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1. Introduction

Pressure to convert natural habitat for human use will in-
tensify in the foreseeable future as the human population
continues to grow, perhaps by another several billion over
the next fifty years. The resulting losses of habitat pose se-
vere threats to biological diversity. The question of how best
to conserve biological diversity in the face of habitat loss is
an urgent one. Given that not all habitat will be protected,
which areas of habitat are the most important to protect in
order to conserve biological diversity?

One important conservation strategy is to establish a bi-
ological reserve network composed of a set of natural re-
serves or parks (Noss and Cooperrider [1], Pimm and Law-
ton [2]). If it is not possible to reserve all potential sites in
such a network, it is desirable for a conservation agency to
choose the subset of sites that would protect the most bio-
logical diversity. This problem is known as the reserve site
selection problem and is generally posed as follows. Given
a constraint on the number of sites that may be selected as
reserves, choose the set of sites that covers the maximum
number of species, where a species is defined as covered if
it is present in at least one selected site. A species that is not
present in any selected site is not covered. If the presence
or absence of each species at each site is known with cer-
tainty, the reserve site selection problem is a maximal cover-
age problem (Church and ReVelle [3]). Applications of the
maximal coverage problem to reserve site selection include
Church et al. [4], Kiester et al. [5], Csuti et al. [6], Pressey
et al. [7], Ando et al. [8] among others.

However, the presence or absence of a species at a site is
rarely known with certainty. Except for a few well-studied
or easily observed species, only sketchy information about
species distributions typically exists. In the absence of cer-
tain knowledge, it is sometimes possible to estimate the
probability of species presence at a site as a function of en-

vironmental characteristics (e.g., climate, soil, topography).
For examples of this approach, see Austin et al. [9], Mar-
gules and Nicholls [10], Margules and Stein [11], Nicholls
[12], and Margules and Austin [13].

In the face of uncertainty, the decision-maker must use a
surrogate for the maximal coverage problem – the ultimate
objective still being to choose the set of sites that do, in fact,
cover the maximum number of species. Two methods have
been proposed in the literature for solving the reserve site
selection problem with probabilistic data.

One approach, which we call the expected coverage ap-
proach, maximizes the expected number of species cov-
ered, which is the sum over all species of the probability
of coverage for each species (Polasky et al. [14]). This
approach addresses the ultimate objective of maximal cov-
erage most directly, but because the objective function in-
volves sums of probabilities, each of which is a nonlin-
ear function of the decision variables, it cannot be trans-
formed into a linear form. Camm et al. [15] demonstrate
that the expected coverage problem is a nonlinear binary
integer program that is NP hard. Hence, finding optimal
solutions to this problem cannot be guaranteed for prob-
lems of reasonably large size. While we utilized complete
enumeration for the purposes of identifying optimal solu-
tions in our analysis to follow, heuristic approaches can be
used to find good though not necessarily optimal solutions
for larger problems. Among these are the greedy addition
and substitution approach (Daskin [16], Daskin et al. [17])
developed for a closely related expected covering problem.
Others have reported on the successful application of var-
ious metaheuristics such as simulated annealing (Liu and
Wang [18], Murray and Church [19], Righini [20], and Ernst
and Krishnamoorthy [21]), genetic algorithms (Hosage and
Goodchild [22], Houck et al. [23], Kumar et al. [24], and
George [25]) and tabu search (Crainic et al. [26], Rolland
et al. [27], Ohlemuller [28], and Gendron et al. [29]) on fa-



82 J.L. Arthur et al. / Probabilistic reserve site selection

cility location types of problems. In addition, developments
on a separable programming approximation approach to this
problem have shown promising results (Camm et al. [15]).

A second approach, which has been applied more often
in the conservation literature, is the threshold approach. The
goal in the threshold approach is to maximize the number
of species covered, where a species counts as covered only
if the probability of coverage reaches a specified threshold,
e.g., 95% (Haight et al. [30], Margules and Nicholls [10],
Margules and Stein [11]). The threshold approach is struc-
turally similar to the maximal coverage problem because
continuous probabilities are converted to dichotomous 0,1
variables and then counted. This approach has the advan-
tage that it is computationally tractable because it can be
transformed into an equivalent linear integer-programming
problem. Consequently, problem sizes of practical signifi-
cance can be solved to optimality (Haight et al. [30]). The
threshold approach is similar to certain environmental laws
that require meeting a specified target level of risk. It is also
similar to the “safe minimum standard” approach to conser-
vation (Ciriacy-Wantrup [31], Bishop [32]) in which there is
a threshold that can be identified as the minimum acceptable
probability of success (or conversely the maximum accept-
able level of risk of failure) with respect to the conservation
objective. Under this approach, any species that meets the
threshold counts as contributing to the success of the conser-
vation plan. Any species that fails to achieve the threshold
does not count as contributing to the success of the conserva-
tion plan. This approach, however, begs the question of how
to identify a safe minimum standard that embodies a socially
acceptable level of risk and how to evaluate alternative con-
servation programs that exceed that standard.

Perhaps the major difference between the threshold and
expected coverage approaches is in how they handle species
coverage probabilities. The threshold approach truncates the
coverage probabilities by assuming that a species is covered
if it meets the threshold and is otherwise not covered. As a
result, the threshold approach fails to use all of the informa-
tion contained in the species occurrence probabilities. For
example, there is no difference between a species with a cov-
erage probability that is just below the threshold (say 94%)
and one that has a zero coverage probability. Both species
would not be counted as covered. In contrast, the expected
coverage approach uses all the information in the coverage
probabilities because those probabilities enter directly in the
objective function. We view this as a major advantage of the
expected coverage approach over the threshold approach.

The purpose of this paper is to investigate how the dif-
ferences in the threshold and expected coverage approaches
affect the choice of reserve sites. Given the ultimate objec-
tive of maximal coverage, we compared their performance in
terms of the number of species covered in the reserve sites
chosen. Because the actual number of species covered can-
not be observed, we used Monte Carlo simulations to gen-
erate distributions of realizations drawn from the occurrence
probabilities associated with the chosen sites. If the results
are similar, the more computationally tractable threshold ap-

proach may be preferred. If the results differ, preference will
be given to the approach that yields the highest level of cov-
erage on average.

We formulated and solved threshold and expected cover-
age problems using probabilistic species occurrence data on
terrestrial vertebrates in Oregon. We restricted the set of po-
tential reserve sites to twenty so that optimal solutions for
both the threshold and expected coverage approaches could
be found via complete enumeration. We examined the extent
to which the sets of selected sites overlapped using the two
approaches. Performance was compared using estimates of
the means and standard deviations of the number of species
covered from Monte Carlo simulations.

In section 2 of the paper, we describe the threshold and
expected coverage approaches. The Oregon terrestrial verte-
brate data set is described in section 3. We describe solution
methods including the Monte Carlo simulation in section 4.
We show the results of applying the threshold and expected
coverage approaches to the Oregon terrestrial vertebrate data
in section 5. We discuss the results and offer concluding
comments in section 6.

2. The threshold and expected coverage approaches

Let I represent the set of species under consideration and
let J represent the set of potential reserve sites. From the
set J, k sites may be chosen as the conservation reserve net-
work. Define the binary variable Xj for all j ∈ J as follows:

Xj =
{ 1, if site j is selected to be part

of the reserve network,
0, if site j is not selected.

Let pij be the probability that species i ∈ I exists at site
j ∈ J . These probabilities may be derived from expert opin-
ion or from statistical methods such as logistic regression.
We assume that pij and pmn are independent for i �= m or
j �= n. Under these assumptions, the probability that species
i is represented in a reserve network is:

Pi = 1 −
∏
j∈J

(1 − pij Xj ). (1)

2.1. Expected coverage approach

With the model defined above, the reserve site selection
problem using the expected coverage approach is:

max
∑
i∈I

Pi,

s.t.
∑
j∈J

Xj � k.
(2)

Because the objective function is the sum of terms that in-
volve the products of the decision variables Xj , the problem
cannot be reduced to a linear integer-programming problem.
Nevertheless, good solutions to problems of reasonably large
size can be found using a linear approximation approach
(Camm et al. [15]) or a greedy adding heuristic (Polasky et
al. [14]).
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2.2. The threshold approach

With the threshold approach, a binary variable, Yi , is
defined for each species i to represent whether or not the
species is covered in the selected set of sites with the re-
quired probability. Letting P represent the selected thresh-
old probability,

Yi =
{

1, if Pi � P ,
0, otherwise.

Under the threshold approach, the objective of the reserve
site selection problem is to maximize the number of species
whose coverage probabilities exceed the specified threshold
probability (Haight et al. [30]):

max
∑
i∈I

Yi ,

s.t.
∑
j∈J

Xj � k,

∏
j∈J

(1 − pij )
Xj �

(
1 − P

)Yi ∀i ∈ I,

(3)

where, as before, Xj is the binary decision variable for site
j and pij is the probability that species i exists at site j .

The second set of constraints in the threshold problem
defines the conditions under which species are considered
covered. This constraint set stipulates that to cover species i,
the probability that species i is absent from the selected set
of sites,

∏
j∈J (1 − pij )

Xj , must be less than the specified

threshold probability of absence (1 − P ). If∏
j∈J

(1 − pij )
Xj > (1 − P ),

then the corresponding Yi on the right-hand-side of the con-
straint must equal zero, indicating that the selected sites do
not cover species i with the required probability. If∏

j∈J

(1 − pij )
Xj � (1 − P ),

then Yi = 1, indicating that species i is covered with the re-
quired probability. This constraint set can be replaced with
an equivalent set of linear constraints by means of a log
transformation:∑

j∈J

Xj ln(1 − pij ) � Yi ln(1 − P ) ∀i ∈ I. (4)

As a result, the threshold approach can be formulated as a
linear integer-programming problem, and reasonably sized
problems can be solved using exact optimization methods
(Haight et al. [30]).

3. Terrestrial vertebrate data for Oregon

We used the same data set on terrestrial vertebrate distri-
butions in the state of Oregon as used in Polasky et al. [14].
A hexagonal grid (635 km2) divided the state into 441 sites.

Data on the geographic distribution of 426 terrestrial verte-
brate species that breed in the state of Oregon was collected
as part of a national program to map biodiversity. For each
of the 441 sites, the likelihood of each species occurrence
was assessed and placed into one of four categories:

(a) confident – a verified sighting of the species in the site
has occurred in the past two decades (probability of
0.95–1);

(b) probable – the site contains suitable habitat for the
species, there have been verified sightings in nearby
sites, and in the opinion of a local expert, it is highly
probable that the species occurs in the site (probability
of 0.8–0.95);

(c) possible – no verified sightings have occurred in the site,
the habitat is of questionable suitability for the species,
and in the opinion of a local expert, the species might
occur in the site (probability of 0.1–0.8);

(d) not present – habitat is unsuitable for the species (prob-
ability of 0–0.1).

Detailed descriptions of the basis for category assignment
for each species at each site are given in Master et al. [33].

For most of the analysis, we used the lower bound proba-
bility for each category to assign species occurrence proba-
bilities (0.95, 0.8, 0.1, 0), which we refer to as the base case
probabilities. If a species was rated as confident at a site, we
assigned an occurrence probability of 0.95. If a species was
rated as probable, we assigned an occurrence probability of
0.8, and so on. To investigate the effects of uncertainty, we
also performed analyses using an alternative set of probabil-
ities. In this set, the probability for the “probable” category
was decreased to 0.6 and the probability of the “possible”
category was increased to 0.4. This increased the effects of
uncertainty by increasing the number of midrange probabil-
ity estimates.

4. Solution methods

To perform the analysis, we randomly selected two sep-
arate sets of 20 potential reserve sites, which we refer to as
data sets 1 and 2. For each set of potential reserve sites and
each set of species occurrence probabilities, we formulated
reserve site selection problems using the threshold and ex-
pected coverage approaches with upper bounds on the num-
ber of reserved sites (k) increasing from 1 to 10 and a thresh-
old probability P = 0.95. An optimal solution to each prob-
lem was obtained by evaluating all possible sets of k reserved
sites and picking the best set. With the threshold approach
we often found multiple optimal solutions, particularly as
the value of k increased. In such instances, we selected the
optimal set of sites for our analysis that also gave the highest
expected coverage value. We also investigated the effects of
lowering the threshold probability P .

We compared the two approaches with respect to the
stated objective of the reserve site selection problem, which
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Table 1
Comparing threshold and expected coverage approaches using data set 1 and base case probabilities (0.95,

0.8, 0.1, 0) with threshold probability of 0.95.

Number of Expected coverage approach Threshold approach Percent of shared

sites selected selected sitesExpected Threshold Expected Threshold
coverage value coverage value

1 209.00 58 184.95 87 0
2 277.99 184 261.30 227 0
3 311.72 244 299.68 267 66.7
4 330.88 289 326.24 292 75.0
5 340.70 307 331.89 310 60.0
6 348.04 316 341.41 324 66.7
7 352.62 327 348.77 332 57.1
8 355.67 332 351.05 336 62.5
9 357.29 336 353.92 339 66.7

10 358.69 339 358.13 341 90.0

is to maximize the number of species actually covered in
the chosen sites. Although actual species coverage cannot
be observed, it is possible to calculate how well each ap-
proach achieved species coverage using Monte Carlo simu-
lation. For each optimal set of reserved sites obtained using
the threshold and expected coverage formulations, we esti-
mated the probability distribution of the number of species
covered in Monte Carlo simulation. Each simulation con-
sisted of 10,000 replicates. In each replicate, choosing a
random number between zero and one and comparing this to
the probability of species presence determined the presence
or absence of a species at a given site. If the random num-
ber was less than the probability, the species was deemed
to be present, otherwise it was deemed absent from the site.
As a result, each replicate represented one possible outcome
of species occurrences in the reserved sites. The simulations
were conducted using a common random number stream ob-
tained from a prime modulus multiplicative linear congruen-
tial generator (Law and Kelton [34], p. 227). The outcomes
of each simulation were plotted as a histogram of number
of species covered by the reserved sites, and the mean and
standard deviation of the outcomes were computed for the
performance evaluation.

5. Results

In table 1, we compared the results using threshold and
expected coverage approaches for the first data set using the
base case set of probabilities (0.95, 0.8, 0.1, 0). We solved
both for the collection of sites that maximizes expected cov-
erage and for the collection of sites that maximizes the num-
ber of species achieving the threshold probability. We re-
ported both the expected coverage value and the threshold
value for each solution. We assumed a threshold probability
(P ) of 0.95. We varied the constraint on the number of sites
that may be selected (k) from one to ten.

As shown in table 1, the outcomes differed between the
threshold and expected coverage approaches. In some cases,
the expected coverage and threshold values were dramati-
cally different. For example, for k = 1, the expected cover-
age value was 11.5% lower in the threshold approach (185

compared to 209) while the threshold value was 33.3% lower
in the expected coverage approach (58 compared to 87).
Given P = 0.95 and k = 1, the threshold approach chooses
the site with the maximum number of species rated as “con-
fident.” The expected value approach chooses a site with
many species rated as “probable” as well as “confident.” For
k = 2 and P = 0.95, the objective functions of the two
approaches were more similar because a species rated as
“probable” (pij = 0.80) at two sites could pass the thresh-
old with a joint occurrence probability of Pi = 0.96 if both
sites were selected. This fact also explains the large increase
in the threshold value between k = 1 and 2. As the number
of sites increases, the scores of the two approaches tended
to converge. At k = 10, the expected coverage values were
almost identical for the two approaches.

In the last column of table 1, we showed the percentage
of sites chosen in common between the two approaches. For
k = 1 and 2, no sites were chosen in common. For k > 2, the
majority (but never all) of the sites were chosen in common
by the two approaches.

In table 2, we compared the results using the thresh-
old and expected coverage approaches for the same set of
20 sites using the alternative set of probabilities (0.95, 0.6,
0.4, 0). As in table 1, with a large number of sites se-
lected, the scores of the two approaches were similar. With
a small number of sites selected, however, the pattern was
more erratic. For k = 2, both approaches selected the same
two sites. This result is somewhat surprising because, with
k = 2, only those species that were rated as “confident”
were counted as covered under the threshold approach while
“probable” (pij = 0.6) and “possible” (pij = 0.4) cate-
gories could factor in heavily under the expected coverage
approach. There was little or no similarity in sites selected
and relatively large differences in scores for k = 1 and 4. At
k = 4, species rated only as “probable” could be counted as
covered, which they could not be for k < 4. Hence, there
was a premium for selecting four sites that all rate a species
as “probable” under the threshold approach but not under the
expected coverage approach. There was a large jump in the
threshold value in going from k = 3 to 4, similar to the jump
from k = 1 to 2 in table 1. These jumps occurred because
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Table 2
Comparing threshold and expected coverage approaches using data set 1 and alternative case probabilities

(0.95, 0.6, 0.4, 0) with threshold probability of 0.95.

Number of Expected coverage approach Threshold approach Percent of shared

sites selected selected sitesExpected Threshold Expected Threshold
coverage value coverage value

1 179.30 58 164.25 87 0
2 251.68 113 251.68 113 100.0
3 293.74 119 290.29 123 66.7
4 317.61 188 286.20 223 25.0
5 331.90 228 320.42 253 80.0
6 340.35 255 324.45 280 66.7
7 347.22 269 338.11 287 57.1
8 351.13 285 349.30 296 87.5
9 354.32 293 351.70 308 66.7

10 357.09 311 354.58 317 80.0

Table 3
Comparing threshold and expected coverage approaches using data set 2 and base case probabilities (0.95,

0.8, 0.1, 0) with threshold probability of 0.95.

Number of Expected coverage approach Threshold approach Percent of shared

sites selected selected sitesExpected Threshold Expected Threshold
coverage value coverage value

1 192.50 82 182.45 87 0
2 273.20 179 223.28 220 0
3 313.72 239 300.52 261 33.3
4 329.74 281 321.63 286 75.0
5 338.18 303 333.63 306 80.0
6 343.90 314 338.78 327 66.7
7 348.89 327 346.72 335 42.9
8 351.80 331 348.86 339 75.0
9 354.58 337 350.87 342 77.8

10 356.34 340 352.77 344 80.0

Table 4
Comparing threshold and expected coverage approaches using data set 2 and alternative case probabilities

(0.95, 0.6, 0.4, 0) with threshold probability of 0.95.

Number of Expected coverage approach Threshold approach Percent of shared

sites selected selected sitesExpected Threshold Expected Threshold
coverage value coverage value

1 169.70 82 162.05 87 0
2 246.82 119 240.99 127 50.0
3 288.97 121 288.62 149 33.3
4 311.79 198 240.24 218 0
5 325.24 237 311.05 258 60.0
6 334.24 252 313.33 274 50.0
7 341.48 266 327.03 284 57.1
8 347.04 282 336.73 293 50.0
9 350.34 294 338.51 302 55.6

10 352.79 306 348.00 310 70.0

of the discrete character of our probability data, where all
species within a class have the same probability. With more
refined probability estimates we expect that the jumps would
disappear. It is interesting to note that under the threshold
approach the expected coverage actually falls in going from
k = 3 to 4.

In tables 3 and 4 we reported the results comparing the
expected coverage and threshold approaches for data set 2,
analogous to tables 1 and 2. Though some details differed,

similar patterns emerged in tables 3 and 4 as were found in
tables 1 and 2, indicating that the patterns are more general
and not a function of the particular set of 20 sites in the data
set. However, it should be noted that all of our results are
generated using data on terrestrial vertebrates in Oregon and
do not constitute proof that the patterns we found generalize.
As before, the scores of the two methods tended to be more
similar as the number of sites increased. There were big in-
creases in the threshold value from k = 1 to 2 in table 3
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Table 5
Means and standard deviations of numbers of species covered by sets of
reserved sites using expected coverage and threshold approaches for data
set 1, base case and alternative probabilities and threshold probability of

0.95.

Number of sites Base case probabilities Alternative probabilities
selected (0.95, 0.8, 0.1, 0) (0.95, 0.6, 0.4, 0)

Expected Threshold Expected Threshold
coverage coverage

1 209.05 184.93 179.30 164.24
6.02 5.03 7.32 6.10

2 277.88 261.28 251.66 251.66
5.29 4.18 6.76 6.76

3 311.65 299.65 293.77 290.25
4.72 3.81 5.86 6.19

4 330.85 326.24 317.62 286.33
3.88 3.71 5.32 4.25

5 340.66 331.92 331.88 320.43
3.54 3.25 4.73 4.37

6 348.00 341.41 340.33 324.49
3.37 3.03 4.45 3.99

7 352.56 348.77 347.19 338.13
3.13 2.92 4.08 3.85

8 355.62 351.06 351.10 349.30
3.00 2.67 3.68 3.59

9 357.23 353.93 354.32 351.73
2.80 2.58 3.55 3.39

10 358.65 358.11 357.12 354.61
2.65 2.55 3.27 3.12

using the base case probabilities and from k = 3 to 4 in ta-
ble 4 using the alternative probabilities. In table 4, as in table
2, there was a decrease in the expected coverage under the
threshold approach in moving from k = 3 to 4. At k = 4, no
sites were chosen in common between the two approaches.

The results of the Monte Carlo simulations are shown in
table 5, which shows the means (top line in each row) and
standard deviations (bottom line in each row) of numbers of
species covered by optimal sets of reserved sites obtained
using the expected coverage and threshold approaches. Be-
cause the results were qualitatively similar between data sets
1 and 2, we only report results for data set 1. The histograms
of numbers of species covered by optimal sets of reserved
sites obtained using the expected coverage and threshold ap-
proaches and k = 1, 5, and 10 are shown in figures 1–3.

In all cases, the mean value for the expected coverage
approach was at least as great as the mean value for the
threshold approach. The standard deviations for the two ap-
proaches were similar, slightly smaller for the threshold ap-
proach than for the expected coverage approach in almost all
cases, and generally decreasing as k increased. Because the
mean was higher and the standard deviation was similar for
each pair, the probability distribution of species covered un-
der the expected coverage approach is shifted towards higher
levels of coverage. The shift between the distributions is
larger for small k; in figure 3 for k = 10, the shift is small
and there is a good deal of overlap between the two distri-
butions while in figure 1 for k = 1, the shift between the
two distributions is far greater and the overlap is less. These
results suggest that there is a cost to using the threshold ap-

Figure 1. Number of species covered by optimal sets of reserved sites ob-
tained using the expected coverage and threshold approaches and base case

probabilities. Number of sites selected was 1.

Figure 2. Number of species covered by optimal sets of reserved sites ob-
tained using the expected coverage and threshold approaches and base case

probabilities. Number of sites selected was 5.

Figure 3. Number of species covered by optimal sets of reserved sites ob-
tained using the expected coverage and threshold approaches and base case

probabilities. Number of sites selected was 10.
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Table 6
Results using alternative threshold probabilities using data set 1 and alternative case probabilities (0.95, 0.6, 0.4, 0).

k Expected Threshold approach Threshold approach Threshold approach
coverage with P = 0.9 with P = 0.8 with P = 0.7
approach

Expected Threshold Expected Threshold Expected Threshold
coverage value coverage value coverage value

1 179.30 164.25 87 164.25 87 164.25 87
2 251.68 251.68 113 244.33 227 239.82 238
3 293.74 273.49 230 282.86 267 293.74 279
4 317.61 308.38 263 313.20 300 313.20 307
5 331.90 320.42 285 322.31 319 328.11 326
6 340.35 326.76 301 335.42 332 336.50 339
7 347.22 331.02 315 345.49 339 345.49 346
8 351.13 343.59 325 351.02 342 349.30 350
9 354.32 352.65 331 354.25 345 354.25 352

10 357.09 353.73 335 357.09 348 357.09 354

Figure 4. Number of species covered by optimal sets of reserved sites ob-
tained using the expected coverage and threshold approaches and alternative
case probabilities. Number of sites selected was 5. The threshold probabil-

ity was 0.95.

proach; on average, actual species coverage will be lower
using the sites selected by the threshold approach than it
would be using the sites selected by the expected coverage
approach. But this cost becomes smaller as the number of
selected sites increases.

To this point, we used a threshold probability of P =
0.95. The threshold probability, however, can be set at vary-
ing levels to represent different levels of willingness by the
conservation agency to accept risk. Lowering the threshold
probability allows more species the potential to contribute to
the objective function at each site. To investigate the effect
of altering the threshold probability, we solved the problem
using the threshold approach for data set 1 and the alterna-
tive case probabilities using different threshold probabilities:
P = 0.9, 0.8 and 0.7. The results for different threshold
probabilities for k = 1–10 are shown in table 6. As the
threshold probability falls, it is easier to count species as
covered, which is shown by the results in table 6. What is of
greater interest is how the actual number of species covered
is likely to change under the threshold approach for differ-
ent values of the threshold. With one exception (for k = 2),
the lower values of the threshold probability (P = 0.7 or

Figure 5. Number of species covered by optimal sets of reserved sites ob-
tained using the expected coverage and threshold approaches and alternative
case probabilities. Number of sites selected was 5. The threshold probabil-

ity was 0.70.

0.8) yielded higher expected coverage than did the higher
threshold probability (P = 0.95, as reported in table 2, or
P = 0.90 in table 6). There is no reason to expect this result
to hold generally. The best threshold probability, in terms of
choosing sites that have the highest expected coverage, de-
pends on the interplay between the species occurrence prob-
abilities, the threshold probability, and the number of sites
that may be selected; together these determine whether cer-
tain combinations of species occurrence exceed the thresh-
old or not.

In figures 4 and 5 are shown results for two pairs of Monte
Carlo simulations for k = 5 using different threshold probal-
ities, P = 0.95 and 0.7, respectively, for data set 1 and
the alternative case probabilities. As illustrated, the shift in
probability mass towards higher levels of coverage for the
expected coverage approach over the threshold approach is
smaller for lower P . This suggests that the advantage of
using the expected coverage approach over the threshold ap-
proach may decrease as the conservation agency is willing
to recognize the value of less certain outcomes.
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6. Discussion

The results reported in the previous section using data on
terrestrial vertebrates in Oregon show that the expected cov-
erage approach and the threshold approach select different
sets of sites to compose a reserve network. As shown in the
Monte Carlo simulations using this data, the expected cov-
erage approach generally selected a set of sites that yields
greater numbers of species actually covered than does the
threshold approach. In fact, the expected coverage approach
appeared to stochastically dominate the threshold approach
in the sense that the probability distribution is shifted to
higher levels of actual number of species in the simulations.
Given advances in the ability to solve the expected cover-
age approach for optimal or near optimal solutions in large
problems (Camm et al. [15]), these results suggest that the
expected coverage approach appears preferable to the thresh-
old approach for choosing reserve sites to cover the maxi-
mum number of species.

The two approaches differ not only in the mean num-
ber of species actually covered but also in the attributes of
those species. The threshold approach counts the number of
species that are fairly certain to be present, with the thresh-
old serving as the standard for certainty. In contrast, with the
expected coverage approach, any nonzero occurrence prob-
ability in a selected site contributes to the objective function.
To see the difference in attributes of species chosen by the
two approaches, consider the solutions in table 1 for k = 1.
The site selected using the expected coverage approach has
274 species present with nonzero probability, with 247 rated
“probable” or “confident”, but relatively few rated as “con-
fident” (58 species). The site selected using the threshold
approach has only 228 species present with nonzero prob-
ability, of which 213 are rated “probable” or “confident”,
but has 87 species rated “confident”. In other words, the
threshold approach chooses the reserve site that maximizes
the number of species meeting some minimum risk standard
but contains fewer species with positive probabilities lower
than the threshold probability and, consequently, a lower ex-
pected number of species covered.

It may be that there is a subset of species for which a high
degree of confidence is desirable, perhaps because they have
been listed as threatened and endangered under the Endan-
gered Species Act or are recognized to fill particularly im-
portant ecological roles. Both the expected coverage and the
threshold approaches can be modified to accommodate such
a circumstance. One method would be to add a set of con-
straints that requires those species to be covered at specified
minimum occurrence probabilities. Haight et al. [30] formu-
lated the threshold approach with such a set of constraints
for a subset of vegetation communities covered in Research
Natural Areas in the Superior National Forest. Alternatively,
high priority species can be assigned greater weight so that
they contribute more to the value of the objective function
when they are covered than other species, thereby increasing
the likelihood that they will be covered in the set of selected
sites.

In this paper, we have assumed that the objective is to
maximize the number of species covered by a reserve sys-
tem. Because of uncertainty, however, the actual number
of species covered by selected reserve sites is unknown at
the time sites are selected. Therefore, we have compared
different site selections on the basis of the mean number of
species covered. A reasonable alternative objective function
might factor in variance in coverage as well as the mean. For
example, a decision-maker might prefer having 100 species
covered for sure rather than being subject to a gamble with a
50% probability of getting 90 species and a 50% probability
of getting 110 species. Risk aversion in the number of cov-
ered species would arise with a concave objective function in
the number of species covered, i.e., with declining marginal
benefit of covered species. Introducing a concave function in
number species covered introduces further non-linearity in
the problem making optimal solutions more difficult to find.
According to the Monte Carlo simulation results, however,
the introduction of risk aversion appears unlikely to lead to a
change in the preference between the two approaches com-
pared here because the expected coverage approach stochas-
tically dominated the threshold approach in the simulations.

While the reserve site selection problem of the type con-
sidered in this paper can yield important insights, it abstracts
from a number of important conservation issues. Other po-
tential extensions to the reserve site selection problem in-
clude the following:

(1) One could specify the resource constraint as a budget
limit rather than as a limit on the number or area of se-
lected sites (Ando et al. [8], Polasky et al. [35]). This
would allow the problem to identify cost-effective re-
serve systems.

(2) The quality of the solutions to the reserve site selection
problem using probabilistic data depends on the qual-
ity of the probabilistic data. The reliability of estimated
occurrence probabilities will improve as methodologies
for estimating them are developed and refined (again,
see Austin et al. [9], Margules and Nicholls [10], Mar-
gules and Stein [11], Nicholls [12], and Margules and
Austin [13]). In addition, the simplifying assumption
that the occurrence probabilities are independent across
species and sites is unrealistic. For example, it is likely
that the occurrence probability for a species at a site is
influenced by the presence of predator or prey species
at that site or by proximity to other sites at which the
species occurs.

(3) As currently defined, presence of a species at a site
does not necessarily imply the long run viability of the
species at the site. Another way in which a probabilis-
tic approach is important is to consider species survival
probabilities as a function of the reserve network cho-
sen. Dealing with survival probabilities rather than oc-
currence probabilities is a much more complex prob-
lem. Its formulation would necessarily include assump-
tions about the continued presence or absence of species
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and habitat outside the reserve network, possible links
between populations and different sites, and interac-
tions between species within the network (e.g., keystone
species or predator/prey relationships).

The reserve site selection problem is still evolving and
the models are simple relative to complex real world con-
servation problems to which they are applied. Incorporating
uncertainty into the reserve site selection problem is, how-
ever, an important step toward increasing the realism and
relevance of the analysis. Methods to solve the probabilistic
reserve site selection problem can be used to provide useful
information to conservation agencies and others involved in
making conservation decisions. Used appropriately, they can
help guide decision-makers as they attempt to understand
how best to use limited resources to achieve conservation
objectives.
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