A new species of Proteus isolated from larvae of the gypsy moth Porthetria dispar (L.)

B. J. COSENZA AND J. D. PODGWAITE

Department of Bacteriology, University of Connecticut, Storrs, Connecticut, U.S.A.

Characteristics of a slime-producing bacterium isolated from living and dead gypsy moth larvae were determined. The bacterium was found to be a motile, gram-negative rod, which fermented glucose, but not lactose. It was oxidase-negative, hydrolyzed urea, deaminated phenylalanine and produced H₂S. These characteristics are common to several members of the genus Proteus. In addition to the unique feature of slime production, a biochemical comparison with other members of the genus showed that it differed markedly from described species of Proteus; thus the new species Proteus myxofaciens was proposed.

INTRODUCTION

Since the introduction of the genus Proteus by Hauser (1885), observations of its biochemical activities have resulted in the formation of a well-defined group. For example, Smith (1894) noticed that Proteus spp. fermented glucose and sucrose with acid and gas production, but failed to ferment lactose. Later, Wenner and Rettger (1919) divided their cultures into two species, P. vulgaris and P. mirabilis, on the basis of maltose fermentation. In 1927, Moltke demonstrated rapid decomposition of urea by Proteus spp. More recently, Bergey's Manual (1957) divided the genus into five species, P. vulgaris, P. mirabilis, P. rettgeri, P. morganii, and P. inconstans, which are distinguished primarily by the following physiological characteristics: urea hydrolysis, mannitol and maltose fermentation and indol production.

1) This study was developed under a cooperative aid agreement with the Northeastern Forest Experiment Station, Forest Insect and Disease Laboratory, West Haven, Connecticut.

2) This paper is part of a dissertation presented to Graduate School of the University of Connecticut in partial fulfillment of the requirements for a Masters degree in Bacteriology. Present address: Northeastern Forest Experiment Station, 135 Wood Street, West Haven, Connecticut.
Several investigators have identified or described *Proteus* spp. isolated from insects. Brown (1927) reported *P. photuris* from luminous organs of the firefly *Photuris pennsylvanica* (DeG); Steinhaus (1941) described two species, *P. recticolens* and *P. insecticolens* from the milk bug, *Oncepeius feciacius* (Dallas) and Wistreich and Chao (1960) identified *P. rettgeri* isolated from the gut of *Culex tarsalis* (Coquillett). With the exception of *P. rettgeri* these *Proteus* spp. isolated from insects do not resemble any of the above recognized species.

In the present study, a slime-producing bacterium is described which possesses morphological, cultural, and physiological activities of the genus *Proteus*. The isolate has been recovered from living and dead gypsy moth larvae collected in Glenville, New York, during a 3 year population dynamics study of the gypsy moth. It also has appeared in an outbreak of gypsy moth larvae in Colchester, Connecticut.

METHODS

The isolation procedures used in this study were those reported previously by Cosenza and Lewis (1965). Morphological, cultural and physiological characteristics described in the Manual of Microbiological Methods (1957) were employed to determine the taxonomic position of the bacterium. Cells from a 18 hr nutrient agar slant were gram-stained and morphological observations were made with bright field and phase contrast microscopy. Flagella stains were prepared according to the method of Leifson (1960). Colonial and cultural characteristics were observed in Trypticase Soy broth (TSB, Baltimore Biological Laboratories) and Trypticase Soy agar (TSA). Phenylalanine deamination and cytochrome oxidase were determined by the methods of Ewing, Davis and Reavis (1957) and Ewing and Johnson (1960). The decomposition of urea was detected in urea broth (Stuart, van Stratum and Rustigian, 1945). Hydrogen sulfide (H₂S) and indol production were tested in SIM medium (Difco). The indol test was performed with Kovacs’ reagent. Glucose fermentation was confirmed by the method of Hugh and Leifson (1953). All cultures were incubated at 28 C and examined at 24, 48, 72 and 120 hr with the exception of the sugar broths (nutrient broth ÷ 0.5% carbohydrate) which were held for two weeks.

RESULTS AND DISCUSSION

During a 3 year population dynamics study of the gypsy moth, an unusual bacterium has been recovered from living and dead gypsy moth larvae collected in Glenville, New York. It has also appeared in an outbreak of gypsy moth in Colchester, Connecticut. This slime-producing isolate was a gram-negative
rod, averaging about 0.8 μ in width by 2.0 μ in length. During the early phases of the growth cycle the cells appeared to be "coccobacillary", a term frequently used to describe insect isolates. As the culture aged, the cells became more rod-shaped. A typical flagellated cell is presented in Fig. 1. On TSA plates, the colonies appeared circular, entire, glistening, butyrous and swarmed on a moist agar surface. The unique slime material was formed only in TSB. The viscosity of the slime becomes apparent by viewing the intact slime plug poured from the tube into a petri dish (Fig. 2). The temperature range for growth of the slime-producing bacterium was 10 – 45 C with the optimum between 28 C and 37 C. Optimum pH for growth was in the range 7.0 – 8.5 with no growth at pH 4.5 or at 10. *P. myxofaciens* exhibits the following biochemical characteristics of the genus *Proteus*: cytochrome-oxidase-negative, deaminates phenylalanine, ferments glucose with gas, fails to ferment lactose, hydrolyzes urea and produces H₂S.
A comparison of the flagellar arrangements of all known species of the genus and *P. myxofaciens* showed no significant differences. When *Proteus myxofaciens* was grown on a TSA slant, a yellowing of the medium occurred after five days incubation. A similar reaction was observed in cultures of *P. morganii* and *P. mirabilis*. The results of a comparative physiological study of *Proteus* spp. are summarized in Table 1. The ability to elaborate the extracellular slime, which was not produced by any other described species, is of particular interest. In addition, failure to produce indol, inability to lower the pH yielding a negative methyl red test and the production of acetyl methyl carbinol (AMC) form the basis for proposing the name *Proteus myxofaciens* sp. n., myxo G. (slime), faciens L. (producing).

Received 24 September 1965

REFERENCES

B. J. COSENZA AND J. D. PODGWAITE

<table>
<thead>
<tr>
<th>Species</th>
<th>Glucose</th>
<th>Lactose</th>
<th>Sucrose</th>
<th>Malonate</th>
<th>Mannitol</th>
<th>Trehalose</th>
<th>Production of</th>
<th>Urease</th>
<th>Methyl red</th>
<th>Citrate utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. vulgaris</td>
<td>AG</td>
<td>AG</td>
<td>AG</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>AG</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. reitgeri</td>
<td>A</td>
<td>A<sup>W</sup></td>
<td>A</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. inconstans<sup>1)</sup></td>
<td>A</td>
<td>A<sup>W</sup></td>
<td>-</td>
<td>-</td>
<td>AG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. morganii</td>
<td>AG</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. myxofaciens sp. n.</td>
<td>AG</td>
<td>AG</td>
<td>AG</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Obtained from the Division of Laboratories, State of Connecticut.

2) Stock culture collection Bacteriology Department, University of Connecticut.

AG = Acid and gas, A = Acid, + = Positive, - = Negative, W = Weak.
Proteus myxofaciens sp. n. from gypsy moth larvae

Moltke, O. 1927. Contributions to the characterization and systematic classification of the Bac. proteus vulgaris (Hauser). Levin and Monksgaard, Copenhagen.

