
Biogeochemistry48: 1–6, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

Controls on soil respiration:
Implications for climate change

LINDSEY E. RUSTAD1, THOMAS G. HUNTINGTON2 & RICHARD
D. BOONE3

1U.S. Forest Service, Durham, NH 03824, U.S.A.;2U.S. Geological Survey, Atlanta, GA
30360, U.S.A.;3Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK
99775, U.S.A.

Received 2 April 1999

The disruption of the global C cycle by human activity in both developed and
developing countries is one of the key environmental issues facing human
populations as we move into the 21st century. The earth contains approxi-
mately 108 Pg C in the following principal pools: (1) geological formations
in the earth’s crust (90,000,000 Pg), (2) dissolved oceanic carbonates (38,000
Pg); (3) gas hydrates, primarily methane hydrate, (10,000 Pg), (4) fossil
fuels (4,000 Pg), (5) terrestrial biosphere (560 Pg), (6) soils (1,600 Pg),
and (7) atmosphere (750 Pg) (Sundquist 1993; Kvenvolden 1993). Natural
systems and biogeochemical cycles have historically maintained these pools
in dynamic equilibrium. More recently, anthropogenic activities such as
deforestation, agricultural practices, and the burning of fossil fuels have
resulted in large shifts among carbon pools, particularly since the beginning
of the industrial revolution (IPCC 1995). Estimates of the current global
carbon budget indicate atmospheric sources of∼1.6 Pg C yr−1 via tropical
deforestation and other land-use changes and∼5.4 Pg C yr−1 via burning of
fossils fuels (Tans et al. 1990; Sundquist 1993). These atmospheric sources
are balanced by a∼2.0 Pg C yr−1 oceanic sink and a∼3.3 Pg C yr−1 atmo-
spheric sink. Recent evidence indicates that the imbalance,∼1.7 Pg C yr−1,
is probably accounted for in carbon sinks in terrestrial ecosystems in the
Northern temperate latitudes (Ciais et al. 1995).

Atmospheric CO2 concentrations have been increasing in response to
these disruptions to the carbon cycle (IPCC 1995; Keeling et al. 1989).
This has raised concerns about potential global warming and, perhaps more
seriously, about possible positive feedback effects that warming could have
on further release of CO2 from terrestrial carbon pools, particularly soils
(Gates et al. 1992; Houghton et al. 1996; Mann et al. 1998). World soils
contain an estimated 1550 Pg C in the surface meter alone (Eswaran et al.
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1993). This is more than two times the amount of carbon in the atmosphere.
Increased storage of carbon in world soils could help offset further anthropo-
genic emissions of CO2, whereas a release could significantly exacerbate the
atmospheric increases.

The flux of carbon from soils to the atmosphere occurs primarily in the
form of CO2, and is the result of ‘soil respiration’. Soil respiration repre-
sents the combined respiration of roots and soil micro and macro-organisms.
Estimates of the magnitude of this flux range from 68 Pg C yr−1 (Raich
& Schlesinger 1992) to 100 Pg C yr−1 (Musselman & Fox 1991), which
makes soil respiration one of the major pathways of flux in the global C
cycle, second only to gross primary productivity, which is estimated to range
from 100 to 120 Pg C yr−1 (Houghton & Woodwell 1989). Even a small
change in soil respiration could thus equal or exceed the annual input of CO2

to the atmosphere via land-use changes and/or fossil fuel combustion, and
could significantly exacerbate – or mitigate – atmospheric increases of CO2,
with consequent feedbacks to climate change. However, despite its global
significance as well as the dedication of considerable scientific resources to
its study over the last several decades, we have only a limited understanding
of the magnitude of soil respiration within and across ecosystems (for recent
reviews, see Raich & Nadelhoffer 1989; Raich & Schlesinger 1992; Raich &
Potter 1995) and the factors controlling soil respiration.

Critical factors reported to influence rates of soil respiration include (1)
temperature (Witkamp 1969; Singh & Gupta 1977; Schleser 1982; Schlenter
& Van Cleve 1985; Peterjohn et al. 1993, 1994; Kirschbaum 1996; Winkler
et al. 1996; Rustad & Fernandez 1998), (2) soil moisture (Howard & Howard
1979; Schlenter & Van Cleve 1985; Singh & Gupta 1977; Davidson et al.
1998), (3) vegetation and substrate quality (Tewary et al. 1982; Raich &
Schlesinger 1992), (4) net ecosystem productivity (Schlesinger 1977; Raich
& Potter 1995), (5) the relative allocation of NPP above- and belowground
(Boone et al. 1998), (6) population and community dynamics of the above-
ground vegetation and belowground flora and fauna (Raich & Schlesinger
1992), and (7) land-use and/or disturbance regimes, including fire (Ewel et
al. 1987; Gordon et al. 1987; Weber 1990). Despite this complex array of
factors which affect soil respiration, soil respiration is typically modeled as
either a simple Q10 function or as a step relationship based on temperature
response curves.

A contributing factor to our limited understanding of soil respiration is
a lack of consensus on methods for measuring soil respiration. Measure-
ment techniques range from relatively simple static chamber methods with
soda lime (Edwards 1975), to dynamic open or closed flow-through chamber
methods utilizing gas chromatography (Ewel et al. 1987; Rochette et al.
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1991) or infrared gas analysis (IRGA), to calculations based on soil air
CO2 concentrations and diffusivity constants (De Jong & Schappert 1972),
to micrometeorological techniques based on eddy correlations and concen-
tration gradients (Chahuneau et al. 1989). Although several recent papers
have compared two or more of these techniques (De Jong et al. 1979;
Raich et al. 1990; Rochette et al. 1992; Jensen et al. 1996), a compre-
hensive study contrasting all techniques has not yet been reported, making
it difficult to compare data collected from different sites with different
methods. The quantification of measurement error is also a formidable
challenge. As an example of the problems involved, Healy et al. (1996)
have discussed the theoretical basis for the measurement (diffusion through a
porous medium) and concluded that chamber measurements should under-
estimate flux because of distortion to the concentration gradient that are
imposed at the instant of chamber placement. They further noted that theory
dictates that the observed chamber headspace CO2 concentration time series
should show a continuously declining rate of increase in CO2 concentra-
tion. However, in practice, chamber methods have been shown to result
in higher estimates of soil respiration than measured by eddy flux towers
(night-time respiration measured above the canopy or daytime respiration
measured in below-canopy towers) (Goulden et al. 1996). Furthermore,
chamber-based field measurements have shown a consistent pattern of first
increasing followed by decreasing rates of increase in headspace CO2 concen-
tration during 5-minute measurement periods (Huntington et al. 1998). More
research on the measurement techniques is required to resolve these apparent
inconsistencies.

Problems of spatial and temporal scale also need to be addressed, partic-
ularly the problem of scaling-up results from small chambers to the stand or
ecosystem level, let alone the regional or global level. Finally, although total
and/or heterotrophic respiration has received considerable attention in recent
decades, much less is known about the contribution of autotrophic respira-
tion, or root respiration, to total respiration. Again, limitations in available
methods to separate autotrophic and heterotrophic respiration have impeded
progress in understanding potential differential responses of autotrophic and
heterotrophic respiration to changing environmental factors and resource
limitations.

It is considered likely that global warming will increase soil respiration,
releasing more CO2 that will further exacerbate warming (Schleser 1982;
Raich & Schlesinger 1992; Townsend et al. 1992; Schimel et al. 1994;
McGuire et al. 1995). It is therefore critical to develop a better under-
standing of the controls on soil respiration and its components, particularly
the decomposition of soil organic matter (SOM). This should promote a better
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assessment of the rate and direction of change of soil carbon, which is an
essential component of developing and implementing policies and measures
to mitigate climate change. To address this information need, a symposium
on “Controls on Soil Respiration: Implications for Climate Change” was held
at the annual meetings of the Soil Science Society of America in Anaheim,
CA on 27–28 October 1997. The following seven papers highlight the results
from this symposium, and include a general introduction to soil respiration
(Schlesinger & Andrews), a review of the likely impact of global warming on
soil respiration and soil C storage (Kirschbaum et al.), an evaluation of the
role of soil water on rates of soil respiration in forests and cattle pastures of
eastern Amazonia (Davidson et al.), an evaluation of relationships between
vegetation and soil respiration (Raich), a review of methods for separating
root versus microbial respiration (Hanson et al.), a description of a model
simulating cold season heterotrophic respiration (McGuire et al.), and a
review of management options for reducing CO2 emissions from agricultural
soils (Paustian et al.).
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