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Abstract 

 

Making stand-based forest management decisions is difficult for landowners of large tracts 

because creating, managing, and updating stand maps is expensive and time consuming. 

Recently, advances in image processing in the area of image segmentation have made this task 

easier. The goal of the study reported here was to develop a method to delineate forest stands 

using image segmentation, assign to them forest characteristics, and assess their quality. We 
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combined Landsat satellite and National Aerial Imagery Program (NAIP) aerial imagery to create 

a multispectral, 5-m resolution dataset, used image segmentation to delineate homogeneous 

landscape polygons, and used these polygons to aggregate a pixel-based map that imputes plot 

data to each pixel on the Green Ridge State Forest in Maryland. We also developed a quality 

assurance assessment method for the resulting stands and pixel-based maps.  

 

Keywords. Image classification, eCognition, stand delineation, classification validation. 

 

Introduction 

 

A key to sound forest management for landowners of large tracts, such as local, state and federal 

governments, timber companies, and other nongovernmental organizations, is balancing 

economic, ecological, and recreational needs associated with their lands. Recognition of proper 

management by third-party certification bodies, such as the Sustainable Forestry Initiative, 

requires landowners to have full accountability of their lands at the forest stand level 

(Sustainable Forestry Board, 2004). 

 

Landowners of large tracts often conduct stand-based management in which groups of adjacent 

trees with similar characteristics, such as age or species composition, are managed the same, 

such as with thinning, pruning, harvest, or understory herbicide application. This is often done to 

increase efficiency in preparation for harvesting, yet it also ensures overall forest health by 

mimicking natural disturbance patterns across the landscape through appropriate silvicultural 

management (Hicks, 1998).  

 

A problem that frequently occurs with large land holdings, however, is that the creation of maps 

of stands and their characteristics is very time consuming and can require extensive field 

reconnaissance and perhaps manual photointerpretation (Brohman and Bryant, 2005; Hamilton et 

al., 2007). Over the past 15 years, as geographic information systems (GIS), remote sensing 

statistical methods and software, and digital aerial imagery have become cost effective and easy 

to use, significant progress has been made in automatic image segmentation procedures 

(Haralick and Shapiro, 1985; Pal and Pal, 1993). Image segmentation is the process whereby sets 

of contiguous pixels in images are grouped based on the spectral composition of the image. For 

example, in the context of remote sensing imagery, image segmentation can draw polygons 

around features such as clearcuts in forests, roads, individual tree crowns that a manual 

photointerpreter might choose to delineate. For example, van Aardt et al. (2006) successfully 

used image segmentation to segment forests in Virginia to improve aboveground biomass 

modeling results. Makela and Pekkarinen (2001) used image segmentation to improve plot-level 

estimates of timber volume using Landsat imagery. Dorren et al. (2003) found that segmenting 

Landsat images with digital elevation model-based data improved classification accuracy in 

mountainous areas. Finally, Wang et al. (2004) used image segmentation to improve maps of 

mangrove stands relative to results obtained from pixel-based classification. 

 

The goal of the this study is to develop a method with which to create vector (polygon) GIS 

layers representing stand-scale management units for the state forest holdings administered by 

the Maryland Department of Natural Resources (MDNR). The technique should be general 

enough to be applied across all state forests in Maryland and not require large amounts of user 
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intervention. Finally, there should be a way to assess the quality of the resulting maps and thus 

their potential usefulness to resource managers.  

 

Methods 

 

Study Area 

 

The study was conducted using imagery covering a portion of the Green Ridge State Forest, 

located in eastern Allegany County, Maryland (Figure 1). The 18,600-ha area is mostly forested 

and consists of mixed oak-hickory forest types with small patches of conifers intermingled with 

hardwoods.  

 

Plot Data 

 

Continuous Forest Inventory (CFI) data were collected on approximately 440 inventory plots 

spaced uniformly, approximately 600 m apart during the summer months between 1999 and 

2001. The objective of the CFI is to periodically collect data on growth, volume, and other forest 

conditions to assist in making decisions relative to short- and long-term forest resource planning 

and operations. Each CFI plot consisted of a 16.7-m radius circular area within which species, 

diameter at breast height (DBH), and several other measurements were recorded on trees greater 

than 12.7 cm DBH. Total plot basal area by species was calculated, as well as relative basal area 

of conifer and hardwood species. A global positioning system (GPS) was used to record the 

latitude and longitude of the center of each plot; these position points were remeasured in the 

summer of 2007 to verify accuracy. 

 

 

 

 

 
 

Figure 1. The Green Ridge State Forest is located in Allegany County, MD. 
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Imagery and Predictor Data 

 

Figure 2 gives a methodology overview of the data preparation and modeling procedures. We 

used the following data in the study: brightness, greenness, and wetness layers derived from 

tasseled cap transformations (Huang et al., 2002) of 30-m pixel size Landsat imagery from circa 

2000; 1-m pixel size natural color National Aerial Imagery Program (NAIP) 2006 photography; 

and 30-m pixel size digital elevation model (DEM) derivatives, including elevation, slope, 

aspect, and a position index (Homer et al., 2004). The Landsat and DEM-based data were 

obtained from the USGS NLCD 2001 consortium data archive (Homer et al., 2004), and the 

NAIP imagery was obtained from the U.S. Department of Agriculture Internet Data Gateway 

(http://datagateway.nrcs.usda.gov/). Prior to preparing the Landsat and DEM data for 

segmentation, the first (red) band of the 1-m NAIP imagery was aggregated to 5 m by assigning 

to each resultant 5-m pixel the average value of the 1-m pixels falling within it. To prepare the 

data for segmentation, the “resolution merge” procedure in Leica Imagine1 was used to increase 

the resolution of the Landsat and DEM data by combining them with the first band of the derived 

5-m NAIP imagery. We chose the first band of the NAIP imagery for this process because it 

exhibited the most visual detail. We acknowledge that the time difference between the 2000  
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Figure 2. Methodology overview. 30-m Landsat imagery (a) was combined with 1-m NAIP 

imagery (b) using the resolution merge procedure to create a 5-m multispectral input image 

for segmentation. ECognition software was used to segment this image (c). The polygons 

from image segmentation (d) were combined with a 30-m output from a WEKA-based 

image classification (e) to produce the final, classified stand map (f). 

 

                                                 
1 The use of trade, firm or corporation names in this publication is for the information of the reader. Such use does 

not constitute an official endorsement or approval by the USDA or the Forest Service of any product or service to 

the exclusion of others that may be suitable. 



5 

Landsat and the 2006 NAIP imagery will result in anomalous regions on the output maps in areas 

with land disturbance since 2000, but the MDNR has kept GIS files covering areas that have 

been harvested during that time period, allowing for post-processing to be performed. 

 

Segmentation 

 

Definiens (Munich, Germany) eCognition1 software was used to produce homogeneous 

landscape polygons from an arbitrarily chosen spatial subset of the resolution merged imagery. 

The segmentation methodology in eCognition involves changing certain program parameters 

related to size, shape, and spectral composition of the resulting polygons, as well as to 

combinations of the input layers and associated weights. This unique combination will generally 

vary by dataset, so we will not elaborate on the specifics of parameter choices and band 

combinations made; details of parameter choices are on file at the Green Ridge State Forest 

Office, 28700 Headquarters Dr NE, Flintstone, MD 21530.  

 

After various segmentation iterations and subjective comparison of results with local knowledge, 

field visits, and digital aerial photography interpretation, MDNR staff chose a combination of 

layer weighting, scale, and other segmentation parameters that yielded polygons which closely 

approximated useful stands. The polygonal segmentation results were exported as an ESRI 

shapefile. 

 

Pixel and Stand Classification 

 

The IB1 classifier in the WEKA data-mining software1 was used to create a model that calculated 

unweighted Euclidean distances between each instance in the modeling dataset and unlabeled 

instances for which predictions were desired, using the rescaled (minimum of 0, maximum of 1) 

30-m Landsat and DEM-based layers as the distance defining axes (Aha and Kibler, 1991; 

Witten and Eibe, 2005). After attempting various data-reduction strategies, we decided to use the 

full set of 30-m predictor data for the modeling because results varied by only a few percent 

when comparing results from different subsets of the variables or composite layers such as 

principal components. Furthermore, our goal was not necessarily to produce the best possible 

map for an individual attribute, but rather to develop a general technique that can be applied with 

minimal user intervention to a suite of attributes. 

 

Leica Imagine’s “pixel to ascii” procedure was used to decompose the stack of Landsat and 

DEM predictor data into a text format matrix in which each row represented an unclassified 

instance. The text matrix was reformatted for use by WEKA by creating an appropriate header 

and delimiting it with commas. The IB1 model from WEKA was then used to assign the CFI plot 

identifier value (PID) to each row of this text matrix (pixel location) in the Green Ridge Forest 

study area based on the Euclidean distance between each observation with known PID (the CFI 

plots and associated vector of predictor data) and each row in the WEKA-formatted text matrix 

of predictor data (pixels with unknown CFI data). The resultant vector of predictions was then 

converted to a PID image using Imagine’s “ascii to pixel” procedure. The PID image was then 

joined to the CFI dataset via the PID attribute, in effect attaching to each pixel of the PID image 

the entire associated CFI plot record. 
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Finally, ArcMap’s “summarize zones” procedure was used to calculate the mean pixel value for 

the “percent conifer basal area” CFI attribute from the pixels falling within each eCognition-

derived stand polygon. Final maps of this attribute were produced for quality assurance 

assessment. 

 

Quality Assurance 

 

To assess the quality and potential usefulness of the resulting classified image and stand, three 

methods were applied. First, a 20-fold cross validation of the IB1 model was applied in WEKA. 

For each of 20 iterations, a different 5 percent of the training data was withheld (without 

replacement), the IB1 model was created using the remaining 95 percent of the data, and 

predictions of percent conifer basal area for the remaining 5 percent of the instances were 

created. To assess the relationship between the set of actual and predicted values, a scatterplot 

was created and we calculated the R2, slope, and intercept of the simple linear regression line 

passing through the cloud of actual vs. predicted points. We consider these three metrics, when 

used together, to serve as an index of confidence in the model outputs at the individual pixel 

level. A perfect model would have an R2 of 1.0, a slope of 1 and y intercept of 0; the proximity of 

the observed values for these metrics to the ideal model can be used as a subjective quality 

assurance metric. 

 

The second quality assessment was a window-based geographic aggregation and comparison of 

the actual and predicted data. First, a 2 x 2-km vector grid covering a subset of the study area 

was generated in ArcMap (Figure 3). Within each vector grid cell that contained at least six plots 

(a number we arbitrarily chose), the average predicted value and the average actual value were 

calculated, and the set of results were plotted and assessed as described previously. The intent of 

this assessment was to look at the actual vs. predicted relationship at a coarser scale than the 

previously described plot-pixel comparison. 

 

Finally, to understand the relationship between actual plot data and the distribution of estimates 

of an attribute from the stand within which they sit, we determined the percent of the plots that 

fall within the middle 10, 20, 30, 40, 50, 60, 70, 80 and 90 percent of the distributions of 

estimates (e.g., Figure 4). If a larger proportion of the plots than would be expected by chance 

fall within a given region of the distributions of estimates, this suggests that there is logical 

agreement between the set of pixel-based estimates and the stands, giving the map consumer 

more confidence in the map’s quality. 

 

Results 

 

Patterns in the pixel-based map of percent conifer basal area in a subset of the Green Ridge 

Forest (Figure 5a) and the classified stand map (Figure 5b) generally reflect patterns seen in the 

original plot data (Figure 5c). The plot-pixel quality assurance comparison of actual vs. predicted 

values is shown in Figure 6. For this attribute the R2 value was 0.3, the slope of the regression 

line was 0.5, and the y intercept value was 0.08. When assessing the actual vs. predicted 

relationship using the 2-km window-based averaging approach, the R2 improved to 0.5 and the y 

intercept improved to 0.06, but the slope worsened to 0.4 (Figure 7). 
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Figure 3. A vector grid was overlaid on a subset of the pixel-based map. For each grid cell 

within which six CFI plots fell (cells that are highlighted), the mean CFI value and the 

mean pixel value of percent conifer basal area were calculated and values were plotted 

(Figure 7). 
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Figure 4. The area of the distribution of this contrived example between the dashed lines is 

the interquartile range (IQR), or middle 50 percent of the frequency distribution of 

estimates. If a given plot’s value falls within that portion of the distribution 50 percent or 

less of the time, then the stands are not very homogeneous, or the plots have anomalous 

values compared to their neighbors in the stand. In either case, the usefulness of the stand 

results is questionable. 
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Figure 5. The pixel-based map of percent (proportion) conifer basal area(a); the classified 

stand map (b); and the CFI dot map (c). All estimates range from 0 to 1. 

 

 

 
 

 

 

Figure 6. Scatterplot of actual vs. predicted proportion conifer basal area. 

 

 

When examining the percentage of plots that fell within given regions of the distributions of 

estimates for the stands in which the plots fell, we found that for each region of the distribution, a 

larger percentage of the plots fell in the region than would be expected by chance (Figure 8). The 

relationship approached 1:1 as the region of the distributions examined approached the middle 

90%. 

 

Discussion 

 

The intent of this study was to develop a general technique for using digital imagery and image 

segmentation software to create stand maps, and for labeling these with information from a 

classified pixel-based map. The particular attribute chosen for illustration of this technique, 

percent conifer basal area, was chosen because we have found through past experience that  
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Figure 7. Scatterplot of actual vs. predicted proportion conifer basal area within 2-km 

windows. 
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Figure 8. The relationship between the percentage of the plots that fall in a portion of the 

distribution of pixels within a stand, across all the stands, and that portion of the 

distribution. The 1:1 line is included for reference and represents the values that would be 

expected by chance. 
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pixel and stand maps. This is reinforced by the improvement in some of the actual vs. predicted 

assessment metrics when the analysis is carried out within a set of 2-km windows (Figure 7). 

This suggests that use of the results at scales coarser than the pixel level might be most 

appropriate. 

 

Both the plot-pixel, and the 2-km window based scatterplots show slopes that are much less than 

1, indicating a truncation of the variance of estimates caused by an overestimation of small 

values and an underestimation of large values. This frequently occurs in prediction studies of this 

nature because neither the plot information nor the satellite data are collected without error, so 

with a weakened relationship between the predictors and the dependent data, estimation errors 

occur. The erroneous estimates due to random error are more likely to come from the center of 

the distribution of true data than from the extremes because there are more data that fall in the 

center (Curran and Hay, 1986; Lister and Lister, 2006). A number of sources of measurement 

error exist, including atmospheric contamination of the satellite measurements, poor spatial co-

registration of the plots and pixels, errors in plot data accounting, and measurement error on the 

plots. For this particular case study, a general technique was desired and minimal outlier removal 

attempts were made. Once the technique is refined, future research will involve improved data 

cleansing and data reduction methods that optimize the relationship between the attribute of 

interest and the predictors. 

 

The stands that were created appear to be at least partly effective at grouping pixels with similar 

levels of conifer basal area percentage together. Figure 8 shows that more than 50 percent of the 

plots fall within the middle 10 percent of the distributions of estimates found in the stands in 

which they sit. To interpret these results, it is helpful to consider a null model in which pixel 

estimates were randomized and then grouped by the stands. Chance would dictate that for a 

given stand 10 percent of the time, a given plot value would fall in the middle 10 percent of the 

distribution of estimates (between the 45th and 55th percentiles). However, the plots do seem to 

be more representative of the stands in which they sit than would be found by chance. In other 

words, groups of contiguous estimates of similar magnitude and the stand delineation (which was 

done independently of the classification using some of the same input data) seem to agree 

spatially. The magnitude of this agreement, as depicted on Figure 7, provides the map user an 

index of confidence in the stand attribution procedure. 

 

This technique has drawbacks. For example, past experience has shown us that by tailoring data 

reduction and outlier removal methods to the prediction of a specific attribute, improvements can 

be made over the naïve, generalized approach we present here. However, for practical reasons, 

Maryland DNR might find our approach useful because the modeling procedure is performed 

once to create the PID image, and the production of other CFI attribute maps is accomplished by 

a simple recoding using PID as the lookup value. Similarly, one can summarize the attribute 

table of the PID image based on the stand identification number and join the summary table back 

to the vector GIS stands layer to create a stand map. The alternative to our approach is a time-

consuming, high-overhead modeling procedure for each attribute of interest.  

 

Another advantage of this approach to mapping PID values is that the entire plot record is 

imputed to each pixel. This avoids problems with logical inconsistency that often occurs in other 

modeling methods such as regression, in which the sum of the basal area predictions of all of the 
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species at a pixel location might be a value that is impossible to find in nature. Using the nearest 

neighbor PID image approach, all of the interrelationships among the CFI data are maintained in 

the final pixel map.  

 

In conclusion, MDNR must decide if the cost of accepting a less-than-optimal map product 

outweighs the benefit of a mapping procedure that allows for rapid, exhaustive mapping of any 

CFI attribute via a simple GIS recoding exercise. Future work will involve assessing the utility of 

maps produced using this method for making management decisions. 
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