
The study area is located in the eastern part of Central Finland and

covers parts of the North Karelia and South Savo forestry centres,
approximately between latitudes 61°10′ N, 63°95′ N and longitudes
27°20′ E, 31°10′E (Fig. 1). The study area corresponded to the cloud-
free and non-shadow parts of the satellite images and included total
land area of 2.22 million hectares of which 1.97 million hectares were
forestry land. The remaining area was arable land and built-up areas.
The cumulative daytime temperature of the growing season ranges
between 1000 °C and 1300 °C. Water covers 23% of the study area. The
main tree species are Scots pine (Pinus sylvestris L.), Norway spruce
(Picea abies (L.) Karst.) and birch (Betula spp.), with some aspen
(Populus tremula L.) and alder (Alnus spp.).

Field data from the 9th Finnish NFI (NFI9) acquired between June 1
and August 31, 2000 from a systematic cluster sampling design were
used. In North Karelia, a cluster includes either 18 temporary or 14
permanent field plots located along a rectangular tract with a spacing of
300m (Fig. 2). In South Savo, thefield plot clusterwas ahalf rectangle and
included either 14 temporary or 10 permanent plots with a spacing of
250 m. Using Finnish NFI definitions, which deviate somewhat from
those of the United Nations Food and Agriculture Organisation (FAO),
forestry land is divided into forest land (FL), other wooded land (OWL),
forestry roads andwaste land. The combination of FL andOWL is denoted
FOWL. The two image scenes included 10,860 NFI9 field plots of which
8494 were on land; 7541 were on forestry land; 7322 were on FOWL;
7143were on FL; 179were onOWL; and 49were on forestry roads.Mean
growing stock volumeonFOWL is 102.0m3/ha inNorthKarelia,136.2m3/
ha in South Savo, and ranges from 0 to 530 m3/ha on field plots.
Fig.1. Finnish study areawith NFI field plot clusters displayed on the coarse scale volumemap
ETM+ images.
We used only plots entirely on forestry land that were also at least
20 m from the nearest stand boundary, thus excluding plots located
partiallyonnon-forestry land (Tables 1 and2). Thispractice isused in the
operational Multi-Source NFI (MS-NFI) (Tomppo, 2006) when using the
GA to calculate spectral variableweights. Thefield plotswere geolocated
using global positioning system (GPS) receivers. Trees located on plots
on FOWL were measured using PPS-sampling with the inclusion
probability of a tree proportional to its cross-sectional area at a height
of 1.3 m for basal area factor 2. A maximum distance of 13.45 m is,
however, usedwith basal area factor 2 to avoidmeasuring trees far away
from the centre point. Sampling of plot trees and differences in plot and
satellite image pixel shapes and sizes means that field plot and spectral
data are not in exact correspondence. These effects can be considered a
form ofmeasurement error when estimating volume. For this study, the
predicted variables are assessed at stand-level with stand sizes varying
from 0.5 to a few hectares. Field plots whose ground attributes had
changed between field measurement and image acquisition dates were
identifiedbygraphingvolume against spectral values and removed from
the data sets. The number of such plots was small because the satellite
image and field measurements were from the same season.

Information from a coarse scale map of Finland was also used for
ancillary information. The map was constructed in three steps: (1) the
mean of observed forest attribute variables for all plots in the sameNFI
cluster was calculated; (2) the cluster mean for the geographically
closest NFI plot was imputed to each 1-km×1-km cell; and (3) moving
average filters with window sizes of 11-km×11-km, 20-km×20-km,
and 25-km×25-km were applied in succession to the 1-km×1-km
cells. The variables used were the same as in the operative NFI, i.e.,
total volume and volumes by tree species in four tree species groups
on FOWL (Tomppo & Halme, 2004). In operative applications of the
Finnish MS-NFI, a topographic map of the country obtained from the
National Land Survey of Finland is used to stratify all image pixels and
plots on forestry land into mineral soils and peatland soils (spruce
mires, pine mires, open bogs, fens). We used only field plots for this
study, and stratification was done on the basis of field plot data.
s, seven test units of independent field plot data, and areas covered by the two Landsat 7



Fig. 2. Sampling designs for Finnish NFI in the study area, a) North Karelia, b) South Savo.
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2.1.3. Independent field data
Independent field plot data were used to evaluate the pixel-level

predictions. The data were obtained for seven test units, each
approximately 100 km2 in size, that were widely dispersed within one
of the ETM+ scenes (Fig.1). In each test unit, field plots with centres on a
400-m×300-m systematic design had been measured in year 2000. For
Table 1
Distributions of Finnish reference and independent target plots with respect to site
fertility class

Site
fertility
class

Soil stratum

Mineral soil Peatland

Reference Target Reference Target

Count % Count % Count % Count %

HRS 57 3.0 12 0.8 16 2.3 4 1.1
HRHF 370 19.5 223 15.7 64 9.3 22 5.7
MF 985 51.8 870 61.2 165 23.9 113 29.2
SX 441 23.2 285 20.1 192 27.8 130 33.6
X 35 1.8 28 2.0 205 29.7 107 27.6
B 0 0.0 1 0.1 48 7.0 11 2.8
R 13 0.7 2 0.1 0 0.0 0 0.0
Total 1901 100.0 1421 100.0 690 100.0 387 100.0
the seven areas, 4892 plots were on FOWL (Katila & Tomppo, 2006), but
of these only the1411plots onmineral soil and the 387plots onpeatland
whichwere at least 20m fromthenearest standboundarywere selected
for the study. The mean volume estimates on FOWL were in the range
72–150 m3/ha for the seven test units. The proportions of the selected
study plots assigned to particular fertility classes and the proportions of
tree species represented on these plots are shown in Tables 1 and 2.
Table 2
Distributions of Finnish reference and independent target plots with respect to tree
species groups

Species group Soil stratum

Mineral soil Peatland

Reference Target Reference Target

Count % Count % Count % Count %

Open 25 1.3 24 1.7 103 14.9 30 7.8
Pine 1,138 59.9 814 57.3 447 64.8 273 70.5
Spruce 412 21.7 479 33.7 61 8.8 55 14.2
Birch 252 13.3 98 6.9 79 11.5 29 7.5
Other broadleaved 74 3.9 6 0.4 0 0.0 0 0.0
Total 1901 100.0 1421 100.0 690 100.0 387 100.0

A detailed species list is given Table 3.



Table 3
Species groups in Finland

Species grouping 1 Species grouping 2

Open regeneration area, or otherwise
treeless area such as non-productive forest
land, open bog or rock

Open regeneration area, or otherwise
treeless area such as non-productive
forest land, open bog or rock

Scots pine (Pinus sylvestris) Scots pine (Pinus sylvestris) and other
coniferous speciesOther coniferous species such as:

Lodgepole pine (Pinus contorta),
Stone pine (Pinus sembra),
Larch (Larix sp.),

Common juniper (Juniperus communis)
Silver birch (Petula pendula) Silver birch (Petula pendula) and

Downy birch (Petula pubescens)Downy birch (Petula pubescens)
Norway spruce (Picea abies) Norway spruce (Picea abies)
European aspen (Populus tremula) Other broad-leaved tree species
Grey alder (Alnus incana)
Black alder (Alnus glutinosa)
Ash (Sorbus aucuparia)
Goat willow (Salix caprea)
Other broad-leaved tree species such as:
Bay willow (Salix pentandra),
Fluttering elm (Ulmus laevis),
Wych elm, (Ulmus glabra),
Small-leaved lime (Tilia cordata),
Poplar (Populus sp.),
European ash (Fraxinus excelsior),
Pedunculate Oak (Quercus robur),
Bird cherry (Prunus padus,
Norway maple (Acer platanoides)
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2.1.4. Forest attribute variables
For Finland, we selected two stand-level categorical forest attribute

variables, site fertility class and dominant tree species. Both are core
variables in forest management planning and are included in the NFI.
Site fertility describes wood production potential, and its determination
as used in the NFI is based on the composition of ground vegetation on
the site, the species composition of the growing stock of the site, and the
assumed vegetation composition at the mature development state. The
classification was created in the beginning of the 20th century and
further developed for forestry andNFI purposes (Cajander,1926; Lehto&
Leikola, 1987). The site fertility classes are as follows:

1. Herb rich sites (HRS): mineral soils and eutrophic swamps, fens and
corresponding drained peatlands.

2. Herb rich heath forests (HRHF): mineral soils and mesotrophic
swamps, fens and corresponding drained peatland forests.

3. Mesic heath forest (MF): mineral soils and meso-oligotrophic
natural and drained peatlands.

4. Sub-xeric heath forests (SX): mineral soil forests and oligotrophic
natural and drained peatlands.

5. Xeric heath forests (X): mineral soil forests and oligo-ombrotrophic
natural and drained peatlands.

6. Barren heath forests (B): mineral soil forests and Sphagnum fuscum
dominated (ombrotrophic) natural and drained peatlands.

7. Rocky forests (R): rocky and sandy soils and alluvial lands which are
typical in coastal regions.

8. Summit forests (S): summit (hilltops) and fjeld (hill) forest, only in
North Finland.

Dominant tree species is assessed by tree storeys, although generally
not for more than two storeys. The first phase is to assess whether a
storey is coniferous or broad-leaved tree species dominated. In cases of
equal proportions, the assessment is based on future treatments and
predicted favoured tree species. For a coniferous storey, the dominant
tree species is a coniferous species; similarly for a broad-leaved tree
species dominated storey. The assessment criteria for tree species
dominance varies by the development class of a storey. For the young
thinning class and older development classes, tree species proportion is
assessed on the basis of basal area. For the seedling development classes,
tree species proportion is assessed on the basis of the number of stems
capable of further development. The dominant tree species in coniferous
dominant storeys is the coniferous specieswith the highestproportion of
basal area, except for seedling stands where the assessment is based on
thenumberof seedlings capable of development. Similardeterminations
are made for broad-leaved tree species dominant storeys. The dominant
species of the dominant storey is also the dominant species of the stand.

The three most important storeys are Dominant, Over-storey and
Under-storey. Tree species proportion by stand is assessed in greater
detail for the first two storeys and for the third only when it is capable
of further development. For all development classes other than Non-
stocked regeneration area, the dominant and second tree species and
their proportions are always reported. For the Non-stocked regenera-
tion area class, tree species is not determined.

The tree species coding used in the initial analyses with the
reference data to investigate the technique was the same as for the
operational MS-NFI and was designated Species Grouping 1 (Table 3).
Because the areas of stands dominated by some species were very
small in Species Grouping 1, Species Grouping 2 was used for the
validation analyses with the independent data (Table 3).

2.2. Italian data

2.2.1. Satellite imagery
A Landsat 5 TM image for path 192, row 28, dated 19 June 2000,

was used as the source of spectral data. Only 2.4% of the image area
was covered by the clouds. The image was geo-referenced using a first
order nearest neighbour method and geometrically rectified using a
digital elevation model derived from elevation curves at 10-m
intervals. A pixel size of 30 m×30 m was used, and a positional
error of less than one pixel was obtained using 50 ground control
points and a first degree polynomial. The first order nearest neighbour
methodwas chosen to preserve the original spectral values (Manual of
Remote Sensing, 1983). The image was topographically corrected by
using a digital terrain model and a cosine function in a similar manner
as was done for the Finnish spectral data (Tomppo, 1992). No
atmospheric correction was made. Forest attribute variables were
predicted using data for spectral bands 1–5 and 7 and all possible band
ratios. Although the geographical extent of the study area is smaller
than that of the Finnish site, variation in vegetation types is high,

2.2.2. Data from the 2nd Italian NFI
The Italian study area is located in the Eastern Italian Alps and

corresponds to the Province of Trento (46°04′ N, 11°08′ E) (Fig. 3). The
study area has complex mountainous topography with elevations
ranging between 100 m and 3500 m above sea level. The climate is
typically Alpine but with some Mediterranean features in the southern
part of the study area. Average annual temperature is 10–11 °C, and
average annual precipitation is approximately 1200mm. Total land area
is approximately 620,000 ha with 65% covered by FOWL. Using FRA-
2000 definitions (FAO, 2000), the most recent NFI results (INFC, 2007)
indicate 375,402 ha of FL and 32,129 ha of OWL. High forest, which
reproduces from seeds, prevails, although coppices are found on
approximately 14% of FL. Coniferous stands are dominant with spruce
stands covering more than 36% of forestry land. Larch (Larix decidua),
black pine (Pinus nigra), Scots pine (Pinus sylvestris) and fir (Abies alba)
are also very widespread. Broad-leaved species usually are found in
mixed stands in the southern part of the study area or in valleys with
spruce-fir-beech and hornbeam-Scots pine stands being the most
common. Mixed stands are well represented due to the promotion of
tree species diversity by forest management for the last 40 years.

The field data were obtained from the 2nd Italian National
Inventory of Forests and Forest Carbon Sinks (INFC) andwere collected
in 2004 and 2005. The 2nd INFC adopted a sampling design featuring
three-phase sampling for stratification which is intended to produce
reliable statistics for each of the 21 Italian administrative districts. In
the study area, which corresponds to one of the 21 districts, 6200 first-



Fig. 3. Italian study area covered by a quarter scene of Landsat TM5 image with reference plots (dark and closed points) and target plots (light and open points).

Table 4
Forest type classes in Italy

13 forest types (NFI data sets) 7 forest types

Larch and stone pine forests (LSP) Larch and stone pine forests (LSP)
Norway spruce forests (NS) Norway spruce and fir forests (NSF)
Fir forests (F)
Scots pine and Mountain pine (SP) Pine forests (PF)
Black pines (BP)
Beech forests (B) Beech forests (B)
Hornbeam forests (H) Hornbeam forests (H)
Oak forests (OF) Other broadleaved forests (OB)
Chestnut forests (C)
Hygrophilous forests (HY)
Mixed deciduous broadleaved forests (MB)
Holm oak forests (HO)
Subalpine shrubland (SS) Subalpine shrubland (SS)
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phase sampling points were distributed using systematic unaligned
sampling characterized by random selection of a point in each cell of a
1-km×1-km grid. All points were photo interpreted and assigned to
broad land use/land cover classes with FL and OWL included in the
same class and with an uncertain class. In the second phase, a sub-
sample of approximately 1100 points from the first-phase sample was
randomly selected from FOWL and uncertain classes according to their
proportions of the total district area. The points were located in the
field using GPS receivers and served as centres for circular plots of
radius 25 m. Field crews observed the plots to distinguish FL and OWL
and to assess forest type and other categorical stand-level variables
(Tabacchi et al., 2007). In the third phase, the field crews made
quantitative measurements of tree and stand attributes on a
subsample of approximately 30% of the second phase sampling points
(Fattorini et al., 2006).

Forest attribute data used for the study were obtained from the
second-phase assessments of 956 sampling points. Some points were
excluded because of missing data, and some were excluded because
they fell on non-forest land as indicated by a mask provided by the
Province of Trento. Conifer/broad-leaved dominance was assigned on
the basis of dominant crown cover using three classes, conifer, broad-
leaved, andmixed, and the variable was denoted CBM. Forest typewas
also assigned on the basis of the tree species or species group with the
greatest proportion of crown cover. In the study area, 13 forest types
were observed.

The time interval between image acquisition in 2000 and NFI field
measurements in 2004–2005 was not expected to produce serious
discrepancies between field and spectral data. Forest area and species
composition changes occur only slowly in temperate regions, so that
intervals of five years are not expected to produce substantial ground
level changes, except following large disturbances such as widespread
fires, avalanches, landslides, or extensive cutting or planting. During
the period between image acquisition and NFI data collection, none of
these events occurred in the study area. Also, the second phase field
survey conducted in 2004–2005 was a sub-sample of the first phase
points which were classified using 1999 orthophotos. The second
phase field survey confirmed the land use class assigned by photo
interpretation for 99% of the second phase points.

The classification scheme adopted for forest types is intended for
all Italian forest conditions and is based on visual recognition of
prevailing tree species without regard to site characteristics, stand
structure or under-storey composition. However, this scheme is too
detailed for satellite image-based prediction because some forest type
classes typically occurring together are similar with respect to both
ecological requirements and spectral properties, and are therefore
difficult to distinguish using satellite imagery. Therefore, the 13 classes
were aggregated into seven classes on the basis of their ecological
similarities (Table 4). The new classification scheme represents a
compromise between accuracy gain and information loss.
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No independent Italian validation data were available as was the
case for the Finnish analyses. Therefore, for the initial Italian analyses
which focused on investigating the k-NN technique and the GA, the
entire reference set was used with leave-one-out cross validation to
determine values of k and the GA operational parameters. However,
for the validation analyses, an independent validation target data set
was constructed by randomly splitting the reference set into a reduced
reference set consisting of two-thirds of the sample data and a target
set consisting of one-third of the sample data.

3. Methods

This section consists of four subsections: (3.1) a description of the k-
NN technique with attention given to a distance metric used by the
Finnish NFI, (3.2) a description of the ik-NN technique with attention
given to the formulation and use of a GA for optimizing the weights for
feature space variables, (3.3) a description of several accuracy measures
with discussion of how theyare used in theGA, and (3.4) a description of
a discriminant analysis approach to predictionwhose results that can be
compared to those obtained using the ik-NN technique.

3.1. k-Nearest Neighbours prediction

Forestry applications often require simultaneous and consistent
estimates for all core forest variables. Traditional image classification
methods cannot easily provide this type of information. The non-
parametric k-NN technique mimics forest inventory estimation in that
estimates for all variables are obtained simultaneously using the same
underlying field data. With this technique, field plot weights, also
called plot expansion factors, are calculated as sums of satellite image
pixel weights over forestry land or forestry land mask pixels.

With the k-NN technique, the prediction, m̂p, for pixel p for
continuous variable, M, is calculated as,

m̂p = ∑
k

i = 1
wi;pmi; ð1Þ

where mi is the value of variable M on reference plot i. The pixel
weights, wi, p, are calculated as,

wi;p =
d−tpi ;p= ∑

j∈ i1 pð Þ;…;ik pð Þf g
d−tpj ;p; if and only if i∈ i1 pð Þ; N ; ik pð Þf g

0 otherwise

8<
: ð2Þ

where, i is a reference set field plot, p is a target set pixel, pj is the pixel
corresponding tofield plot j, and {i1(p),…, ik(p)} is the set of thekfield plots
nearest to pixel p in feature space when using distance metric, d, and t∈
[0, 2]. Both Franco-Lopez et al. (2001) and Katila and Tomppo (2001)
reported the effects of different t-values on pixel-level prediction errors.

Tomppo and Halme (2004) developed a distancemetric that is now
used operationally by the Finnish MS-NFI,

d2pj ;p = ∑
nf

l = 1
ωl;f

2 fl;pj−fl;p
� �2

+ ∑
ng

l = 1
ωl;g

2 gl;pj−gl;p
� �2

; ð3aÞ

where
f 0l;pj is the original intensity of the spectral band l,
fl,pj

= f 0l;pj /cos
r(α) is the normalised intensity value of the spectral

band l,

is the angle between terrain normal and sun illumination,
α

r is the power used due to non-Lambertian surface (Tomppo,
1992),

nf is the number of image variables,
gl,p is the coarse scale prediction of the lth forest variable for pixelp,
ng is the number of large area forest variables,
p is the target pixel,
pi is a field plot pixel, and
ωl,f and ωl,g are the weights for the lth feature and coarse-scale

variable respectively.

The power of cosine, r, is usually estimated from the data, often
using a trial and error method, (e.g., Katila & Tomppo, 2001; Tomppo,
1992). Continuous variables predicted in the operative Finnish MS-
NFI, include stand age, mean stand diameter, mean stand height, and
volumes by tree species and by timber assortment class, as well as
some categorical variables such as land classes within forestry land
and site fertility.

For this study, the distance metric described by Eq. (3a) was used
for categorical variables for the Finnish site (see Subsection 2.1.2), but
for the Italian site information on coarse scale variables was not
available, so the distance metric was simply,

d2pjp = ∑
nf

l = 1
ωl; f

2 fl;pj− fl;p
� �2

: ð3bÞ

For categorical variables, the mode or median of the predicted
classes for the nearest neighbours can be used as a prediction instead
of a weighted average as is used for continuous variables. For this
study, the mode was selected after investigations of both the mode
and median. The predicted class has the greatest sum of the weights,
wi,p, when added by class over the k nearest neighbours. In theory,
equal sums are very rare when weights are used; in fact, the
probability is zero if rounding is not considered. In cases of equal
sums for two or more classes, one class is selected randomly from
among those with the greatest sum. Categorical variables whose
classes can be predicted using this approach include land use, site
fertility and forest type.

3.2. Improved k-Nearest Neighbours prediction (ik-NN)

We recall first the general ik-NN technique introduced in Tomppo and
Halme (2004) and then present the ik-NN technique tailored specifically
for categorical variables in Section 3.3. The ik-NN technique is identical to
the k-NN technique except the weights, ω, for the feature space variables
used inEqs. (3a) and (3b) are optimisedusing a4-stepGA. For typical k-NN
applications, equal weights are used for all variables.

Step 1. Initialisation. An initial population of weight vectors of size
npop is constructed by randomly generatingweight vectors of length nf+
ng. For each weight vector, the value of the fitness function is calculated
for Step 2 (Eq. (12), Subsection 3.3).

Step 2. Selection. Pairs of weight vectors in the population are chosen
and compared with respect to their fitness. The weight vector with
greater fitness is selected for a medipopulation with probability, pt1;
both vectors are selected with probability pt2; and the vector with
lesser fitness is selected with probability 1−pt1−pt2. Weight vectors
can be chosen for comparison systematically, randomly, or by other
means. Pair-wise comparisons are continued until a medipopulation
of size npop has been selected.

Step 3. Crossover. A new population is formed from themedipopula-
tion by using two successive vectors, designated parents, of the
medipopulation to produce two offspring. For the first offspring, the
kth element of its weight vector is selected from the first parent with
probability pu and from the second parent with probability 1−pu. The
elements of theweight vector for the second offspring are selected in a
similar manner, although independently of the selections for the first
offspring. From among the two parent and the two offspring weight
vectors, the most fit is selected for the next population.
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Step 4. Mutation. Each vector of the new population is subject to the
possibility of mutation. Each element of each weight vector in the
population is selected for mutation with probability pm. If an element
is selected for mutation, it experiences either radical or non-radical
mutation. Radical mutation entails subtracting the weight vector
element from 1.0 and occurs with probability prm. Non-radical
mutation entails multiplying the weight vector element by 0.8 with
probability 0.5(1−prm) or 1.2 with probability 0.5(1−prm). If the fitness
of the mutated vector is better than that of the original, the mutated
vector replaces the original in the population. If the fitness of the
mutated vector is less than that of the original, the mutated vector
replaces the original with probability pc.

Following Step 4, a new generation of the population has been
constructed. The GA then repeats Steps 2–4 until ngen generations
have been constructed. Typically, the individuals in the population
converge to a single, near-optimal set of weights over multiple
generations. For this study, the GA reported by Tomppo and Halme
(2004) was used with the same parameter values for both the Finnish
and Italian study areas:

ngen number of generations (50)
npop number of weight vectors in one population and number of

vectors in the medipopulation (does not have to be the
same) (50, 50)

pu probability used in uniform crossover (0.75)
pc probability of accepting an inferior solution created by

mutation (0.5)
pm mutation probability (0.05)
prm radical mutation probability (0.35)
pt1 probability 1 in selection (0.95)
pt2 probability 2 in selection (0.03).

The GA parameters control how fast and likely a possible global
optimum is found and depend very little on the particular feature
space variables. Tomppo and Halme (2004) obtained optimized
weights ω used in Eq. (3a) for predicting continuous forest attribute
variables using the fitness function,

f ω;γ; σ̂ ; ê
� �

= ∑
ne

j = 1
γj σ̂ j ωð Þ + ∑

ne

j = 1
γj + neê j ωð Þ; ð4Þ

where the γs are user-defined coefficients corresponding to pixel-
level mean square errors, σ̂j, and mean biases, e−̂j, for selected forest
attribute variables indexed by j, and ne is the number of forest
attribute variables. The selected variables were total volume, volume
of pine, volume of spruce, volume of birch, and volume of other broad-
leaved tree species for predicting all variables, both continuous and
categorical. The pixel-level mean square errors and mean biases were
estimated using field plots and leave-one-out cross-validation as

σ̂M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i∈F m̂i−mið Þ2

nF

r
and êM =

∑i∈F m̂i−mið Þ
nF

where mi is the observed value of

the variable to be predicted on plot i (e.g. total volume), m̂i is the
prediction for plot i, F designates the set of field plots of which there
are nF. The rationale for selecting measures of prediction errors for
these forest attribute variables in the fitness functions was that
optimisation with respect to these measures was expected to reduce
prediction errors and errors in areal estimates for other forest
attribute variables or parameters derived from them. The values of
the elements of the coefficient weight vector, γ, were originally
determined using an iterative trial and errormethodwhen optimizing
the values of the elements of the vector,ω, and were constant over the
images (Tomppo and Halme, 2004).

This GA approach to obtaining weights ω for image feature space
variables is tailored for prediction of continuous variables byminimising a
linear combination of RMSEs and biases of the target variables, partic-
ularly volumes and volumes by tree species. A relevant question relates to
the degree towhich prediction errors for a variable or a group of variables
can be reduced if the weights, ω, are tailored for that specific variable or
variable group, and in our case for categorical variables which are forest
attribute variables for both sites. A key issue is selection of the fitness
function to be optimized; inparticular, what is themost relevant accuracy
measure for categorical response variables, and should optimisation for
these response variables be conducted separately or jointly?

3.3. ik-NN tailored for categorical variables and accuracy assessment

Categorical variables require different pixel-level accuracy mea-
sures than standard deviation, bias or root mean square error as are
used to assess the accuracy of predictions of continuous variables.
Therefore, for this study, the fitness function (4) used by Tomppo and
Halme (2004) must be modified to include accuracy measures
appropriate for categorical variables. Before introducing the modified
fitness functions, we first report the accuracy measures used for this
study. Many accuracy measures are derived from the error matrix, X,
with elements, xij. In our case, the columns of X represent observed
classes of the categorical variables, and the rows represent predicted
classes. The number of classes is r; the row totals are xi+=Σj=1

r xij; the
column totals are x+j=Σi=1

r xij and N=Σi=1
r x+i is the total number of

reference set samples. Widely used accuracy measures for categorical
variables based on X are overall accuracy, OA(X),

OA Xð Þ = 1
N

∑
r

i = 1
xii; ð5Þ

and the average proportion over all classes of correct pixel predictions,
C(X),

C Xð Þ = 1
r

∑
r

i = 1
xii=x + i; ð6Þ

Other obvious accuracy measures include omission or commission
errors by categories. Another commonly used measure of agreement
based on error matrices is the Kappa measure, κ(X), (Cohen, 1960;
Congalton & Green, 1999),

κ Xð Þ =
∑
r

i = 1
xii−x+i xi+ = Nð Þ

N− ∑
r

i = 1
x+ i xi+ = N

ð7Þ

Nishii and Tanaka (1999) reported two new measures, denoted
Juni(X) and Jpro(X), derived from the Kullback–Leibler information
measure as,

Juni Xð Þu ∏
r

i = 1

xii + 0:5
x+ i + 0:5

� �1=r

; ð8Þ

and

Jpro Xð Þu ∏
r

i = 1

xii + 0:5
x+ i + 0:5

� �x + i=N

: ð9Þ

Nishii and Tanaka (1999) demonstrate the properties of Juni(X) and
Jpro(X) with simple examples. For example, Juni(X) is sensitive to poor
prediction for a single category while Jpro is a weighted variant using a
priori information.

The four accuracy measures, OA(X) (Eq. (5)), κ(X) (Eq. (7)), Juni(X)
(Eq. (8)) and Jpro(X) (Eq. (9)), were used for two purposes. First, they
were tested for use in the fitness functions when applying the GA
algorithm to find optimal weights for feature space variables. Second,
theywere used to assess the accuracy of predictions. Because the same
measures were used both for the fitness functions and for evaluating
prediction accuracies, as a means of avoiding confusion a subscript f
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(e.g., Kappaf or κf) denoting fitness is addedwhen ameasure is used for
the fitness function.

A statistical test of significance is the appropriate method for
comparing two values of the same accuracy measure for two
different classifications; e.g., a k-NN classification and a ik-NN
classification, or two ik-NN classifications using different accuracy
measures in the GA fitness function. However, traditional parametric
tests cannot be used for this study because the classifications were
not based on independent samples. McKenzie et al. (1996) and Foody
(2004) recommend and reported two non-parametric resampling
tests for dependent samples for testing the statistical significance of
the difference between two κ values. The random, or Monte Carlo,
permutation test was used to take random samples without
replacement from all the possible permutations. For example, let
κ1

o and κ2
o denote the κ values obtained from classifications of the

same data using two different accuracy measures in the fitness
function. For each reference plot, the observed class of the response
variable was swapped with the observed class for a second randomly
selected reference plot. This set of permuted observations was paired
separately with the class predictions obtained using the two
accuracy measures in the fitness function, and the resulting κ values
were denoted κ1

p and κ2
p. For each pair of accuracy measures used in

the fitness function, this procedure was repeated 1000 times, and the
number of times that κ1

p−κ2p equalled or exceeded κ1
o−κ2o was

counted. If the ratio of the count plus 1 and the number of
permutations plus 1 was less than or equal to 0.05, then the null
hypothesis of no statistically significant difference between the two
κ coefficients at α=0.05 was rejected. Approximately 1000 permuta-
tions were considered adequate for significance testing at the
α=0.05 level (McKenzie et al., 1996). A similar test procedure was
used for the other three accuracy measures, also.

Let B be a common coefficient vector denoting accuracy measures
based on OA(X), κ (X), Juni(X) and Jpro(X). The new fitness function for
use with categorical response variables and to be substituted for
Eq. (4) and minimized with respect to ω is proposed to be,

f ω;γ;B Xð Þ½ � = ∑
nm

j = 1
γj 1−Bj X j

� �	 

; ð12Þ

where γjN0 is a user defined coefficient, Bj is the accuracy measure
with response variable j whose classes are to be predicted, nm is the
number of response variables to be considered in the optimisa-
tion procedure and ω is the weight vector to be optimized (Eqs. (3a)
and (3b)).

3.4. Discriminant analysis as a prediction method

Discriminant analysis was used as an optional method for
obtaining predictions that could be compared to those obtained
using ik-NN with the new fitness functions. Canonical variables
derived with canonical discriminant analysis were used to obtain
uncorrelated feature space variables. The purpose of a GA is somewhat
similar to canonical analysis; i.e., to find variables that summarize
between class variations. The non-correlation property is not
necessarily guaranteed with coefficients obtained with GA. The
generalized squared distance from a vector of feature space variables,
f, to the estimated class mean μ̂c , of class c was,

D2
c fð Þ = f −μ̂ cð Þ V̂S−1

c f −μ̂ cð Þ + lnj Ŝcj−2ln qcð Þ; ð13Þ

where Ŝc is the estimate of the within class covariance matrix and qc is
the prior probability of class c (e.g., Gonzalez &Woods, 2002; Tomppo,
1992). Equal priors were used in this study, and the feature space
variables were calculated from the canonical variables. Priors obtained
from the field data could also have been used and would have been
acceptable if the distribution of the categories of the response variable
had been the same in the target and reference sets. However, because
the field plots had been sampled, the distributions could not be
guaranteed to be the same. The posterior probability of an observation
with a feature vector f belonging to class c under the multinormal
assumption is (e.g., Gonzalez & Woods, 2002; Tomppo, 1992),

p cjfð Þ = exp −0:5D2
c fð Þ� �

∑
r

i = 1
exp −0:5D2

i fð Þ� �: ð14Þ

4. Results

Experiments were conducted to compare results obtained with
different weights for the accuracy measures (Eqs. (5), (7)–(9) and (12))
and for the k-NN estimation parameters such as the number (k) of
nearest neighbours and the value of the illumination correction due to
the elevation variation. Results are reported for only one set of
parameters because the objective was to investigate accuracy gains
achieved when using a GA. The choice of the value of k, for example,
depends on the technical objective; i.e., low pixel level RMSE or low
bias for areas of interest. A thorough analysis of this issue is beyond
the scope of this study. Values of k=5 and r=0.1, the power of cosine in
normalising intensity values (Eq. (3a)), were selected after experi-
mentation. For both the Finnish and Italian test sites, the results
obtained using the different fitness functions in the GA optimisation
were first analysed using the entire Finnish NFI9 and Italian INFC
reference data sets using leave-one-out cross-validation with the four
accuracy measures. A second set of analyses was conducted using the
independent validation data sets.

Several iterations of the GA were conducted for each experiment
and set of parameters to ensure that a near global optimum, instead of
a local optimum, was found (Tomppo & Halme, 2004). For the final
results, five iterations were used.

Results are reported first for the Finnish site (Section 4.1) and
second for the Italian site (Section 4.2). For the Finnish site, four
analyses are reported: (4.1.1) a comparison of the ranges of spectral
values for the reference and target sets, (4.1.2) accuracy assessment
using the reference set data only, (4.1.3) results for site fertility with
the independent data set, and (4.1.4) results for dominant tree species
with the independent data set. For the Finnish site, all results are
reported separately for peatland and mineral soils. For the Italian site,
three analyses are reported: (4.2.1) a comparison of the ranges of
spectral values for the reference and target sets, (4.2.2) accuracy
assessment using the reference set data only, and (4.2.3) results for
both CBM and forest type when splitting the reference set into
independent reduced reference and target sets.

The weights for feature space variables were optimized both
separately and jointly for the two response variables for both the
Finnish and Italian test sites. The accuracy statistics were somewhat
greater for the Finnish data when the weights were estimated
separately (Tables 5–12), whereas for the Italian data, the accuracy
statistics were similar for the separate and joint optimisations.
Therefore, only the results for the joint optimisation are presented
for the Italian data (Tables 13–16). A possible explanation for the
different results for the Finnish and Italian data is that the Italian
response variables were highly dependent whereas dependence was
not as great for the Finnish variables.

4.1. Finnish site

4.1.1. Spectral distributions of reference data and target data by
categories

The spectral distributions of the original ETM+ data were
compared for the reference and independent test target data to
determine if the reference data covered the spectral variation in the
target area, a prerequisite for successful k-NN prediction and



Table 5
Accuracy statistics for 1901 Finnish mineral soil reference set plots using leave-one-out
cross validation and five different fitness functions, best of five iterations

Prediction
technique

Forest attribute variable

Site fertility Dominant tree species

Accuracy measures Accuracy measures

OA Juni Jpro Kappa OA Juni Jpro Kappa

k-NN 0.584 0.279 0.534 0.311 0.657 0.161 0.557 0.362
ik-NN OAf

a 0.628 0.299 0.580 0.379 0.684 0.233 0.614 0.413
Juni,f

a 0.594 0.372 0.553 0.328 0.673 0.229 0.600 0.396
Jpro,f

a 0.621 0.300 0.580 0.374 0.689 0.232 0.621 0.425
Kappafa 0.629 0.288 0.584 0.389 0.690 0.205 0.610 0.431
Volumeb 0.569 0.273 0.525 0.293 0.680 0.300 0.627 0.412

Discriminant
analysis

0.547 0.633 0.540 0.339 0.611 0.294 0.542 0.393

a Accuracy measure used in fitness function for genetic algorithm.
b Fitness function based on RMSEs and biases used for genetic algorithm.

Table 7
Accuracy measures for 1411 Finnish mineral soil independent target set plots and 1901
reference set plots and five different fitness functions, best of five iterations

Prediction
technique

Forest attribute variable

Site fertility Dominant tree species

Accuracy measure Accuracy measure

OA Juni Jpro Kappa OA Juni Jpro Kappa

k-NN 0.605 0.180 0.547 0.269 0.653 0.196 0.612 0.395
ik-NN OAf

a 0.592 0.229 0.559 0.263 0.660 0.307 0.628 0.400
Juni,f

a 0.583 0.208 0.534 0.247 0.654 0.374 0.627 0.388
Jpro,f

a 0.599 0.208 0.545 0.252 0.646 0.242 0.614 0.380
Kappafa 0.601 0.213 0.560 0.282 0.651 0.302 0.621 0.386
Volumeb 0.579 0.201 0.519 0.210 0.627 0.188 0.588 0.353
No csvc 0.588 0.177 0.531 0.258 0.651 0.337 0.618 0.377

Discriminant
analysis

0.552 0.461 0.546 0.282 0.613 0.360 0.605 0.382

a Accuracy measure used in fitness function for genetic algorithm.
b Fitness function based on RMSEs and biases used for genetic algorithm.
c OAf

a, No coarse scale variables.

Table 8
Accuracy measures for 387 Finnish peatland soil independent target set plots using 690
reference set plots and five different fitness functions, best of five iterations

Prediction
technique

Forest attribute variable

Site fertility Dominant tree species

Accuracy measure Accuracy measure

OA Juni Jpro Kappa OA Juni Jpro Kappa

k-NN 0.450 0.357 0.439 0.240 0.788 0.516 0.741 0.471
ik-NN OAf

a 0.450 0.341 0.440 0.235 0.801 0.542 0.763 0.516
Juni,f

a 0.494 0.441 0.488 0.301 0.796 0.522 0.750 0.492
Jpro,f

a 0.463 0.387 0.443 0.252 0.793 0.551 0.759 0.499
Kappafa 0.473 0.268 0.420 0.264 0.804 0.533 0.761 0.511
Volumeb 0.493 0.427 0.487 0.298 0.765 0.507 0.717 0.425
No csvc 0.475 0.386 0.469 0.279 0.804 0.606 0.781 0.547

Discriminant
analysis

0.465 0.402 0.453 0.272 0.765 0.729 0.765 0.556

a Accuracy measure used in fitness function for genetic algorithm.
b Fitness function based on RMSEs and biases used for genetic algorithm.
c OAf

a, No coarse scale variables.
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estimation. In the Finnish case, we may also draw more general
conclusions as to whether the NFI field plot data can be expected to
cover spectral variations of typical small forested areas of size 100 km2

within an area the size of a Landsat image. The means, standard
deviations and ranges of the spectral datawere compared for each site
fertility class and for the five aggregated tree species classes (Species
Grouping 2). The analyses were conducted separately for the mineral
soil and peatland soil field plots using only plots at least 20m from the
nearest stand boundary.

Onmineral soils, within site fertility classes and tree species groups,
the means of the digital numbers (DN) for the reference and
independent target data were similar, and the standard deviations of
the DNs for the independent target data were less than or equal to the
standard deviations for the reference data (Table 17). For the somewhat
rare site fertility class HRS, the standard deviation for the reference data
for band 5 was less than the standard deviation for the independent
target data. However, the minimum and maximum values for the
independent target data were within the range for the reference data.
For the open land class onmineral soils (n=24), the standard deviations
for the independent target data for bands 3, 5 and 8were larger than for
the reference data, and the minimumvalues for the independent target
data were beyond the range for the reference data (Table 18). These
findings suggest the possibility of poor prediction accuracy for the class
(cf. Tables 11 and 12). However, for the spruce class (n=479), the
standard deviations of the reference and independent data were more
similar (Table 18). For band 5, the ranges were quite similar despite the
differences in the standard deviations.

On peatland soils, the means and standard deviations of the DNs
were similar for the reference and independent target data. For site
fertility class HRHF (n=22), the standard deviation of the reference
Table 6
Accuracy measures for 690 Finnish peatland soil reference set plots using leave-one-out
cross validation and five different fitness functions, best of five iterations

Prediction
technique

Forest attribute variable

Site fertility Dominant tree species

Accuracy measures Accuracy measures

OA Juni Jpro Kappa OA Juni Jpro Kappa

k-NN 0.486 0.291 0.462 0.314 0.799 0.378 0.753 0.583
ik-NN OAf

a 0.529 0.313 0.501 0.370 0.812 0.397 0.773 0.612
Juni,f

a 0.513 0.430 0.507 0.356 0.810 0.558 0.786 0.618
Jpro,f

a 0.539 0.441 0.522 0.388 0.813 0.530 0.780 0.615
Kappafa 0.370 0.314 0.500 0.371 0.829 0.488 0.797 0.648
Volumeb 0.464 0.276 0.435 0.286 0.797 0.565 0.757 0.589

Discriminant
analysis

0.504 0.502 0.496 0.358 0.770 0.692 0.768 0.616

a Accuracy measure used in fitness function for genetic algorithm.
b Fitness function based on RMSEs and biases used for genetic algorithm.
data for band 5 was smaller than for the independent target data
(Table 19). In this case, the range of the band values for the reference
data was slightly larger than for independent target data. For tree
species, the largest differences were for band 5 for the spruce class,
but the ranges of the DNs were almost equal for the reference and
independent target data (Table 20).

4.1.2. Accuracy assessment using reference data
Results obtained using the reference data with Species Grouping 1

were obtained using leave-one-out cross-validation. Accuracies for
the four accuracy measures without and with GA optimisation for the
Table 9
Error matrix for Finnish site fertility for independent peatland soil target set without
optimization

Predicted site
fertility classa

Observed site fertility classa

HRS HRHF MF SX X B Total User's accuracy (%)

HRS 1 0 2 0 0 0 3 33.3
HRHF 1 3 13 3 0 1 21 14.3
MF 0 12 54 21 6 0 93 58.1
EX 2 5 32 71 48 2 160 44.4
SX 0 2 11 28 41 4 86 47.7
X 0 0 1 7 12 4 24 16.7
Total 4 22 113 130 107 11 387
Producer's
accuracy (%)

25.0 13.6 47.8 54.6 38.3 36.4 45.0

a See Section 2.1.4 for site fertility class definitions.



Table 10
Error matrix for Finnish site fertility for independent peatland soil target set with
optimization using Juni,f in fitness function

Predicted site
fertility classa

Observed site fertility classa

HRS HRHF MF SX X B Total User's accuracy (%)

HRS 2 1 0 1 0 0 4 50.0
HRHF 0 4 11 2 0 0 17 23.5
MF 0 14 59 23 7 0 103 57.3
SX 1 1 31 62 32 1 128 48.4
X 1 1 10 40 59 5 116 50.9
B 0 1 2 2 9 5 19 26.3
Total 4 22 113 130 107 11 387
Producer's
accuracy (%)

50.0 18.2 52.2 47.7 55.1 45.5 49.4

a See Section 2.1.4 for site fertility class definitions.

Table 12
Error matrix for Finnish tree species grouping for independent mineral soil target set
with optimization using OA in fitness function

Predicted tree
species groups

Observed tree species groups Total User's accuracy
(%)Open Pine Spruce Birch Other broad-

leaved

Open 1 7 1 0 0 9 11.1
Pine 9 641 161 31 0 842 76.1
Spruce 8 79 241 14 1 343 70.3
Birch 6 71 61 47 4 189 24.9
Other broad-
leaved

0 11 10 6 1 28 3.6

Total 24 809 474 98 6 1411
Producer's
accuracy (%)

4.2 79.2 50.8 48.0 16.7 66.0
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different fitness functions are reported for both mineral soil (Table 5)
and peatland soil (Table 6). For comparison purposes, the results with
a fitness function based on minimising the RMSEs and biases for
prediction of a continuous variable, volume (Eq. (4)), as used by
Tomppo and Halme (2004), rather than categorical variables, are also
presented in Tables 5 and 6 (row ik-NN, Volume). Accuracies obtained
using canonical variables with the discriminant analysis are also
reported. Results are reported separately for site fertility and
dominant tree species in Tables 5 and 6.

Accuracies for the different accuracy measures vary substantially.
The values for OA and Jpro are similar as should be expected based on
their definitions. The lower value for Juni is due to its sensitivity to
errors in individual classes independently of the number of the
observations in the class. Some site fertility classes were very rare in
the test site and, therefore, yielded low class frequencies (Table 1). A
similar result holds for tree species dominances (Table 2). Pixel-level
OA is slightly greater than 60% for site fertility and approximately 70%
for dominant tree species.

Because the accuracy measures are dependent, optimisation with
respect to one measure generally increases the values of the other
measures without optimisation. No clear differences were found
among the different fitness functions. When used as a fitness function,
Kappaf gave the greatest value for OA for site fertility with mineral soil
plots; and Jpro,f and Kappaf gave the greatest values for dominant tree
species for OA. GA optimisation increased agreements in all cases. The
different nature of Juni both as fitness function and in evaluation can
also be seen in that its greatest value is obtained using discriminant
analysis (Table 5).

GA optimisation increased accuracies for predictions of the
categorical variables for peatland soils, also. Accuracies were greater
for all measures, except for Juni, when using ik-NN than for
discriminant analysis. Pixel-level OA was approximately 54% for site
fertility in the best cases and slightly greater than 80% for dominant
tree species. Satellite image-based predictions are vulnerable to pixel-
Table 11
Error matrix for Finnish tree species grouping for independent mineral soil target set
without optimization

Predicted tree
species groups

Observed tree species groups Total User's accuracy
(%)Open Pine Spruce Birch Other broad-

leaved

Open 0 1 0 2 0 3 0.0
Pine 11 627 142 36 0 816 76.8
Spruce 8 85 251 12 1 357 70.3
Birch 5 91 76 44 5 221 19.9
Other broad-
leaved

0 5 5 4 0 14 0.0

Total 24 809 474 98 6 1411
Producer's
accuracy (%)

0.0 77.5 53.0 44.9 0.0 65.3
level errors on peatland soils due to moisture variation which is not
necessarily linked to the variation of the variables of interest. Of the
different fitness functions, Jpro,f produced the greatest values for all
accuracy measures for site fertility; Kappaf produced the greatest
values for OA; and Jpro,f and Kappa,f produced the greatest accuracies
for dominant tree species for OA. A somewhat unexpected result is
that Kappaf gave a low OA value for site fertility on peatland soil. This
result could be attributed to difficulty in site fertility prediction,
particularly on peatlands, a random effect, or both. Results with
discriminant analysis were similar to those achieved for mineral soils.
These results indicate no clear difference among fitness functions
except perhaps that use of Juni,f as a fitness function often produced
the greatest value for Juni. This result could lead to a recommendation
to use Juni,f when the technical objective is high prediction accuracies
for all classes, although it could lead to compromising the highest
possible overall accuracy or Kappa value.

An interesting question pertains to the gain in prediction accuracy
when using fitness functions based on maximization of the accuracies
for the categorical variables (Eq. (12)) instead of fitness functions
based on volumes (Eq. (4)). Accuracy measures are somewhat higher
for site fertility when the optimization is based on Eq. (12) rather than
Eq. (4). A similar increase was not achieved when predicting tree
species. This result is attributed to volumes by tree species better
reflecting tree species dominance than site fertility.

4.1.3. Results for site fertility for mineral and peatland soils using
independent data set

Because none of the accuracy measures was clearly superior using
only the reference data, all measures were retained for the analyses
with the independent target data.

The overall increases in accuracy were smaller for the independent
target data (Tables 7 and 8) than for the leave-one-out analyses with
the reference data only (Tables 5 and 6). Despite the large number of
plots in the reference data set, this result is consistent with our
Table 13
Accuracy measures for 955 Italian NFI plots using leave-one-out cross validation for best
of five iterations

Prediction
technique

Forest attribute variable

Conifer/broad-leaved/mixed
dominance

Forest type

Accuracy measure Accuracy measure

OA Juni Jpro Kappa OA Juni Jpro Kappa

k-NN 0.663 0.570 0.634 0.442 0.471 0.272 0.407 0.305
ik-NN OAf

a 0.694 0.597 0.664 0.494 0.534 0.319 0.476 0.386
Juni,f

a 0.668 0.573 0.639 0.454 0.506 0.381 0.478 0.354
Jpro,f

a 0.683 0.588 0.654 0.477 0.519 0.372 0.486 0.372
Kappafa 0.693 0.612 0.671 0.494 0.525 0.346 0.477 0.373

Discriminant
analysis

0.661 0.623 0.656 0.463 0.507 0.468 0.496 0.387

a Accuracy measure used in fitness function for genetic algorithm.



Table 14
Accuracy measures for 318 Italian independent target set plots using 637 reference set
plots for best of five iterations

Prediction
technique

Forest attribute variable

Conifer/broad-leaved/mixed
dominance

Forest type

Accuracy measure Accuracy measure

OA Juni Jpro Kappa OA Juni Jpro Kappa

k-NN 0.632 0.564 0.608 0.401 0.465 0.335 0.435 0.298
ik-NN OAf

a 0.620 0.530 0.582 0.377 0.491 0.330 0.441 0.331
Juni,f

a 0.645 0.548 0.602 0.421 0.525 0.384 0.494 0.373
Jpro,f

a 0.616 0.510 0.567 0.367 0.443 0.306 0.404 0.276
Kappafa 0.632 0.529 0.587 0.392 0.509 0.345 0.466 0.351

Discriminant
analysis

0.619 0.560 0.604 0.386 0.453 0.352 0.418 0.325

a Accuracy measure used in fitness function for genetic algorithm.

Table 16
Error matrix for Italian forest type classification with optimisation using Juni,f in fitness
function

Predicted forest
type classesa

Observed forest type classesa

LSP NSF SP B OB H SS Total User's accuracy
(%)

LSP 20 11 1 6 2 0 5 45 44.4
NSF 20 93 7 11 6 3 1 141 66.0
SP 1 4 8 1 1 0 1 16 50.0
B 2 8 3 24 8 10 1 56 42.9
OB 0 2 1 5 4 6 1 19 21.1
H 3 3 1 5 2 15 0 29 51.7
SS 3 3 2 1 0 0 3 12 25.0
Total 49 124 23 53 23 34 12 318
Producer's
accuracy (%)

40.8 75.0 45.0 45.3 17.4 44.1 25.0 52.5

a See Table 4 for forest type class definitions.
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experiences from the operative Finnish MS-NFI; the errors for the
independent target data at the plot level are usually greater than for
the leave-one-out cross-validation errors for the reference data
(Tomppo, 2006). A second possible reason for these results is that
the areas from which the Finnish independent target data were
selected represent extremes of variation for the forest attribute
variables. Although ik-NN produced slightly better results than
discriminant analysis, none of the fitness functions produced
increases in OA for predictions of site fertility for mineral soils
(Table 7). Optimisation using all four fitness functions increased Juni.
When using OAf for the fitness function, Juni increased by 27%; when
using Kappaf and OAf for the fitness functions, Jpro increased slightly;
and using Kappaf as the fitness function produced the greatest value
for Kappa.

Accuracy increases obtained with GA optimisation for the fitness
functions were greater for site fertility on peatland soils than for
mineral soils. The increases ranged from 10–25% (Table 8). Optimisa-
tion using the fitness function based on Juni,f produced the greatest
values for all accuracy measures for site fertility on peatland. In
addition, these valueswere all greater than those obtainedwhen using
discriminant analysis.

Accuracies obtained with fitness functions based on RMSEs and
biases of volumes (Eq. (4)) formineral soils are, on average, slightly lower
than those based on the fitness functions using the new accuracy
measures (Table 7). On peatland soils, the differences seem to be more
attributable to random variation (Table 8). A reason for these results
could be the previously mentioned difficulty in predicting site fertility.

The fitness function based on Eq. (12) was also tested without
using coarse scale forest variables in the distance metric of Eq. (3a),
i.e., using the distance metric of Eq. (3b). Only OAf was used in these
tests (Tables 7 and 8). Slightly lower accuracies, on the average, were
obtained in predicting site fertility for mineral soils without the
Table 15
Error matrix for Italian forest type classification without optimisation

Predicted forest
type classesa

Observed forest type classesa

LSP NSF SP B OB H SS Total User's accuracy
(%)

LSP 18 16 2 7 3 3 3 52 34.6
NSF 17 86 7 10 5 7 3 135 63.7
SP 2 7 6 2 1 1 0 19 31.6
B 4 6 6 21 8 10 2 57 36.8
OB 1 3 0 6 4 2 1 17 23.5
H 3 4 0 5 2 10 0 24 41.7
SS 4 2 2 2 0 1 3 14 21.4
Total 49 124 23 53 23 34 12 318
Producer's
accuracy (%)

36.7 69.4 26.1 39.6 17.4 29.4 25.0 46.5

a See Table 4 for forest type class definitions.
coarse-scale forest variables than with them. The differences were,
however, small and could be attributed to random variation. For
peatland soils, the opposite results were obtained. This could confirm
the random nature of this test result, the previously mentioned
difficulty in predicting site fertility on peatland soil, or both.

In general, pixel-level prediction of site fertility using satellite
imagery is difficult. On mineral soils, tree species proportions are not
necessarily good indicators of site fertility after intensive forest
management regimes. In these cases, regeneration favours pine on site
fertility class MF and sometimes for class HRHF.

Examples of error matrices for predictions of site fertility with and
without GA optimisation are shown in Tables 9 and 10 for peatland
soils. These results were obtained for the independent target data
using a fitness function based on Juni,f. Regardless of the small
increases in the accuracies, both user's and producer's accuracies
increased in the major classes, except users' accuracy for the MF class
and producer's accuracy for the SX class. The site fertility classes can
be considered to be on an ordinal scale so that an error of one category
(i.e., erroneously predicting an adjacent class) is not as serious as an
error of several categories. The accuracy measures are not sensitive to
the observation that most incorrect predictions are only of one
category.

4.1.4. Dominant tree species for mineral and peatland soils using
independent data sets

Accurate prediction of classes with rare species for Species Grouping
1 was difficult using only reference data. Because accuracies would be
even less when using independent target data, prediction with Species
Grouping 2 was also tested. Tree species dominance results in this
section are given for Species Grouping 2 only. The results presented in
Table 7 for mineral soils and in Table 8 for peatland soils are obtained
using the independent reference and target data sets.

Improvement in accuracy using ik-NN over that obtained with k-
NN is less with the independent test data thanwith the reference data
only. In some cases k-NN gives even slightly better accuracy than ik-
NN. However, differences are small and can be attributed to sampling
and random variation. GA optimisation seems to increase accuracies
slightly more for tree species dominance than for site fertility, except
for the OA measure. Pixel-level OA is approximately 65% for mineral
soils and 80% for peatland soils. The increase in accuracies that can be
attributed to GA optimisation varies from 1–90% for mineral soils and
2–10% for peatland soils. With GA optimisation, k-NN produced
greater accuracies than discriminant analysis with only a few
exceptions; e.g., using Juni for mineral and peatland soils.

One reason for greater OA, as well as greater accuracies for tree
species dominance (Species Grouping 2) on peatland soils than on
mineral soils may be attributed to the fact that 57% of the independent
data plots are pine dominant on mineral soils (Table 2) while the
percentage on peatland soils is 71%.



Table 17
Spectral statistics for reference and independent target sets for Finnish site fertility classes on mineral soils

ETM+ band Measure Site fertility classa

HRS HRHF MF SX X B R

Ref Tar Ref Tar Ref Tar Ref Tar Ref Tar Ref Tar Ref Tar

1 Mean 61.4 60.1 61.6 61.0 62.1 62.2 62.6 62.8 64.4 63.0 64.1 66.4 62.1
St dev 3.3 1.9 3.5 3.7 3.9 4.3 3.7 3.6 4.1 3.2 . 4.2 3.9
Min 57.4 58.2 55.6 54.4 54.3 55.1 55.3 54.7 72.9 57.5 64.1 61.4 59.3
Max 75.9 64.3 74.7 73.3 76.8 79.9 77.4 73.4 58.5 69.8 64.1 73.3 64.9

2 Mean 46.8 46.7 46.6 45.8 46.9 47.4 46.9 47.4 48.8 48.3 49.6 49.4 46.2
St dev 4.5 3.9 5.1 5.1 5.0 5.8 4.0 4.4 3.9 3.1 . 3.8 1.7
Min 40.1 43.1 37.3 37.3 38.9 37.9 39.9 34.0 58.4 43.1 49.6 44.0 45.0
Max 63.6 57.2 64.4 60.8 63.3 66.5 61.5 62.6 42.1 55.5 49.6 56.7 47.4

3 Mean 34.6 33.7 35.2 35.0 37.2 38.4 39.1 40.1 44.3 40.8 39.3 41.8 37.5
St dev 7.8 3.4 7.4 7.3 8.0 9.0 6.8 7.6 7.0 4.8 . 8.6 8.2
Min 27.8 28.6 25.3 26.9 26.7 26.8 29.7 26.8 60.6 32.9 39.3 28.6 31.7
Max 71.8 40.9 68.2 65.6 66.7 71.6 67.8 73.0 33.9 53.4 39.3 60.9 43.3

4 Mean 79.5 76.8 65.1 62.8 58.9 58.4 53.8 54.7 52.2 54.8 50.6 55.6 48.2
St dev 12.8 16.4 14.7 16.3 10.6 11.5 6.1 7.4 4.7 6.7 . 8.5 1.7
Min 47.0 62.1 24.8 38.1 22.7 26.7 39.1 23.7 64.5 48.1 50.6 45.9 47.0
Max 106.7 119.5 120.2 132.3 90.9 94.8 72.3 82.8 45.2 73.9 50.6 79.1 49.4

5 Mean 61.4 64.0 57.3 54.7 58.2 59.9 60.3 63.3 68.0 65.6 62.0 65.8 58.5
St dev 12.3 11.8 20.7 20.6 20.4 23.0 15.9 17.8 14.5 11.0 . 14.8 7.6
Min 38.8 49.0 28.9 28.2 18.6 24.6 35.0 23.7 95.7 44.2 62.0 49.0 53.2
Max 95.5 91.9 123.3 111.1 120.8 122.1 110.6 113.1 49.3 88.3 62.0 94.9 63.9

7 Mean 130.4 129.1 131.3 130.5 132.6 132.5 135.0 135.3 139.1 137.1 131.3 135.0 131.9
St dev 3.6 2.8 5.9 5.4 6.8 6.9 7.0 7.2 6.5 7.1 . 6.2 8.7
Min 124.5 124.6 118.0 123.2 117.5 120.4 120.5 121.2 155.3 124.3 131.3 128.4 125.8
Max 140.5 135.8 161.0 154.9 164.9 158.5 157.4 160.5 128.6 149.9 131.3 145.6 138.0

8 Mean 30.4 30.2 30.6 29.7 32.4 33.7 34.7 36.9 40.4 37.8 35.1 38.1 32.9
St dev 6.7 6.1 12.5 12.3 12.8 14.2 11.0 12.6 10.9 8.0 . 9.9 3.1
Min 21.4 22.5 15.3 16.6 13.4 11.3 21.5 14.4 65.7 24.6 35.1 27.6 30.7
Max 51.4 42.9 87.5 77.9 85.0 83.5 77.8 76.6 25.7 56.5 35.1 57.8 35.0

9 Mean 54.5 55.3 47.3 46.0 44.7 44.6 42.2 42.9 42.8 42.5 41.3 42.6 37.0
St dev 7.1 8.6 9.2 10.2 7.5 8.3 4.6 5.4 3.2 4.5 . 6.2 3.1
Min 36.8 46.0 28.3 29.6 28.8 22.6 29.8 27.9 50.3 32.9 41.3 29.3 34.8
Max 69.7 75.6 73.9 77.0 74.8 67.0 59.7 60.5 37.0 54.4 41.3 55.5 39.1

a See Section 2.1.4 for site fertility class definitions.
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Accuracies for Species Grouping 2 on mineral soils obtained with
fitness functions based on RMSEs and biases of volumes (Eq. (4)) are
also, on average, slightly smaller than accuracies obtained using fitness
functions based on the new accuracy measures (Table 7). Results for
site fertility were similar to those for Species Grouping 2. On peatland
soils, the prediction resultswith fitness functions based on Eq. (4)were
similar (Table 8), although differences are small in both cases.

Accuracies for Species Grouping 2 for OAf with and without use of
the coarse scale forest variables in the distance metric (Eq. (3a)) were
almost the same. On peatland soils slightly greater accuracies were
obtained without coarse scale variables than with them. Again, this
result could reflect the difficulties for prediction for peatland forests,
or a lacking explanatory power of coarse scale variables in predicting
Species Grouping 2 for peatland forests.

Error matrices for tree species dominance predictions (Species
Grouping 2) without GA optimisation are reported in Table 11 and
with GA optimisation in Table 12. GA optimisation produced only
slight increases in accuracies, none of which were statistically
significant. A somewhat greater increase in Juni (Table 7, rows k-NN
and OAf) is caused by a very small increase in the proportion of correct
predictions for birch and other broad-leaved trees.

The statistical significance of differences in prediction accuracies
with and without GA was tested in two cases using the Monte Carlo
permutation test to gain insights for improvements in prediction
using GA. The significance of the difference between accuracies from
two dependent predictions was estimated for independent target data
in Finland. The k-NN accuracies for site fertility for peatland soils
(Table 9) were compared to the ik-NN Juni,f optimized accuracies
(Table 10), and the k-NN accuracies for tree species groups (Species
Grouping 2) on mineral soils (Table 11) were compared to the ik-NN
OA optimized accuracies (Table 12). Accuracies for the four measures
for these predictions are reported in the Tables 7 and 8. For site
fertility on peatland soils, the null hypothesis of no significant
difference between the accuracy measures was only rejected for the
Juni at the α=0.05 level of significance (p-value 0.007). The other
measures were significantly different at the α=0.10 (p-values 0.074,
0.066 and 0.053 for Kappa, OA and Jpro, respectively). For Species
Grouping 2 on mineral soils, the difference between two accuracy
measures was significant at the α=0.05 level only for Juni (p-values
0.754, 0.528, 0.001 and 0.149 for κ, OA, Juni and Jpro, respectively).

4.2. Italian site

4.2.1. Spectral distributions of reference data and target data by
categories

The original spectral values by classes were analysed to compare
spectral variability in the reference and target sets (Table 21). For
classes consisting mostly of conifers (LSP, NFS, and SS), means,
variances and particularly ranges of the spectral values of the
reference and target sets are very different. This phenomenon,
which is more evident in the visible bands than in the infrared
bands, is attributed to two effects: first, random selection of target
plots from the reference set, a relatively small sample size compared
to the variability of the forests and spectral values, and second, the
presence of anomalous spectral values far from the mean.

When analysedwith respect to prediction accuracies, the differences
in the distributions of spectral values by forest type classes apparently
did not directly influence producer's accuracy (Tables 15 and 16). For
example, NSF, the largest of the seven forest type classes, was predicted
well despite substantial differences between the reference and target set
with respect to maximums and standard deviations of spectral values.
However, for OB, despite similarity between the reference and target



Table 18
Spectral statistics for reference and independent target sets for Finnish dominant tree species groups on mineral soils

ETM+ band Measure Tree species groups

Open Pine Spruce Birch Other broad-leaved

Ref Tar Ref Tar Ref Tar Ref Tar Ref Tar

1 Mean 69.1 64.6 62.0 62.5 60.8 61.4 63.5 62.2 65.7 59.8
St dev 4.2 6.5 3.4 3.8 3.4 4.3 4.0 3.9 3.8 1.8
Min 58.1 56.3 54.3 54.7 54.9 54.4 54.6 56.3 59.4 58.2
Max 75.8 79.9 77.4 76.0 75.9 76.7 74.6 73.6 76.8 62.6

2 Mean 54.5 49.6 46.2 47.4 45.1 46.2 50.2 48.9 53.5 46.3
St dev 3.8 7.5 3.8 4.8 4.6 6.1 5.0 5.3 5.4 2.9
Min 42.5 39.9 39.1 34.0 38.9 37.3 39.0 41.1 37.3 41.6
Max 59.3 62.5 61.5 62.6 64.4 66.5 63.3 61.4 62.6 50.3

3 Mean 55.9 45.6 37.0 39.1 34.2 36.3 40.3 38.1 44.5 33.7
St dev 9.4 14 6.7 8.0 6.7 8.7 8.9 9.0 8.8 2.5
Min 33.2 29.4 26.7 26.8 25.6 26.8 25.3 27.6 25.9 31.2
Max 66.7 68.0 67.8 73.0 71.8 71.6 66.4 71.5 66.5 37.9

4 Mean 59.5 55.9 56.2 57.3 56.2 56.8 74.7 75.1 75.5 79.4
St dev 10.2 8.8 8.0 9.2 11.1 13.3 12.4 13.2 11.6 18.3
Min 46.7 42.9 22.7 23.7 35.7 32.8 32.9 50.3 24.8 43.7
Max 88.5 73.8 94.2 91.3 91.3 98.9 120.2 132.3 95.4 91.4

5 Mean 95.6 74.2 56.4 62.0 48.5 53.5 75.2 70.0 85.8 62.9
St dev 16.1 32.7 15.1 19.4 17.7 23.2 18.6 18.4 16.3 16.9
Min 41.5 36.0 18.6 23.7 28.9 27.9 35.1 41.9 33.1 33.3
Max 120.8 120.3 114.4 91.3 123.3 122.1 115.8 115.4 114.7 84.1

7 Mean 146.6 137.9 132.9 133.9 130.4 130.8 135.0 132.5 137.2 129.5
St dev 8.1 10.7 6.5 6.9 5.7 6.4 6.9 6.2 6.8 2.0
Min 131.9 124.8 117.5 120.9 118.0 120.4 123.4 122.6 125.3 127.7
Max 164.9 155.4 164.1 160.5 157.4 158.5 159.2 156.3 152.6 133.3

8 Mean 59.6 44.7 31.7 35.3 27.1 30.1 39.9 36.6 46.6 30.2
St dev 13.7 21.1 10.3 13.0 11.2 13.8 12.8 11.4 12.2 6.8
Min 24.9 19.6 13.4 11.3 15.3 16.4 19.5 22.6 17.6 19.8
Max 85.0 72 77.9 79.6 87.5 83.5 69.8 72.5 78.8 41.0

9 Mean 49.0 44 43.0 44.1 42.2 43.1 54.3 54.5 56.3 53.9
St dev 5.4 8.5 5.4 6.4 7.5 9.4 6.8 7.5 5.9 11.3
Min 37.3 33.5 28.9 25.6 28.3 22.6 37.0 39.0 42.8 32.3
Max 61.4 63.6 74.8 66.4 65.4 67.0 73.9 77.0 68.7 62.6
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setswith respect to distributionsof spectral values,misclassificationwas
high, possibly because of the low frequency in the reference set relative
to other classes such as NSF.

Overall, accuracy was possibly influenced by the number of
observations for each class which supports the assertion that
successful application of nearest neighbour techniques requires a
sample of the population of interest that is representative for both
feature space and response variables (Moeur, 1988).

4.2.2. Accuracy assessment using reference data
Results for the four accuracy measures for the Italian test site using

leave-one-out cross-validation with and without GA optimisation for
the different fitness functions are reported in Table 13. Accuracies for
the discriminant analyses are also reported. GA optimisation produced
slight increases in accuracy as for the Finnish site. OA increased from
66.3% to 69.4% for CBM and from 47.1% to 53.4% for forest type using
OAf in the fitness function.

As for the Finnish site, the different fitness functions did not
produce large differences in accuracies. The effect of the number of the
observations in the classes can be seen in the values of Juni which are
greater for CBM than for forest type. These results can be attributed to
the smaller number of classes and the larger number of observations
per class for CBM than for forest type which results in smaller
probabilities of large prediction errors for the CBM class.

GA optimisationwith k-NN usually produced greater accuracies for
all measures compared to k-NN without optimisation, except for Juni
as was the case for the Finnish site (Table 13). These results together
with the results from the Finnish test sites could indicate the limited
capability of a non-parametric k-NN method to predict classes with
very few observations, particularly when variation within classes in
the feature space variables is large.
4.2.3. Results with the independent reference and target data
When predicting categories for independent target sets, the

optimal weights for feature space variables were determined using
the reference data only (Subsection 2.2.2). GA optimisation produced
smaller accuracy increases for the independent target data than for
the reference data using leave-one-out cross-validation (Table 14). GA
optimisation using Juni,f in the fitness function generally produced the
greatest accuracies. The increase in OA for CBM was only approxi-
mately 2% and for Kappa approximately 5%. Juni and Jpro were greatest
without optimisation.

When using Juni,f as a fitness function, the increase in the accuracy of
forest type predictions was 13% for OA, 15%, for Juni, 14% for Jpro and 25%
for Kappa. Despite the small increases in accuracies, both user's and
producer's accuracies increased for nearly all categories when GA
optimisation was used; for example, forest type optimised with Juni
(Tables 15 and 16), except user's accuracy in the other broad-leaved
category for which the number of the target observations is small.

For the Italian analyses, GA optimisation produced greater accuracy
gains for forest type than for CBM. These results may be attributed to
either the greaterweight assigned to forest type in theGAoptimisation or
the greater opportunity for improvement for forest type because
accuracies for CBMwere already relatively highwithout GAoptimisation.

5. Discussion and conclusions

We have reported methods and new fitness functions for
predicting classes of categorical variables using both the k-NN and
ik-NN techniques. In most cases, GA optimization produced slight
increases in the values of accuracy measures relative to the ones
obtained without GA optimisation. An underlying assumption was
that field classification was correct.



Table 19
Spectral statistics for reference and independent target sets for Finnish site fertility classes on peatland soils

ETM+ band Measure Site fertility classa

HRS HRHF MF SX X B

Ref Tar Ref Tar Ref Tar Ref Tar Ref Tar Ref Tar

1 Mean 61.3 61.4 62.0 61.3 61.4 61.1 61.8 61.7 63.5 63.3 64.8 65.2
St dev 2.7 3.7 3.3 3.4 3.4 3.1 3.0 2.5 3.6 3.0 2.7 2.3
Min 57.5 58.6 54.5 56.4 54.4 56.4 55.5 56.4 56.5 58.5 60.6 61.4
Max 66.8 66.9 72.9 70.9 76.0 70.9 72.1 70.8 75.0 72.7 72.9 69.8

2 Mean 46.1 48.1 47.6 46.3 45.8 46.2 46.4 46.5 48.8 48.0 51.3 51.1
St dev 2.9 3.6 4.7 5.1 4.4 3.9 3.5 3.0 5.1 4.6 3.3 3.5
Min 42.1 44.2 34.9 39.0 31.8 38.9 41.1 41.0 41.0 41.0 45.2 47.2
Max 52.4 52.5 60.6 59.6 61.6 57.5 61.5 57.6 65.8 62.6 62.6 59.6

3 Mean 33.5 35.7 37.4 37.2 35.9 35.8 38.1 38.1 44.2 42.9 49.9 47.8
St dev 4.1 5.4 7.0 8.9 7.0 6.4 6.8 5.9 9.2 8.4 5.6 5.9
Min 27.7 30.9 27.7 28.8 21.6 27.7 29.7 28.8 29.7 30.8 38.0 40.1
Max 40.1 43.2 61.6 63.7 68.8 58.5 64.6 58.5 72.0 70.9 65.7 61.6

4 Mean 70.2 74.6 67.4 63.9 57.9 59.5 56.7 56.6 59.2 56.4 68.7 65.8
St dev 14.8 23.2 14.0 17.6 11.3 10.7 7.1 6.2 10.8 8.4 12.0 14.3
Min 50.3 51.4 22.6 32.9 11.3 39.9 46.2 41.0 45.1 36.9 51.4 48.4
Max 95.4 98.9 105.2 105.8 87.0 85.5 86.1 70.8 91.4 81.1 93.5 90.2

5 Mean 58.0 63.2 64.6 59.2 55.1 55.2 56.2 58.0 62.0 62.4 67.7 72.3
St dev 12.0 9.4 15.2 21.4 17.2 14.9 9.2 10.2 10.2 10.6 6.8 6.0
Min 38.0 52.3 32.8 31.8 9.2 31.8 39.0 31.8 35.9 21.6 48.3 65.6
Max 83.6 75.2 97.6 101.7 106.8 93.5 89.2 87.3 101.8 83.1 80.1 87.3

7 Mean 131.1 131.3 133.1 131.8 131.9 131.1 133.7 133.4 138.1 136.6 144.3 141.6
St dev 4.3 4.3 5.4 5.4 5.3 4.1 5.3 4.9 6.2 5.3 4.9 5.1
Min 125.8 125.5 123.6 123.2 121.2 123.4 123.1 125.3 126.1 126.1 133.5 130.2
Max 140.6 134.7 145.6 142.8 148.3 144.2 149.9 147.9 153.0 149.7 152.0 149.7

8 Mean 30.5 32.1 34.7 31.7 30.2 30.4 31.6 32.4 35.7 36.0 38.3 41.3
St dev 7.8 3.7 9.5 11.4 10.0 8.9 5.8 6.2 6.6 6.7 4.0 4.4
Min 20.5 28.8 18.5 18.5 10.3 17.4 22.5 20.5 21.6 18.5 27.7 34.9
Max 51.4 37.1 60.6 63.7 66.8 57.5 53.4 50.4 65.8 53.4 46.2 51.4

9 Mean 48.3 52.2 49.5 46.2 43.8 44.2 43.6 43.3 46.3 44.5 52.7 50.8
St dev 7.5 9.6 7.7 9.3 7.0 6.9 6.0 4.7 8.1 7.1 7.8 9.7
Min 35.9 43.1 30.8 27.7 16.4 30.7 30.8 31.8 30.8 28.7 40.0 37.1
Max 63.6 62.8 66.6 68.9 61.7 58.7 68.5 56.5 72.0 65.7 65.7 67.8

a See Section 2.1.4 for site fertility class definitions.
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Classes of categorical forest attribute variables such as site fertility
and tree species dominance in Finland and conifer/broad-leaved
dominance in Italy are difficult to predict using satellite imagery and
result in large prediction errors. This difficulty may be partially
attributed to the fact that the assessment of these variables, particularly
site fertility, is sometimes difficult even in the field, and that the forest
attribute variables were assessed at stand-level. This latter fact could
have a positive effect on prediction accuracy if forest stands are
homogeneous. However, within stand variation for attributes such as
proportions for dominant tree species, may lead to differences between
stand-level field data and spectral data, particularly for small pixel sizes.
Under such conditions, opportunities for increased accuracies using GA
optimisation of weights for feature space variables are limited. These
response variables were used, despite prediction difficulties, because
they are often selected as key indicator variables in international
assessments. Overall accuracy (OA) for site fertility for the Finnish test
site with the independent reference and target data was approximately
60% for mineral soils and 50% for peatland soils. OA for tree species
dominance was 65% on mineral soils and 80% on peatland soils. For the
Italian site, when using GA optimisation and an independent target set,
OA for forest type increased from 47.1% to 53.4%, and OA for CBM
increased from 63.2% to 64.5%.

Increases in classical user's and producer's accuracies are somewhat
greater than the OA measure reveals. For the ordinal scale site fertility
variable in Finland, most incorrect predictions were not incorrect by
more thanone class. Foroperational applications, a classification error of
one class is less severe than a larger error. Neither OA nor the producer's
and user's accuracies by classes are sensitive to the magnitude of the
incorrect predictions for ordinal scale variables. This problem is
discussed in Tomppo (1992) and is a topic for future studies.
For all analyses, k=5 was used. Franco-Lopez et al. (2001)
reported that increasing k beyond k=1 increased OA but decreased
producer's accuracy for less populated classes in k-NN estimation of
forest cover type and basal area classes. There seemed to be a tradeoff
between OA and mean class accuracy when choosing the k-value.
Inclusion of the k-value in the GA optimization remains a subject for
future study.

For the Finnish analyses, we also tested GA optimization using
fitness functions based on RMSEs and biases of volumes as in Tomppo
and Halme (2004), and GA optimisation without using coarse scale
forest variables in the distance metric. The overall result was that on
mineral soils, accuracies were slightly greater when predicting site
fertility and dominant tree species (Species Grouping 2) when using
the new fitness functions than the fitness functions based on RMSEs
and biases of volumes. On peatland soils, the accuracies did not
increase in a same way, almost vice versa. This result reflects the
difficulties in prediction for peatland forests where spectral values are
affected by moisture variation and not directly linked to the variation
of forest variables.

One of the new fitness functions (OAf) was tested without use of
the coarse scale forest variables in the distance metric for the Finnish
analyses. For predicting site fertility, accuracies were only slightly less
without coarse-scale forest variables thanwith them, or in some cases
equal. The differences were small and could be caused by random
variation. For peatland soils, the result was opposite, as well as for
dominant tree species. Thus, the role and selection of coarse scale
forest variables for predicting categorical forest variables require
further investigation. For predicting volume, the positive effects of
using of coarse scale variables in the distance metrics have been
shown to be significant (Tomppo & Halme, 2004).



Table 20
Spectral statistics for reference and independent target sets for Finnish dominant tree
species groups on peatland soils

ETM+
band

Measure Tree species groups

Open Pine Spruce Birch

Ref Tar Ref Tar Ref Tar Ref Tar

1 Mean 66.3 65.8 61.8 62.1 60.5 60.0 62.7 60.9
St dev 3.9 3.8 2.8 2.6 2.5 2.7 3.5 2.9
Min 54.4 58.4 55.5 56.4 54.5 56.4 56.6 57.4
Max 76.0 70.9 72.0 72.7 68.8 67.8 73.0 66.9

2 Mean 52.9 52.8 46.3 46.8 44.5 44.4 48.7 47.6
St dev 6.0 6.1 3.1 3.2 3.7 3.6 4.2 3.1
Min 31.8 38.9 39.0 41.0 39.0 39.0 41.1 42.1
Max 65.8 62.6 63.6 59.5 57.4 54.5 60.6 55.5

3 Mean 52.8 52.7 38.3 38.9 33.1 33.3 38.6 35.8
St dev 9.2 10.0 6.1 6.0 4.6 5.2 7.4 5.3
Min 21.6 28.7 25.7 27.7 26.6 27.7 28.8 28.8
Max 72.0 70.9 66.7 61.4 48.3 53.4 58.5 46.2

4 Mean 68.0 63.8 56.4 56.7 55.4 54.9 72.1 73.7
St dev 16.4 13.6 6.7 7.1 9.7 11.5 11.5 11.3
Min 11.3 32.9 44.2 36.9 40.9 41.0 44.2 51.4
Max 93.5 90.2 87.0 81.3 93.2 98.9 105.2 105.8

5 Mean 61.2 64.0 58.4 60.1 47.2 47.0 70.8 65.4
St dev 16.5 19.4 9.8 10.5 12.1 14.4 14.7 11.0
Min 9.2 21.6 40.1 40.0 32.8 31.8 43.1 52.3
Max 106.8 101.7 94.5 90.7 97.3 97.6 105.3 93.5

7 Mean 144.4 140.4 133.9 133.9 129.6 129.8 134.7 133.0
St dev 5.4 6.4 5.0 4.9 4.0 4.2 6.3 4.4
Min 128.4 123.9 121.2 125.3 123.1 123.2 124.3 125.5
Max 153.0 149.7 149.9 149.7 144.8 139.9 149.9 143.8

8 Mean 36.7 38.8 32.7 33.8 25.7 26.1 37.5 33.0
St dev 9.8 11.1 6.2 6.8 6.7 7.8 10.2 6.1
Min 10.3 18.5 20.5 20.5 18.4 17.4 22.6 24.6
Max 66.8 63.7 56.5 54.3 51.2 53.4 62.4 47.2

9 Mean 53.4 50.2 43.4 43.6 41.7 41.0 52.0 52.1
St dev 10.7 10.5 5.0 5.3 6.4 6.5 6.1 5.7
Min 16.4 27.7 30.8 28.7 30.8 30.8 38.1 39.0
Max 72.0 67.8 68.7 60.6 66.6 62.8 64.8 69.8
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Increases in accuracy were somewhat greater when using leave-
one-out cross-validation for reference data than for independent
target data, although not for all variables. These results could possibly
Table 21
Spectral statistics for reference and target sets for Italian forest type classes

TM band Measure Forest type classa

LSP NSF PF

Ref Tar Ref Tar Ref Tar

1 Mean 53.4 60.7 50.2 52.5 53.9 56.7
St dev 11.7 39.4 3.9 19.3 5.1 6.2
Min 44 45 41 43 47 49
Max 137 255 71 255 79 77

2 Mean 23.3 27.8 20.5 22.1 21.7 24.0
St dev 7.7 22.2 3.0 13.6 3.7 4.6
Min 15 19 13 17 18 19
Max 73 144 35 166 41 39

3 Mean 20.6 26.1 17.0 18.9 19.1 21.6
St dev 10.4 28.3 3.3 17.5 5.2 6.4
Min 12 14 11 12 14 16
Max 92 173 30 205 46 42

4 Mean 74.1 82.7 69.0 69.2 72.1 78.5
St dev 23.0 29.2 24.1 25.7 22.8 24.7
Min 10 40 13 35 33 50
Max 143 162 144 180 124 130

5 Mean 56.3 66.3 42.3 43.8 51.7 59.1
St dev 24.0 34.1 18.6 25.0 17.6 20.8
Min 11 29 8 16 19 33
Max 177 214 109 233 103 99

7 Mean 20.0 25.3 14.1 15.9 17.1 20.5
St dev 10.4 20.8 6.1 13.6 6.5 8.5
Min 4 10 3 6 6 11
Max 78 132 49 140 45 49

a See Table 4 for forest type class definitions.
be attributed to the fact the GA is trained with reference data and also,
to some extent, problems in using leave-one-out RMSE as an error
estimate (Kim & Tomppo, 2006), which causes underestimation of
prediction error (Hammond & Verbyla, 1996). Also, prediction errors
are overestimated as a result of field plot location errors (Halme &
Tomppo, 2001; Verbyla & Hammond, 1995). Our tests confirm that
leave-one-out approaches do not necessarily produce realistic error
estimates, particularly when dealing with error estimates by strata
such as mineral and peatland soils. Therefore the pixel-level results
should often be considered in a relative manner rather than in terms
of absolute measures of accuracy.

Prediction errors were also analysed with respect to the spectral
distributions of reference and target data by classes of the categorical
forest attribute variables. A portion of the prediction errors can be
explained by differences in the ranges of spectral feature space
variables for the reference and target data sets. A thorough diagnostic
analysis, as well as a large reference set is an important precondi-
tion for successful use of nearest neighbour techniques (McRoberts,
2009-this issue).

Several questions should be addressed in future studies:

(a) What are relevant accuracy statistics for assessing the quality of
predictions of categorical variables?

(b) Is it possible to derive feasible accuracymeasures from the ones
discussed in this study, e.g., weighting the measures by classes
or taking into account the severity of pixel-level prediction
errors?

(c) To what degree can accuracy be increased if the weights for the
feature space variables are determined separately for indivi-
dual response variables compared to estimating the weights
simultaneously for all variables or for a group of variables?

(d) What are the effects of separate and joint estimation of the
feature space weights on the covariances of the predictions of
response variables relative to the covariances of observations of
the variables?

(e) What are the effects of greater accuracy of field assessments
and elimination of subjective factors on the increase in
classification accuracy that can be attributed to GA
B OB H SS

Ref Tar Ref Tar Ref Tar Ref Tar

53.0 52.9 57.0 55.2 57.0 57.1 66.6 59.7
3.7 3.4 7.1 5.1 4.7 5.5 42.0 10.6

46 47 47 49 49 47 47 46
69 66 82 67 77 73 255 88
21.8 21.6 24.3 23.5 23.8 24.5 31.7 27.8
2.7 2.3 4.7 3.7 3.4 4.1 25.2 6.2
17 16 16 18 18 18 18 19
36 27 39 32 37 36 144 42
17.9 17.9 21.0 19.9 20.0 20.6 32.2 27.4
3.6 2.8 6.4 4.6 4.4 4.3 32.6 9.3

13 14 13 14 14 15 16 17
43 30 42 32 38 36 177 46
101.5 95.3 100.3 100.0 99.5 101.3 82.5 79.3
28.2 26.1 27.6 31.7 21.0 27.5 27.7 28.1
41 35 41 43 50 46 44 36

164 157 145 161 146 149 171 145
66.0 62.8 68.7 69.7 72.5 73.5 79.1 74.1
18.8 16.4 18.6 20.9 17.2 19.7 38.5 26.7
18 24 24 34 33 26 32 25

128 92 119 107 102 100 222 124
20.2 18.8 22.0 21.9 22.8 22.9 32.9 30.3
6.0 5.1 9.1 7.5 6.4 6.1 24.6 14.7
8 9 7 10 11 10 13 9

52 35 61 41 39 36 131 61
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optimisation? Also, what are the effects on the results for
different accuracy measures?

In this study, the effects of estimating weights for feature space
variables separately or jointly for the two response variables of
interest were evaluated for both test sites. Only small differences in
accuracies were found for the Italian data, whereas somewhat greater
accuracies were found for the Finnish data when estimating the
weights separately. A possible explanation is that the Italian response
variables were highly dependent whereas the dependencewas less for
the Finnish variables.

One outcome from the study is that GA optimisation could be a tool
toweight the spectral variables to tailor a classification algorithm for a
specific technical objective such as maximising overall accuracy,
maximising the greatest user's or producer's accuracy, or minimising
the greatest class error. Although results for different fitness functions
and different accuracy measures were somewhat mixed and further
investigations are necessary before a final recommendation can be
made, a clear conclusion is that selection of the fitness functions and
accuracy measures depend on user needs.
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