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Abstract
When estimating tree-level biomass and carbon, it is common practice to develop generalized 
models across numerous species and large spatial extents. However, sampling efforts are 
generally incomplete and trees are not randomly selected. In this analysis, of the more than 1,000 
biomass-related articles that were reviewed, trees were destructively sampled in over 300 studies 
to estimate biomass in the United States. Studies were summarized and past sampling efforts 
were explored to illuminate where the largest data gaps occurred in terms of tree components 
sampled, tree size, tree form, tree species, and location. The most prominent gaps were in large 
trees, particularly in Douglas-fir trees in the Pacific Northwest. In addition, tree roots were notably 
undersampled. Lastly, trees of poor or unusual form and low vigor were often not sampled, and 
this may introduce a systematic bias if not dealt with appropriately. More than 200 species did 
not have a biomass model or a single data point. The gaps presented here can be viewed as 
suggestions for future destructive sampling efforts, but the magnitude of a gap for a given model 
will ultimately depend on the selected modeling framework and the user’s objectives.
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INTRODUCTION
Rationale
Given increasing interest in accounting for forest biomass and carbon stocks (Aalde et al. 
2006, Pan et al. 2011) across the world, and specifically in the United States, there is a need 
to more closely examine limitations to current tree biomass estimation methods. At a broad 
level, biomass estimation methods are often categorized as (1) regional biomass conversion/
expansion factors (e.g., Fang and Wang 2001), (2) stand-level biomass models, or (3) tree-
level biomass models (Temesgen et al. 2015). In particular, there are two primary factors that 
influence biomass estimation accuracy: limitations to modeling techniques, and sampling gaps 
that limit available data and the geographic extent of model applicability. This review explores 
gaps in previous sampling efforts that limit the available data required to develop tree-level 
biomass models across the United States. Other important limitations of biomass estimation 
methods (including modeling techniques) are discussed in Weiskittel et al. (2015).

Generalized Allometric Models
Tree-level biomass models are generally derived by destructively sampling a subset of live 
trees, drying and weighing the separate tree components (e.g., stems, branches, foliage), and 
using allometry to relate some easily measured metric (e.g., diameter and sometimes height) 
to the dry weight of the entire tree or some portion or component of the tree. Destructive 
sampling is extremely costly and time intensive; thus, most biomass studies sample a relatively 
small number of trees over a generally small area. In addition, sampling units are difficult 
to select objectively or at random due to operating restrictions and landowner limitations. 
Consequently, sampling efforts are often coordinated with ongoing management objectives or 
otherwise constrained to areas where destructive sampling is feasible. As such, it is difficult to 
be entirely representative in both site and tree selection.

Variations in wood and bark properties, crown architecture, and stem form can result from 
different climatic, soil, or management factors (Larson 1963), making it challenging to 
extrapolate biomass to a different location or larger area. Those seeking to derive stand- and 
landscape-level biomass and carbon estimates often turn to geographically generalized tree-
level allometric models, which use data from multiple studies and locations to refit models to 
a larger area (e.g., Schmitt and Grigal 1981).

In addition to considering how sites are selected, it is important to consider how individual 
trees are selected. Standards for sampling trees for volume and yield tables (e.g., Behre et 
al. 1926), and by extension biomass models, generally exclude trees with abnormalities and 
defects from model fitting because they detract from a study’s ability to identify allometric 
relationships. This selection effect can result in a significant amount of systematic bias, leading 
to overestimates, particularly in hardwood biomass (e.g., MacFarlane and Weiskittel 2016).

Previous Tree Biomass Allometric Model Compilations
The plethora of published allometric models and their frequent use in estimating biomass and 
carbon across various scales has necessitated literature syntheses to understand limitations in 
both the models and the data used to build them. In Europe, Zianis et al. (2005) summarized 
the number of biomass models in terms of species by tree component and country. Similar 
syntheses have summarized models in Australia (Keith et al. 2000), sub-Saharan Africa 
(Henry et al. 2011), southeast Asia (Yuen et al. 2016), South America (Cifuentes-Jara et 
al. 2013), and North America (Ter-Mikaelian and Korzukhin 1997). Jenkins et al. (2004) 



2

summarized biomass models from 177 biomass studies for tree species commonly found in 
the United States. More recently, Chojnacky et al. (2014) updated these models. While most 
of these compilations focus on developing or comparing models, recent work in the United 
States has led to a compilation of actual tree-level volume, biomass, and component biomass 
data (Radtke et al. 2015).

Current Biomass Estimation Approaches for the  
U.S. Forest Inventory
Perhaps the most widely used standing tree inventory available in the United States is the 
USDA Forest Service, Forest Inventory and Analysis Database (FIADB) (O’Connell et al. 
2016). This database is also considered the best source for estimating biomass and carbon 
at the landscape level in the United States. For example, the Forest Inventory and Analysis 
(FIA) program reports its carbon estimates to the United Nations Framework Convention 
on Climate Change (UNFCCC) (USEPA 2017), and the Department of Energy relies on 
FIA’s estimates of biomass (Aalde et al. 2006). Furthermore, biomass is the basic unit of 
productivity used in numerous ecological studies (e.g., Clark et al. 2001, Parker and Schneider 
1975, Whittaker et al. 1974), and it is clearly important that mean biomass predictions and 
characterizations of uncertainty are accurate.

To estimate tree-level biomass, FIA uses the Component Ratio Method (CRM) (Woodall et 
al. 2011b), having switched in 2008 from previously using regionally-specific biomass models 
(e.g., Wharton and Griffith 1993). CRM uses species-specific regional volume models, deducts 
cull to estimate sound cubic-foot wood volume, and uses biomass conversion and expansion 
factors (BCEFs) to estimate total aboveground biomass without foliage. These BCEFs include 
wood and bark density values (as presented in Miles and Smith 2009) as well as nationally and 
taxonomically generalized CRM models (as presented in Jenkins et al. 2003). These models 
are then applied to the tree list in the FIADB to estimate state, regional, and national biomass. 
Despite this recent switch to the CRM, assessment of the new approach has been minimal 
(e.g., Domke et al. 2012). A recent analysis using observed tree-level biomass data from the 
eastern states suggests that the CRM method underestimates biomass by 6-15 percent across 
the eastern United States (Radtke et al. 2017). Because a fully comprehensive destructive 
sampling effort to obtain tree biomass data across the United States has not been conducted, it 
is also important to understand how sampling gaps may influence past and future assessments.

An important underlying assumption of this work is that tree biomass can vary between 
species, diameter at breast height (d.b.h.) or d.b.h./height, and region even when other 
factors are held constant. Basic allometry suggests that for a given species within a region, 
biomass will increase as d.b.h. increases (Jenkins et al. 2003). In addition, for a given tree size, 
biomass will vary between species within a region due to differences in wood density (Miles 
and Smith 2009) and tree architecture. Regional differences, however, are more difficult to 
detect. For instance, Jenkins et al. (2003) found that biomass regressions of the same species 
varied considerably, but no regional patterns were apparent. This brings up the question as 
to whether apparent biomass differences should be attributed to regional variation, noise in 
biomass measurements, or high site-to-site variability.
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Objectives and Expectations
The primary objectives for this study were threefold: 

1.	 Report on the number of studies that have been conducted and the number of trees 
sampled by core component groups to estimate biomass in the United States.

2.	 Assess the sample sizes and diameter ranges for key species evaluated in previous studies.
3.	 Characterize the sampling locations of certain species and compare that to the 

geographic range of the species.

Data collected across these studies will ultimately be used to test the assumptions mentioned 
in the previous section. Thus, data gaps were considered in terms of (1) how they may affect 
generalized models and CRM estimators used to assess biomass at various scales across 
the United States; (2) how the data can serve to validate current models; and (3) how they 
might restrict future model applicability when using actual data. Ideally, from a validation 
perspective, the relative representation of data from destructively sampled trees would match 
the standing tree inventory. However, from a modeling perspective, ensuring sampling across 
the range of attributes may be preferred (i.e., ensuring some samples of large trees at the tail 
of size distribution rather than a high number of trees at the peak). To illustrate, the publicly 
available FIADB was used to compare and formally assess gaps in terms of tree size classes, 
species, and location.

METHODS
Recording Information for the Gap Analysis
Literature Review
To complete this analysis, an exhaustive search of the literature on tree biomass studies 
in the United States was conducted. First, previous tree biomass model syntheses and 
databases (Chojnacky et al. 2014, Jenkins et al. 2004, Ter-Mikaelian and Korzukhin 1997) 
were examined, and the literature describing the studies cited in these articles were used as a 
source for additional resources. The literature review leveraged these past works by providing 
additional details on each study, synthesizing the additional information, and incorporating 
newer datasets. In addition, this review encompassed a recent (and ongoing) compilation 
of biomass data from destructively sampled trees (Radtke et al. 2015), hereafter referred to 
as the “legacy tree database.” The data search for the legacy tree database extended beyond 
the peer-reviewed literature and incorporated a number of unpublished studies. As a matter 
of accounting and considering the widespread use of the models developed by Jenkins et al. 
(2004) and Chojnacky et al. (2014) in the United States, it was noted if the reviewed studies 
appeared in these works. It was also recorded if actual biomass data or only a model could be 
obtained from each study. For studies that had a model, it was noted if the model contained 
height as a predictor and if the author reported standard error. The objective was to quantify 
the number of trees greater than 1 inch d.b.h. within the United States for which at least 
one tree component was destructively sampled for dry weight. Studies were not included 
in the analysis if they were located outside of the United States, were compilations, were 
more theoretical or statistical in nature, measured only external characteristics (without any 
destructive sampling) on standing trees, sampled only seedlings (i.e., trees less than 1 inch 
d.b.h.) or shrubs, measured only green weight or volume, or focused on biomass estimates at 
the stand or regional level rather than the tree level. Exceptions to these rules included studies 
where both seedlings and larger trees were sampled and the number of each could not be 
determined. In these cases, the total number of sampled trees included seedlings.



4

Tree Components
The primary interest of this study was in estimating aboveground biomass (AGB). However, 
given that other researchers may be interested in the mass of individual tree components, all 
components sampled were reported. For instance, the CRM and biomass expansion factors 
(BEFs) in general rely on the relationship between a component (particularly bole biomass) 
and AGB (without foliage). In addition, recent studies suggest that variations in whole-tree 
mass are related to differences in the way mass is allocated to tree components (e.g., the 
crown) (Goodman et al. 2014), and that bole volume is strongly affected by the allocation 
of wood to branches (MacFarlane and Weiskittel 2016). Filling gaps in tree component data 
is also important because tree utilization is best understood when the tree is modeled as 
the sum of its interrelated parts (MacFarlane 2015). Finally, branch and bark models might 
provide preliminary estimates for bioenergy harvests (Conner and Johnson 2011, USDOE 
2011), while foliage estimates are integral for ecosystem process modeling (e.g., Chapin et al. 
2002).

The USDA Forest Service National Biomass Estimation Library (Wang 2014), an extension 
of the Jenkins et al. (2004) database, identified 47 different tree component classes, many of 
which can be seen as subclasses of other components. For this analysis, gaps in available data 
were assessed for nine tree component groups: (1) total stem (wood and bark) biomass; (2) 
branch wood and bark biomass; (3) total above-stump biomass (including foliage); (4) root 
biomass; (5) stem wood biomass; (6) stem bark biomass; (7) total above-stump wood and 
bark biomass (excluding foliage); (8) crown (foliage and branch) biomass; and (9) foliage 
biomass. Studies vary considerably in how they differentiate between size classes of roots 
or branches, and often models calculate the biomass of the entire component and do not 
separate by size. In this analysis, a study was considered to have examined root biomass if any 
portion of the root biomass was measured. For branches (wood and bark), the study had to 
include at least the live branch component, although for most studies, the branch component 
included both live and dead branches. There were also differences in how components 
were separated. For example, in most cases the foliage component was separated from the 
twig; however, in some cases, foliage was defined as leaf and twig (e.g., Lambert et al. 2005, 
Whittaker et al. 1974). Finally, studies varied in how they defined the stem, specifically 
whether it constituted the entire stem or merchantable stem, and how the merchantable stem 
was delimited (i.e., “topped”). For this analysis, the stem was considered to be sampled if the 
entire merchantable stem was sampled regardless of where it was delimited.

Tree and Site Selection Criteria
For each reviewed study, the author, year, species, and location were recorded. In addition, 
for each location by species combination, the sample size; average, minimum, and maximum 
tree diameter; and tree components sampled were recorded. Each study was then examined to 
determine if tree-sampling restrictions were imposed as evidenced by avoiding trees of poor 
form (e.g., low forks, excessive branching, or broken tops) or poor health (e.g., showing signs 
of low vigor, damage, or disease, and at high risk of mortality). The best available information 
for site locations was used to estimate latitude and longitude for each study. Frequently, 
coordinates could be estimated to within 0.05°, although accuracy was much lower for 
studies that had a location description that was either too general or the extent of the area 
sampled was too large and little site-specific information was provided. Based on the location 
data, trees were assigned to one of four FIA regional units: Northern, which was split into 
Northeast (NE) and North Central (NC); Southeastern (SE); Intermountain West (IMW); and 
Pacific Northwest (PNW).
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The lack of uniformity in recording site characteristics across studies makes it difficult to 
utilize site factors in the modeling framework. Authors of many articles do not adequately 
explain how sites are selected and do not describe physiography, landscape, or stand 
attributes. Some studies utilize classification systems, but groupings often differ across studies 
or use qualitative descriptors such as poor and good, which makes intra-study comparisons 
difficult. Site index can be used to classify studies, but in a previous review, site index was 
recorded in fewer than 10 studies (Ter-Mikaelian and Korzukhin 1997). Instead, in this 
analysis, data gaps were assessed by location and region, two factors that can be viewed as 
proxies for variations in climatic conditions, edaphic characteristics (such as soil type or 
depth), and treatment.

Assessment and Quantification of Data Gaps by Location, Species, 
and Diameter
This analysis examined available models and actual data (i.e., data available in the legacy tree 
database) and includes summaries of (1) the total number of trees sampled across all studies; 
(2) the total number of studies conducted; and (3) the number of trees available in the legacy 
tree database across all species by components and region. The summaries can be seen as a 
first assessment of gaps in available data.

As a means to assess gaps in data by tree diameter, diameter distributions for a given species 
were compared between the FIADB and the legacy tree database. Boxplots showing the 
maximum, minimum, median, and 25th and 95th quantiles were used to show discrepancies 
between the distributions of the two datasets and to highlight the limitations in the range of 
trees sampled in the legacy tree database. Distributions of the data were further examined for 
species groups and species by proportion of trees and proportion of biomass.

To visualize and assess spatial gaps in data (i.e., do the number of trees sampled represent the 
biomass across a species’ range), maps showing the FIADB-estimated biomass per acre for 
the 30 species with the most biomass across the continental United States were overlaid with 
the locations of past biomass studies. Latitudinal and longitudinal biases were depicted by 
calculating and plotting spherical centroids weighted by FIA plot biomass data and sample 
size in the legacy tree database. The FIA estimate for total tree biomass was calculated as 
oven-dry biomass in the merchantable bole + dry biomass of tops and limbs of timber species 
(DRYBIO_BOLE + DRYBIO_TOP in O’Connell et al. 2016). Percent error was calculated by 
taking the ratio of the distance between the centroids and the diagonal distance between the 
minimum and maximum coordinates and then converting this to a percentage.

A goal of this study was to quantify whether past sampling efforts undersampled trees of 
different sizes and species relative to the amount of biomass reported for trees of the specified 
sizes and species represented in the U.S. forest carbon inventory. The number of trees for a 
given species, diameter size class (d.b.h. <5 inches = 1; 5 to <15 inches = 10, 15 to <25 inches 
= 20, etc.), and FIA region in the legacy tree database and the percentage of the biomass 
present for the same groups in the FIADB were calculated. Potential gaps were described for 
illustrative purposes by using a baseline tree sampling objective equal to the FIADB biomass 
percentage x 10. As a measure of sampling effectiveness, the sampling completeness value 
(SCV) was calculated as the product of the number of trees in the legacy tree database and 
the sampling objective. In addition, representation for a biomass pool was calculated as the 
difference between the percentage of the number of trees in the legacy tree database and the 
percentage of biomass in the FIADB.
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RESULTS
Over 1,060 studies were identified that were potentially related to tree-level biomass 
estimation. After eliminating studies determined not to contain data relevant to this analysis, 
844 studies were further examined. A preliminary review of these 844 studies determined 
that 351 had actual tree-level aboveground or component biomass (e.g., stem, foliage, roots, 
or branches) measurements assessed in the United States. Trees were destructively sampled 
in most of the studies, but in some cases trees were cored and climbed with limited branch 
sampling (e.g., Sillett et al. 2015). Of the biomass studies that used destructive sampling, 25 
were duplicates and were removed, leaving 326 unique studies with a combined total of 47,684 
trees in the analysis (see Appendix 1 for a list of all studies). A total of 240 of these studies (74 
percent) were not included in Jenkins et al. (2003), which developed generalized models using 
numerous finer-scale models to generate pseudodata.

Tree and Component Mass
A total of 24,791 trees (52 percent of the 47,684 trees sampled) were identified from 199 
studies that employed destructive sampling for above-stump biomass across the United States 
(Table 1; tables begin on p. 17). Stem biomass was measured for 27,080 trees (57 percent); 
stem wood biomass estimates were available for 25,618 trees (54 percent); and wood biomass 
estimates were provided for 20,283 trees (43 percent). Stem measurements generally were 
taken from a variable stump (generally <1 foot) to a variable top, which was almost always 
reported as a value <4 inches diameter outside bark. Branch, crown, and foliage biomass 
was estimated for 22,197 (47 percent); 19,154 (40 percent); and 21,262 (45 percent) trees, 
respectively. Estimates for the stump and root portions of the tree were less common, with 
root biomass measurements identified for only 2,840 (6 percent) trees.

When considering legacy tree data only, the percentage of known trees measured ranged from 
72 percent (14,548 out of 20,283 trees) for stem bark biomass to 13 percent for root biomass 
(363 out of 2,840 trees). Trees that had both stem and above-stump biomass measured 
included 11,402 trees from the legacy tree database and 17,251 trees across all studies. In the 
legacy tree database, above-stump biomass (with or without foliage) was measured for 14,073 
trees. This number is slightly higher than the number of trees with above-stump biomass and 
the number of trees with total wood biomass (Table 1) because it included trees both with 
and without foliage. For the 30 species with the greatest biomass in the FIADB, subalpine fir1, 
Sitka spruce, white fir, and grand fir were lacking in total aboveground estimates. Mountain 
hemlock and pignut hickory were undersampled for all components and have no known 
destructively sampled trees. Data for all 148 species that had at least one tree sampled can be 
found in Table S1 (supplemental files for tables S1-S8 and Appendix S2 are available at https://
doi.org/10.2737/NRS-GTR-184.s2).

Tree Selection
Species
Gaps in species data were depicted by tree component (Table 1), study type (Table 2), and 
region (Table 3). Excluding more general taxonomic groupings and species in the Caribbean 
and Pacific, 354 unique tree species were identified in the FIADB. Models or legacy tree data 
were available for 148 of these species (see Appendix S2 in supplemental tables file for list), 
leaving 206 species for which a published biomass model could not be located. These 206 
species, however, accounted for less than 10 percent of the total biomass in the FIADB. The 

1Scientific names for all tree species are listed in Appendix 2. 

https://doi.org/10.2737/NRS-GTR-184.s2
https://doi.org/10.2737/NRS-GTR-184.s2
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10, 20, and 30 species with the greatest amount of biomass in the FIADB made up 42 percent, 
57 percent, and 67 percent, respectively, of the total biomass in the FIADB and 33 percent, 42 
percent, and 61 percent, respectively, of the destructively sampled trees in the literature. The 
species with the greatest number of trees was loblolly pine, with 9,967 trees sampled (Table 2). 
By comparison, only 1,177 Douglas-fir trees have been sampled for at least one component 
of tree biomass. Of the 30 species with the greatest amount of biomass in the FIADB, pignut 
hickory and mountain hemlock had no samples in the legacy tree database (Table 2). 
Additional species with no samples included Pacific silver fir, shagbark hickory, and common 
pinyon (Table S2). It is worth noting that although more hickory trees were sampled, they were 
rarely identified to species (e.g., Clark et al. 1986, Wiant 1977). Additional ash, poplar, elm, 
birch, hackberry, and oak species were also sampled, but were not identified to species (see 
Appendix 2 in this document and Appendix S2 in supplemental tables file for the complete list 
of species and genera in this study).

Sample Size, Size Classes, and Diameter Distributions
Relatively few studies sample trees over 20 inches (500 mm) in d.b.h. and sample more than 
500 trees. Given this finding, studies that sampled a high number of trees, including large trees, 
were noted as higher in importance. An importance index (sample size * maximum d.b.h. 
in inches/100) was calculated for each study, and the studies with the 30 highest importance 
indexes (Table 4, Fig. 1) contained 21,659 of the 47,684 trees evaluated for this analysis. These 
included the work of Alexander Clark (Clark and Saucier 1990; Clark and Schroeder 1986; 
Clark et al. 1985, 1986), which contributed 4,712 trees in a rather comprehensive sampling of 
the southeast region; Young et al. (1980), who sampled an estimated 965 trees in Maine; and 
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Figure 1.—Sample size and maximum d.b.h. (in mm = inches * 25.4) sampled for the 30 studies with the 
greatest importance index (simply sample size * maximum d.b.h. (mm) sampled). A threshold of 500 (red line) 
highlights the studies that sampled a maximum diameter tree greater than 19.7 inches (500 mm) or sampled 
more than 500 trees. Please note the discontinued scale. (See Appendix 1 for study citations.)
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Perala and Alban (1994), who sampled extensively across the Great Lakes region (NC region). 
The works of Sillett et al. (2010, 2015) are highly influential, being the only U.S. studies to 
measure above-stump biomass for trees over 50 inches in d.b.h. The redwoods sampled in 
California are by far the largest trees sampled across North America. Otherwise, the majority 
of the 30 studies with the highest importance index occurred in the eastern United States, with 
more than half from the southeast (Table 4).

For most species, the largest trees were generally undersampled (Fig. 2). Across the United 
States, the largest tree sampled for biomass was generally greater than 95 percent of the trees 
in the FIADB; however, for a given species, the largest destructively sampled tree was often 
less than half the size of the largest tree in the FIADB (Fig. 2). By count, hardwood trees with a 
d.b.h. from 1 to 19 inches and conifers with a d.b.h. from 1 to 23 inches represented 99 percent 
of trees across the landscape. While the vast majority of trees were in the smaller diameter 
classes, the greatest proportion of biomass was in the mid-range diameter classes (Fig. 3). By 
individual species, distribution peaks consistently shifted from saplings (1 to <5 inches d.b.h.) 
when examining the proportion of trees by count to small trees (5 to <15 inches d.b.h.) when 
examining the proportion of biomass by size class (Figs. S3.1 to S3.30). A shift in the peaks 
of the distribution from small diameter classes in the FIADB to larger diameter classes in 
the legacy tree database was also generally observed, suggesting that trees were destructively 
sampled to cover a selected range of diameters rather than being sampled strictly according to 
the distribution. However, these trends likely vary by state based on current composition and 
past management.
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Figure 2.—The boxplot shows the diameter distributions of forest land trees in the FIA database compared 
to trees in the legacy tree database for the 10 species with the most biomass. The 25th and 95th quantiles 
are represented by the bottom and top of the box, respectively, and maximum and minimum values are 
represented by the top and bottom of the lines, respectively. The line that dissects the box marks the median 
value. Additional figures for the remaining 30 species with the most biomass in the FIADB are available as 
supplemental materials (Figs. S2.2 and S2.3).

https://doi.org/10.2737/NRS-GTR-184.s1
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Tree Sampling Restrictions Based on Form, Risk of Mortality, or Vigor
For many studies, it was difficult to determine whether sampling restrictions were imposed. 
Of the 326 studies (47,684 trees) examined, it was determined that 67 studies (10,080 trees) 
imposed sampling restrictions, while 46 studies (10,903 trees) described their sampling design 
as random and did not indicate any sampling restrictions. For the remaining 211 studies, tree 
selection methods were unclear. Clark et al. (1985, 1986) classified trees as growing stock, 
rough, and rotten/cull, and we assumed that there were no sampling restrictions; Perala and 
Alban (1994) randomly selected trees and recorded rot and stain, while Schlaegel (1975) took 
diligent note of external defect and measured rot and stain. Generally, sampling restrictions 
were evidenced in methodologies that avoided trees that were open grown, heavily defoliated, 
broken at the top, low-forked, diseased, or otherwise distorted (Brown 1978). In other 
cases, only good to average form or “healthy” trees were selected (Hocker and Earley 1983, 
Levia 2008). In one case, if trees were over 12 inches d.b.h., only poor form or less vigorous 
trees were selected (Bridge 1979). In other cases, the sample may have been biased toward 
a particular class of trees according to the objectives of a thinning study (Goldsmith and 
Hocker 1978).
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Figure 3.—Tree frequency by diameter class in the FIA and legacy tree databases for hardwoods and conifers 
(top panels) and the proportion of biomass by diameter in the FIA and legacy tree databases (bottom panels). 
Given the overwhelming proportion of biomass in redwood trees in the legacy tree database, they were excluded 
from this figure. Individual species figures for the 30 species with the most biomass in the FIADB are available as 
supplemental materials (Fig. S3).

https://doi.org/10.2737/NRS-GTR-184.s1
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Geography, Site Selection, and Location
A comparison of FIADB-estimated biomass per acre across the species range and known 
biomass study locations showed some variation for the four species with the most biomass 
(Fig. 4). For red maple, over 95 percent of reported biomass was in only 22 of the 31 states 
where this species occurs. In particular, the Allegheny Plateau in northwestern Pennsylvania 
and southwestern New York represented areas of high red maple biomass. However, prior 
to FIA sampling in 2014, no more than eight red maple trees had been sampled in these 
areas (Wood 1971), and none of these trees had a d.b.h. greater than 11.8 inches. In contrast, 
sampling for loblolly pine appeared to be relatively complete across its range, while Douglas-
fir could be further studied in the southeast portion of its range, and white oak could be 
further studied in eastern Missouri. Comparisons between the legacy and FIA biomass 
centroids for Douglas-fir, loblolly pine, and red maple showed relatively good agreement, 
with differences of 6.4, 4.0, and 3.5 percent, respectively (Table 5). By comparison, white oak 
showed a southeasterly sampling bias of approximately 9.7 percent (311 miles), which would 
be alleviated by sampling towards the western edge of its range. Individual maps comparing 
the FIADB-estimated biomass per acre across the species range and known biomass study 
locations are available for the 30 species with the greatest biomass (Fig. S4.1-S4.30).
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Species level maps for the 30 species with the most biomass in the FIADB are available as supplemental materials 
(Fig. S4).
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Over half of the trees sampled in the United States came from the southeastern region (Table 
3), which included states as far west as Texas. While 42,962 trees were sampled in the eastern 
states (NE, NC, SE), only 4,722 trees (9.9 percent) were sampled in the western states (PNW 
and IMW).

Data Gaps by Region, Tree Species, and Diameter Class
The percentage of total biomass and the number of legacy trees sampled for aboveground 
wood and bark biomass (with or without foliage) were calculated for species by region by 
diameter class combinations. The 30 combinations with the greatest amount of biomass 
accounted for approximately a third of the cumulative biomass in the FIADB, and tentative 
sampling objectives were met for most of these groupings (Table 6). The sampling objective 
was not met in all cases, however, and the 30 species with the most biomass where the 
sampling objective was not met (i.e., SCV<1) are highlighted in Table 7. In the SE, species 
including loblolly pine, yellow-poplar, and white oak were adequately sampled in both the 
10 and 20 inch diameter classes, as were slash pine, red maple, and water oak in the 10 inch 
diameter class. However, when examining all groupings, species such as pignut hickory and 
sugar maple in the 10 inch diameter class and loblolly pine in the 30 inch diameter class were 
undersampled (see Table S7 for all tree groupings). In the PNW, large Douglas-fir (40 to 50 
inch diameter classes) and western hemlock (10 to 30 inch diameter classes) were noticeably 
undersampled, along with 20 to 30 inch Douglas-fir and grand fir in the IMW. In the north-
central region, no 20 inch black oak, 10 inch green ash, or 10 inch black ash trees were 
sampled. In the northeast region, species such as red maple and northern red oak (Quercus 
rubra L.) in the 20 inch diameter class were notably undersampled. Large Douglas-fir was also 
underrepresented, while loblolly pine was perhaps overrepresented with more than 1,400 trees 
sampled in the 10 inch diameter class (i.e., 10 inch loblolly pine make up 4.6 percent of the 
biomass in the FIADB and 10.1 percent of the trees in the legacy tree database). In addition to 
20-40 inch Douglas-fir, the most underrepresented trees included 10 inch red maple, 20 inch 
western hemlock, 10 inch lodgepole pine, and 10 inch sugar maple (Table 8).

DISCUSSION
Alternatives for Further Sampling
The main objective of this research was to identify current gaps in tree biomass data so that 
future studies might optimize sampling, and thereby reduce uncertainty in predictive biomass 
models. This work highlighted some of the gaps that exist in currently available data by tree 
components (Table 1), species (Table 2), and regions (Table 3). In addition, the maps (Figs. 4 
and 4S) can be used to assess where spatial gaps exist for a given species. For example, a total 
of 219 Douglas-fir; 2,168 loblolly pine; 445 red maple; and 360 white oak legacy trees were 
destructively sampled for above stump biomass (above stump legacy trees in Table 1). This 
might provide an adequate sample for predicting aboveground biomass for these species if 
the trees were spatially well-distributed. However, because they are not (see Fig. 4), additional 
sampling may be necessary to fill gaps across the species ranges where key landscapes and 
habitats are not represented, thereby minimizing the potential influence of spatially distinct 
patterns. Lastly, the results illustrate the lack of a representative sample in terms of diameter 
distributions, which are shifted towards larger trees but rarely contain the largest trees. (Figs. 2 
and 3).
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Overall, the most robust assessment of gaps seems to come from comparing biomass pool 
proportions in the FIADB to sample sizes in the legacy tree database. To match the effective 
population, the largest gaps for a given biomass pool are defined as having a low number of 
trees and a high amount of biomass in the FIADB. Regionally, the most prominent data gaps 
were in the PNW and IMW regions and tended to align with tree size rather than species. 
Despite being well represented in the FIADB, groupings in the 20- to 50-inch diameter classes 
appeared to be the most undersampled. For future sampling efforts, one approach might be 
to set a tentative sampling completeness value (SCV) goal of one and sample from each group 
until this goal is met. In particular, this approach would suggest sampling large Douglas-fir 
trees in the PNW region as well as northern red oak and red maple in the NE region (Table 
7). The sampling objectives presented in Tables 6 and 7 could be increased based on user’s 
objectives and available resources. Representation (i.e., the proportion of trees in the legacy 
tree database compared to the proportion of biomass for a given biomass pool) is important to 
consider because an unrepresentative database would result in erroneous projections of model 
error if not dealt with appropriately.

Although these are imperfect assessments, they serve as reasonable prioritizations of 
current needs (i.e., by species, diameter class, and region) until a more robust assessment of 
uncertainty and required sample size is undertaken within a specific modeling framework. For 
instance, recent work by Clough et al. (2016) suggests that the greatest relative uncertainties 
in AGB are in the southern portions of the IMW (where woodland species dominate) and 
eastern portions of the PNW. Ultimately, continued sampling for a given biomass pool would 
be determined by the number of trees sampled and model uncertainty after accounting for 
diameter and height.

Sampling to mirror the effective population is practical for many applications. From a 
modeling perspective, however, it may be useful to sample across the range of attributes 
in the population. Using this approach, the legacy tree database and literature may have 
oversampled small trees, undersampled large trees, and failed to sample species up to the 
edge of their range, and thus, the current literature and available data may not adequately 
capture the full range of attributes or variability in the population. In contrast to sampling to 
match the effective population, an alternative approach would be to sample at the “fringe” to 
best understand the broad range of variability for a population. This would include sampling 
less prevalent species, sampling at the edge of a species’ range, and sampling the largest trees. 
For instance, large trees are presently a relatively small part of the landscape, but shifts in 
management practices may create the potential to greatly increase carbon stores (Stephenson 
et al. 2014).

Model-based Approaches to Fill Data Gaps
The cost of extensive sampling may make it prohibitive to adequately represent species and 
size classes across the entire United States. As such, in this section modeling techniques are 
considered, including (1) validating and developing species-group models; (2) using spatially 
explicit models; and (3) using pseudodata to fill gaps where the greatest paucity of data exists. 
These approaches may offer solutions for modeling gaps in available data, but species-group 
and spatial models may support a rationale to sample across the widest range of possible 
attributes rather than sampling to match the effective population. Errors associated with 
each approach are largely unquantified so these approaches will need testing, and continued 
sampling is recommended to update and validate a selected modeling approach.
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Nonspecific Models and Species-group Models
When few data points are available for a given species, a species-group approach (i.e., 
predicting biomass for a single species using species that share similar traits or phylogeny) 
may be useful. However, a model fit to genus-level data then applied to individual species may 
incur bias, and this bias has largely been unquantified (Weiskittel et al. 2015). The literature 
review revealed that only a few studies have grouped species. When employed, the grouping 
was mainly based on apical dominance (e.g., Brenneman et al. 1978). Hence, the relative 
advantages and disadvantages of grouping species remain largely unexplored. The species 
groups presented in Jenkins et al. (2003) were based primarily on phylogenetic similarities, 
while Chojnacky et al. (2013) incorporated species’ specific gravity. A nonspecific modeling 
approach was supported when quantifying volume across a large area since estimates and 
uncertainties using nonspecific models did not substantially deviate from specific models 
(i.e., models developed for each species). Mean volume estimates were within 3 percent, and 
standard errors improved with the nonspecific models for both coniferous and deciduous 
species (McRoberts and Westfall 2014).

A species-group approach may further support sampling a broad spectrum of species, 
including the 200+ species that currently do not have a model or data point. This approach 
also suggests sampling less common species with no observations to validate species-group 
models since there is a theoretical threshold at which the sampling of the most common 
species ceases to improve predictions of biomass and uncertainty. In addition, considering 
that species distributions and abundance are ever-changing in the face of climate change 
(Iverson and Prasad 1998), disease and pest outbreaks (e.g., eastern hemlock and white ash), 
and human disturbance (e.g., red maple [Abrams 1998]), models that are sensitive to these 
factors should be sought. These prospects may warrant model exploration that extends beyond 
taxonomy to include physiologically meaningful categories such as species tolerances (e.g., 
Niinemets and Valladares 2006), or not grouping at all and predicting with wood properties 
such as wood density. For instance, modeling approaches that incorporate wood density 
across many species have been shown to work well in the tropics (e.g., Chave et al. 2014) and 
in the northern United States (MacFarlane 2015).

Spatial Considerations and Spatially Explicit Models
Since site selection is generally opportunistic, bias may occur; thus users will need to consider 
whether a model is suitable for a given application. Ideally, site-related factors would be 
included in models, but as noted earlier, problems arise because there is little consistency in 
how sites and treatments are described, and different authors use various classification systems 
for soils and geographic factors. Incorporating tree height may help to account for these 
potential site differences, but only 44 percent of the studies with models incorporated height 
as a predictor variable (Table 4). It is interesting that height is not incorporated into biomass 
models more frequently. This may, in part, be due to the study scope. For example, studies that 
collect data only across homogeneous growing conditions probably warrant a diameter-only 
regression model. In contrast, studies that sample across a wide range of sites require height in 
their models (e.g., Clark et al. 1985, 1986) or height and site for some species (e.g., Perala and 
Alban 1994). Incorporating height (which is generally available in the legacy tree database) 
into models will likely help to explain site and stand characteristics that cannot be explained 
in diameter-only models. Additional variation may be explained by age and soil, but this 
information is not always easily measured in an inventory.

The general lack of a representative sample across the entire United States may require that 
users employ more sophisticated modeling techniques to improve parameter and error 
estimates that result from spatial dependence and clustering for some species. Work in 
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the northeastern United States suggests spatial variability in height-diameter relationships 
between sites, but no systematic relationship to latitude and longitude were found (Westfall 
2015). Mixed-effects modeling may offer a solution considering that the fixed-effects structure 
predicts across the entire dataset, while the inclusion of random effects parameters may 
improve local predictions (De-Miguel et al. 2014, Westfall 2016). By assessing differences in a 
fixed-only versus mixed-modeling approach, one may determine whether variation between 
ecoregions (e.g., Bailey 1995) or states exists and to what extent the variation exists, but sample 
size may be a limiting factor. Models that include explicit spatial modifiers on parameters and 
parameter standard error estimates might be most appropriate (e.g., Babcock et al. 2013). The 
effect of this would likely be expressed as greater uncertainty as predictions are made beyond 
the general availability of existing data.

Pseudodata Vs. Actual Data
The number of destructively sampled trees in terms of the whole body of “literature” (i.e., all 
studies with and without models) and the number of trees in the legacy tree database were 
quantified. Over half of the trees (25,187) that were identified as having been destructively 
sampled are not currently available in the legacy tree database, but the majority of these trees 
(24,388) had associated models. The trees in the legacy tree database can be viewed as actual 
data, and while using actual data is preferred, a model could be used to predict pseudodata 
where large spatial, species, or size gaps exist.

The generalized models presented in Jenkins et al. (2003) were fit after generating pseudodata 
from regression models reported in the literature (Pastor et al. 1984). Models developed from 
pseudodata, however, have some important limitations (see Lambert et al. 2005) and may 
introduce error when back-predicting from the original regression model (Baskerville 1972, 
Snowdon 1991). Additionally, the models have only a tenuous link to empirical data, and the 
error estimates are propagated using pseudo-ranges (see Jenkins et al. 2004). As such, while 
the approach may lead to reasonable mean estimates across multiple studies and large regions, 
it does not provide realistic error estimates, particularly within a site or study.

Generating more realistic measures of uncertainty is integral to providing more realistic 
simulated data. This requires measures of uncertainty, such as the standard error, that 
accompany models used to generate pseudodata. Of the 326 studies that were reviewed, 
252 studies presented models to predict biomass of at least one tree component. Across all 
studies, standard error (generally on the mean rather than the parameters) was reported for 55 
percent of the models. R2 values were reported more frequently, and recent work shows that 
using R2 values may provide improved pseudodata estimates (Wayson et al. 2015). Bayesian 
approaches to simulating data are also proposed in Henry et al. (2015). However, questions 
remain about the suitability of pseudodata, and standard errors on the parameter estimates 
tend to be underestimated (Magnussen and Negrete 2015). The legacy tree database could be 
a valuable tool for testing methodologies for generating pseudodata. However, when available, 
we advocate using actual data in all model development.

Sampling for Trees of Varying Form, Risk, and Vigor, and Improving 
Estimates of Component Allometry
Of the 113 studies for which tree selection methods were determined, more than half of the 
studies imposed sampling restrictions by selecting trees of average and better vigor and by 
avoiding forked (as noted by MacFarlane and Weiskittel 2016) and otherwise deformed trees. 
Using models that avoid trees that are poorly formed (e.g., low forking or with a broken top) 
or at a high risk of mortality (i.e., of low vigor), as evidenced by broken branches, severe 
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mechanical damage, and fungal pathogens (Pelletier et al. 2013), may overestimate the 
biomass of low vigor/high risk trees, leading to overestimates at larger strata.

The height to the tree’s lowest branch and the size of the largest branch may help explain 
the proportion of bole-to-branch biomass (MacFarlane 2011) and bole-to-AGB. Height to 
the lowest branch was almost never included as a predictor, and only a few biomass studies 
assessed the influence of form or health on biomass estimates (e.g., Bickelhaupt 1979). In 
addition, classifying trees in terms of form and risk (Pelletier et al. 2013) may improve 
estimates of tree merchantable volume (Castle et al. 2017) and decay (Frank et al. 2018), 
which in turn affects volume and biomass estimates when discounted from gross volume. It is 
recommend that future studies examine how variation in tree form and health may influence 
biomass estimates by sampling diseased and deformed trees. Further, a clear and broadly 
applicable classification or measurement protocol is necessary for assessing standing tree form 
and risk to mortality.

Although root biomass can constitute approximately 30 percent of the total tree biomass 
(aboveground + belowground) (Grier and Milne 1981, Young et al. 1980), roots were the most 
undersampled component. Of the studies observed, only 4 sampled root biomass for Douglas-
fir and only 13 sampled root biomass for loblolly pine, while only a single study examined 
red maple root mass, and no studies included belowground biomass for western hemlock. 
Hence, it is important to investigate root biomass in western hemlock and red maple. In 
addition, although above-stump biomass (including foliage) is available in over 12,000 trees in 
the legacy tree database, only 9,383 of the trees were sampled for all major components (i.e., 
stem wood, stem bark, branch, and foliage). We recommend weighing all major aboveground 
components separately for any destructive sampling endeavor.

SUMMARY, LIMITATIONS, AND 
RECOMMENDATIONS FOR FUTURE RESEARCH
Summary
This review included 326 studies with 47,684 trees that were destructively sampled for at 
least one tree component. This is a conservative estimate of the data available because not 
all existing biomass studies were located and reviewed, and more trees have been sampled 
since these numbers were tabulated. For example, the following articles are known to contain 
relevant root biomass data in the United States, but were located after this analysis was 
completed: Samuelson et al. 2014 (36 longleaf pine trees); Litton et al. 2003 (45 lodgepole pine 
trees); Omdal et al. 2001 (80 lodgepole pine trees); Pearson et al. 1984 (89 ponderosa pine 
trees); Foster (1985 (9 balsam fir trees). Additional studies and root biomass data are also 
presented in Cairns et al. (1997).

As of March 2016, the actual data from 159 studies have been located, accounting for 22,497 
trees in the continental United States (including Alaska), including 9,383 trees that have data 
for each major component (i.e., stem wood, stem bark, branch, and foliage). Presently, these 
data are available in a permanent online repository available at legacytreedata.org (Radtke 
et al. 2015) where researchers can share data and analyses to improve biomass and carbon 
estimation at various scales.

Based on this comprehensive assessment of existing literature, the most notable gaps in tree 
biomass data included (1) very large trees (>40 inches d.b.h.), particularly large conifers in 
the PNW region; (2) root and stump biomass from most species; and (3) trees that diverge 



16

from an idealized form for timber production or that have low vigor. In addition, although the 
literature was not formally explored for these factors, very few studies included open-grown 
trees, trees in urban landscapes, and dead and dying standing trees. The lack of studies of the 
latter supports recommendations that additional research is required to quantify this carbon 
pool and meet UNFCCC reporting requirements (Woodall et al. 2011a).

Limitations
This gap assessment focused on how existing data and past studies are limited in terms of the 
species, tree components, and size classes of trees sampled, but there are some limitations 
to this approach. The most obvious data gaps were defined and compared to the effective 
tree population, which was estimated using the FIA database. However, exactly matching 
the effective population ultimately may not be necessary because the variation in a biomass 
pool determines whether there are enough trees sampled. In addition, depending on the 
adopted modeling framework (e.g., a nonspecific approach could replace a specific approach), 
sampling a wider range of less common species may be warranted rather than sampling a 
higher number of common species.

In addition to limitations in this gap assessment approach, how these data were collected must 
also be considered. First, since the data were often collected opportunistically and do not 
reflect a representative sample, more sophisticated modeling techniques may be necessary, and 
careful consideration should be given to the appropriateness of a model for a given biomass 
pool. Second, within-tree variation is often not accounted for and protocols can vary widely 
between studies, leading to random sources of variation.

Recommendations for Continued Research
The data that are preserved in the legacy tree database provide a valuable resource for 
addressing questions pertaining to biomass and carbon estimation at multiple scales (ranging 
from within-tree to national). A substantial number of biomass prediction studies hailing 
from the past 60 years have been preserved; however, data are missing from nearly half of the 
trees sampled. This result highlights the value of archiving all data because models and data 
generated from these efforts can be useful for large-scale modeling efforts. The FIA program 
continues to collaborate with university and industry partners to archive and digitize past 
datasets and to target trees for destructive sampling from those species and size classes needed 
to fill in data gaps. Additional collaboration is sought where feasible, and future destructive 
sampling efforts should consider adopting existing protocols (available at legacytreedata.org) 
to improve data compatibility across studies.

Studies that examine within-tree variation and compare different methodologies are needed 
and may shift prioritizations of future sampling requirements. In addition, optimal sample 
sizes will need to be considered as a function of uncertainty for a given biomass pool, as these 
will offer more appropriate objectives for future sampling.
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Table 1.—Summary of number of trees and studies sampled for component biomass for the 30 species with the greatest biomass in the FIADB. For each 
tree component, estimates are given for (1) the total numbers sampled in the literature (including trees in the legacy tree database); (2) the number of 
studies in the literature (including trees in the legacy tree database; in brackets); and (3) the number of trees available in the legacy tree database. Zero 
indicates that there are no known destructively sampled trees or studies. Data for all 148 species sampled are available in Table S1.

Common name

Stem Branch Above stump Stem and above stump Roots

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Douglas-fir 761 [16] 332 829 [21] 431 598 [16] 219 585 [14] 211 134 [4] 9
Loblolly pine 5307 [46] 4203 2962 [44] 1810 2743 [41] 2168 2265 [29] 2078 515 [13] 156
Red maple 921 [22] 544 783 [17] 488 825 [21] 445 700 [15] 412 70 [1] 0
White oak 528 [13] 444 451 [10] 431 428 [11] 360 359 [8] 348 18 [2] 4
Sugar maple 427 [17] 273 326 [14] 196 421 [16] 238 377 [15] 238 56 [2] 14
Western hemlock 79 [4] 60 90 [5] 71 37 [3] 18 30 [2] 11 0 [0] 0
Northern red oak 257 [11] 204 313 [12] 171 137 [9] 82 102 [7] 78 14 [1] 0
Ponderosa pine 366 [11] 246 459 [15] 394 232 [10] 161 226 [9] 161 0 [1] 0
Yellow-poplar 411 [13] 335 377 [11] 331 291 [11] 210 224 [9] 208 0 [1] 0
Sweetgum 1040 [10] 806 1188 [10] 793 879 [8] 734 868 [7] 723 59 [3] 0
Lodgepole pine 205 [8] 135 202 [10] 202 95 [7] 76 91 [6] 76 0 [1] 0
Chestnut oak 193 [8] 140 209 [9] 140 159 [6] 87 127 [5] 87 0 [0] 0
Black oak 90 [5] 64 90 [5] 64 89 [5] 55 43 [2] 43 0 [0] 0
Engelmann spruce 113 [4] 84 121 [6] 92 51 [3] 19 48 [2] 19 0 [0] 0
Quaking aspen 717 [13] 672 438 [15] 393 389 [13] 240 249 [10] 214 46 [3] 8
American beech 196 [10] 134 146 [8] 84 150 [11] 86 134 [9] 72 58 [2] 15
Black cherry 113 [8] 82 102 [7] 82 130 [9] 61 91 [6] 60 0 [0] 0
White ash 90 [5] 72 58 [4] 40 65 [4] 7 25 [3] 7 0 [0] 0
Eastern white pine 299 [9] 221 263 [8] 190 189 [7] 136 155 [6] 102 43 [1] 0
Water oak 206 [2] 206 396 [3] 206 215 [3] 215 206 [2] 206 0 [0] 0
Slash pine 2582 [21] 1281 1318 [18] 784 1308 [17] 988 1176 [13] 988 94 [5] 58
White fir 22 [2] 10 34 [3] 22 12 [1] 0 12 [1] 0 0 [0] 0
Post oak 30 [3] 30 30 [3] 30 63 [3] 30 28 [1] 28 0 [0] 0
Mountain hemlock 6 [1] 0 6 [1] 0 6 [1] 0 6 [1] 0 0 [0] 0
Subalpine fir 72 [4] 63 68 [4] 59 9 [1] 0 9 [1] 0 0 [0] 0
Sitka spruce 40 [2] 23 24 [2] 6 17 [1] 0 17 [1] 0 0 [0] 0
Grand fir 27 [1] 27 69 [3] 69 0 [0] 0 0 [0] 0 0 [0] 0
Pignut hickory 0 [0] 0 0 [0] 0 0 [0] 0 0 [0] 0 0 [0] 0
Eastern hemlock 167 [7] 120 136 [6] 89 83 [5] 36 83 [5] 36 47 [1] 0
Scarlet oak 141 [5] 141 127 [4] 127 80 [3] 80 78 [2] 78 0 [0] 0
All 148 species 27080 [221] 17301 22197 [197] 12783 24791 [199] 12177 17251 [160] 11402 2840 [38] 363
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Table 1.—continued

Common name

Stem wood Stem bark Total wood Crown Foliage

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Douglas-fir 503 [10] 147 503 [10] 147 694 [16] 315 906 [21] 434 926 [25] 489
Loblolly pine 7280 [41] 5418 4003 [34] 3583 2057 [26] 1695 2726 [29] 2280 2897 [45] 2015
Red maple 595 [11] 418 591 [10] 418 930 [23] 537 682 [14] 414 680 [16] 415
White oak 397 [8] 379 393 [7] 379 605 [15] 468 375 [9] 364 363 [8] 363
Sugar maple 265 [11] 231 265 [11] 231 444 [14] 196 377 [15] 238 349 [13] 195
Western hemlock 40 [3] 21 40 [3] 21 65 [4] 46 164 [6] 66 97 [5] 78
Northern red oak 170 [5] 170 170 [5] 170 302 [14] 185 158 [8] 78 162 [9] 82
Ponderosa pine 77 [6] 50 77 [6] 50 255 [11] 184 444 [14] 397 529 [18] 424
Yellow-poplar 327 [8] 283 327 [8] 283 468 [14] 377 224 [9] 208 225 [8] 210
Sweetgum 1146 [7] 802 1146 [7] 802 1195 [11] 795 783 [5] 723 1085 [8] 725
Lodgepole pine 63 [4] 48 63 [4] 48 139 [7] 120 239 [11] 224 206 [11] 202
Chestnut oak 130 [4] 130 130 [4] 130 270 [11] 143 129 [5] 90 129 [5] 90
Black oak 87 [4] 61 87 [4] 61 173 [8] 107 69 [3] 43 55 [4] 55
Engelmann spruce 79 [3] 50 79 [3] 50 108 [5] 76 98 [5] 69 99 [6] 67
Quaking aspen 690 [11] 671 664 [10] 645 415 [14] 363 279 [12] 244 292 [13] 250
American beech 65 [6] 65 65 [6] 65 216 [10] 98 135 [9] 73 131 [9] 69
Black cherry 58 [4] 58 58 [4] 58 132 [8] 86 91 [6] 60 81 [6] 61
White ash 39 [3] 39 39 [3] 39 113 [6] 80 26 [3] 8 26 [3] 8
Eastern white pine 121 [4] 121 121 [4] 121 206 [6] 153 207 [6] 154 273 [9] 200
Water oak 396 [3] 206 396 [3] 206 396 [3] 206 206 [2] 206 396 [3] 206
Slash pine 3423 [23] 2137 1526 [19] 1255 844 [11] 784 1048 [12] 988 1327 [18] 784
White fir 12 [1] 0 12 [1] 0 22 [2] 10 34 [3] 22 34 [3] 22
Post oak 29 [2] 29 29 [2] 29 32 [3] 32 28 [1] 28 63 [3] 30
Mountain hemlock 6 [1] 0 6 [1] 0 6 [1] 0 6 [1] 0 6 [1] 0
Subalpine fir 43 [3] 34 46 [3] 37 50 [3] 41 69 [4] 60 51 [3] 42
Sitka spruce 0 [0] 0 0 [0] 0 23 [2] 6 24 [2] 6 24 [2] 6
Grand fir 0 [0] 0 0 [0] 0 15 [1] 15 72 [4] 72 73 [3] 73
Pignut hickory 0 [0] 0 0 [0] 0 0 [0] 0 0 [0] 0 0 [0] 0
Eastern hemlock 64 [4] 64 64 [4] 64 126 [6] 58 104 [5] 57 138 [7] 91
Scarlet oak 138 [5] 138 138 [5] 138 147 [6] 147 92 [3] 92 80 [3] 80
All 148 species 25618 [164] 17328 20283 [150] 14548 22560 [178] 12308 19154 [166] 13057 21262 [206] 12511
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Table 2.—Tree sample sizes and number of studies [shown in brackets] for the 30 tree species with the greatest biomass in the FIADB (for at least one 
tree component) and the minimum (min.) and maximum (max.) diameters for trees previously summarized in Jenkins et al. (2003) compared to legacy 
tree data presently accumulated. Totals also include legacy tree data from previously summarized articles (Both) and from articles that were not 
previously summarized and that have no legacy tree data (Additional literature). Additional literature was further separated into studies with models 
and studies without models. Total n = 47,684 trees for all species. Data for all 148 species sampled are available in Table S2.

Common name

Tree sample size [number of studies] by study type D.B.H. range (inches)

Legacy tree 
database

Jenkins 
database Both

Additional 
literature with 

models

Additional 
literature 

without models Total
Jenkins 

min.
Jenkins 

max.
Legacy 

min.
Legacy 

max.

Douglas-fir 458  [15] 555   [7] 54   [3] 61   [2] 49   [3] 1177  [30] 0.3 63.0 1.0 44.9
Loblolly pine 6318  [37] 200   [5] 86   [4] 3347  [26] 16   [1] 9967  [73] 1.3 22.1 1.0 24.0
Red maple 202   [7] 479   [9] 400  [10] 65   [4] 23   [1] 1169  [31] 0.1 26.0 1.0 33.7
White oak 98   [5] 182   [6] 383   [6] 82   [4] 6   [1] 751  [22] 0.1 25.2 1.0 42.0
Sugar maple 136   [5] 247   [6] 137   [6] 85   [2] 26   [2] 631  [21] 0.1 27.4 1.1 32.8
Western hemlock 65   [3] 98   [2] 38   [2] 0   [0] 0   [0] 201   [7] 1.1 43.3 1.1 30.6
Northern red oak 36   [2] 96   [5] 182   [7] 108   [3] 33   [1] 455  [18] 0.1 28.7 1.0 32.8
Ponderosa pine 445  [11] 47   [2] 42   [1] 107   [3] 6   [1] 647  [18] 1.0 34.0 1.0 41.3
Yellow-poplar 90   [5] 102   [5] 291   [4] 55   [3] 59   [2] 597  [19] 0.2 25.6 1.0 31.7
Sweetgum 79   [3] 0   [0] 738   [2] 485   [9] 0   [0] 1302  [14] 1.0 20.7 1.0 32.5
Lodgepole pine 189   [7] 0   [0] 35   [3] 55   [2] 4   [1] 283  [13] 1.1 11.3 1.0 23.6
Chestnut oak 7   [1] 110   [4] 136   [4] 49   [3] 16   [1] 318  [13] 1.1 22.6 1.2 26.5
Black oak 7   [2] 60   [2] 100   [4] 40   [1] 0   [0] 207   [9] 0.2 34.8 1.1 24.0
Engelmann spruce 98   [4] 29   [1] 9   [1] 0   [0] 3   [1] 139   [7] 1.1 30.0 1.1 33.3
Quaking aspen 549   [9] 47   [2] 185   [3] 143   [3] 7   [1] 931  [18] 1.1 19.5 1.0 23.8
American beech 42   [4] 101   [3] 106   [5] 19   [1] 0   [0] 268  [13] 0.1 26.0 1.1 31.4
Black cherry 32   [3] 75   [4] 54   [3] 20   [1] 0   [0] 181  [11] 0.1 20.0 1.0 28.0
White ash 49   [3] 55   [2] 63   [2] 18   [1] 0   [0] 185   [8] 0.2 20.0 1.3 32.2
Eastern white pine 172   [4] 78   [3] 93   [4] 0   [0] 0   [0] 343  [11] 0.1 26.0 1.0 32.0
Water oak 13   [2] 0   [0] 202   [1] 190   [1] 0   [0] 405   [4] 1.0 20.0 1.0 20.0
Slash pine 2163  [16] 100   [1] 0   [0] 2508  [14] 0   [0] 4771  [31] - - 1.0 21.0
White fir 22   [2] 12   [1] 0   [0] 0   [0] 0   [0] 34   [3] 2.8 38.6 7.5 26.2
Post oak 1   [1] 0   [0] 31   [2] 33   [1] 0   [0] 65   [4] 3.0 20.9 3.0 20.9
Mountain hemlock 0   [0] 6   [1] 0   [0] 0   [0] 0   [0] 6   [1] 6.7 21.5 - -
Subalpine fir 66   [3] 0   [0] 16   [1] 9   [1] 0   [0] 91   [5] 1.0 12.7 1.0 24.6
Sitka spruce 23   [1] 18   [1] 0   [0] 0   [0] 0   [0] 41   [2] 1.2 30.6 7.8 23.1
Grand fir 52   [3] 0   [0] 32   [1] 0   [0] 0   [0] 84   [4] 1.0 15.6 1.0 33.2
Pignut hickory 0   [0] 0   [0] 0   [0] 0   [0] 0   [0] 0   [0] - - - -
Eastern hemlock 89   [5] 68   [2] 34   [2] 0   [0] 0   [0] 191   [9] 0.1 33.5 1.0 33.5
Scarlet oak 4   [1] 0   [0] 157   [6] 0   [0] 0   [0] 161   [7] 1.1 22.2 1.1 27.8
All 148 species 16013 [133] 5704  [60] 6484  [26] 18684  [94] 799  [13] 47684 [326] 0.1 63.0 1.0 334.9
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Table 3.—Estimates of the number of trees sampled by species and region for the 30 tree species with the greatest biomass in the FIADB. For each region 
estimates are given for (1) the total numbers sampled in the literature (including trees in the legacy tree database); (2) the number of studies in the 
literature (including trees in the legacy tree database; in brackets); and (3) the number of trees available in the legacy tree database. A dash indicates the 
species is not present in a given region in the FIA database, and zero indicates that there are no known destructively sampled trees or studies. Studies 
may bridge more than one region, leading to discrepancies between the apparent number of studies listed here and the totals listed in Table 2. Data for 
all 148 species sampled are available in Table S3.

Common name

Intermountain West (IMW) Pacific Northwest (PNW) Northeast (NE) Southeast (SE) North Central (NC)

Total # 
of trees

# of 
studies

# trees in 
DB

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees 
in DB

Total # 
of trees

# of 
studies

# trees in 
DB

Total # 
of trees

# of 
studies

# trees 
in DB

Douglas-fir 203 [8] 130 974 [24] 382 0 [0] 0 0 [0] 0 0 [0] 0
Loblolly pine - - - - - - 0 [0] 0 9967 [72] 6404 0 [0] 0
Red maple - - - - - - 495 [18] 188 346 [9] 259 328 [6] 155
White oak - - - - - - 217 [10] 65 478 [12] 400 56 [2] 16
Sugar maple - - - - - - 380 [12] 115 11 [3] 10 240 [8] 148
Western hemlock 12 [1] 12 189 [6] 91 - - - - - - - - -
Northern red oak - - - - - - 203 [11] 78 142 [6] 108 110 [5] 32
Ponderosa pine 383 [13] 316 264 [7] 171 - - - 0 [0] 0 0 [0] 0
Yellow-poplar - - - - - - 189 [9] 43 352 [10] 282 56 [2] 56
Sweetgum - - - 0 [0] 0 0 [0] 0 1302 [14] 817 0 [0] 0
Lodgepole pine 138 [8] 134 145 [7] 90 - - - - - - 0 [0] 0
Chestnut oak - - - - - - 95 [5] 21 207 [8] 122 16 [1] 0
Black oak - - - - - - 89 [4] 55 78 [4] 52 40 [1] 0
Engelmann spruce 125 [6] 93 14 [1] 14 - - - 0 [0] 0 0 [0] 0
Quaking aspen 48 [3] 41 160 [3] 27 30 [3] 30 0 [0] 0 693 [10] 636
American beech - - - - - - 200 [10] 80 52 [4] 52 16 [1] 16
Black cherry - - - - - - 141 [8] 46 34 [3] 34 6 [1] 6
White ash - - - - - - 114 [6] 41 31 [1] 31 40 [1] 40
Eastern white pine - - - - - - 115 [4] 72 183 [6] 163 45 [4] 30
Water oak - - - - - - 0 [0] 0 405 [4] 215 0 [0] 0
Slash pine - - - - - - - - - 4771 [31] 2163 - - -
White fir 12 [1] 12 22 [2] 10 - - - 0 [0] 0 0 [0] 0
Post oak - - - - - - 0 [0] 0 65 [4] 32 0 [0] 0
Mountain hemlock 0 [0] 0 6 [1] 0 - - - - - - - - -
Subalpine fir 91 [5] 82 0 [0] 0 - - - 0 [0] 0 - - -
Sitka spruce - - - 41 [2] 23 - - - - - - - - -
Grand fir 50 [2] 50 34 [3] 34 - - - - - - - - -
Pignut hickory - - - - - - 0 [0] 0 0 [0] 0 0 [0] 0
Eastern hemlock - - - - - - 104 [5] 36 71 [5] 71 16 [1] 16
Scarlet oak - - - - - - 49 [3] 49 112 [4] 112 0 [0] 0
All species 1555 [28] 1173 3167 [52] 1526 6121 [50] 1774 29901 [167] 16094 6940 [0] 1930
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Table 4.—The 30 studies with the highest importance (import.) index (=sample size * maximum d.b.h.[in inches]/100) ranked from highest to lowest. 
Indicator (ind.) values of 1 = yes and 0 = no identify if a biomass model (Eq.) was presented, height (Ht.) was included, standard (Std.) error given, or 
sampling restrictions (Samp. rest.) imposed based on form/risk/vigor class. It is also noted if the article was present in the legacy tree database (Leg. tree), 
Jenkins et al. (2004), or Chojnacky et.al (2014). A proportion between 0 and 1 indicates that only a portion of the data has the given attribute.  Data for all 
studies are available in Table S4.

Author Region
Import. 
index

Sample size
(no.)

Min. d.b.h.
(inches)

Max. d.b.h.
(inches) Eq. ind. Ht. ind.

Std. error 
ind.

Samp. 
rest. ind.

Leg. tree 
ind.

Chojnacky 
et al. 2014

Jenkins et 
al. 2004

Clark et al. 1985, 1986 SE 916 3580a 1 25.6 1 1 1 0 1 1 1
FIA 2016 All 642 1430 1 44.9 0 - - 1 1 0 0
Sillett et al. 2015 PNW 466 139 1.6 334.9 1 0 1 0 1 0 0
Young et al. 1980 NE 251 965 0.1 26 1 0 0 - 0 1 1
Schlaegel (n.d.)b SE 221 582 1 37.9 - - - - 1 0 0
Clark and Saucier 1990 SE 217 1132 5 19.2 0 - - - 1 0 0
Perala and Alban 1994 NC 151 774 1.1 19.5 1 1 0 1 1 1 1
Sollins and Anderson 1971 SE 120 357 1.1 33.5 1 1 0 - 1 1 1
Pienaar et al. 1990 SE 117 838 3 14 1 1 0 - 0 0 0
Clutter et al. 1984 SE 107 762 2 14 1 1 0 - 0 0 0
Snell and Max 1985 PNW 101 160 3.9 63 1 0 0 1 0 1 1
Flowers 1978 SE 98 724 2.2 13.6 1 1 0 1 1 0 0
Reed et al. 1995 NC 96 3083 0.1 3.1 1 1 0 0 0 0 0
Lohrey 1985 SE 89 467 1.3 19.1 1 1 1 - 1 0 0
Hyink et al. 1972 SE 88 632 5 14 1 1 0 0 0 0 0
Madgwick and Kreh 1980 SE 87 501 0.6 17.4 1 1 1 - 0 0 0
Burkhart and Clutter 1971 SE 86 701 3.1 12.2 1 1 0 - 1 0 0
Monteith 1979 NE 84 402 1 20.8 1 1 - 1 0.8 1 1
Bailey et al. 1982 SE 82 686 3 12 1 1 0 - 0 0 0
Queen and Pienaar 1977 SE 82 685 2.6 12 1 1 0 1 1 0 0
Brenneman et al. 1978 NE 81 407 2 20 1 0 0 0 0 1 1
Burkhart et al. 1972 SE 78 551 2.5 14.1 0 - - 1 1 0 0
Brown 1978 IMW 71 210 1 34 1 1 1 1 1 1 1
Schlaegel 1975a NC 71 426 1.1 16.7 1 1 1 0 1 0 0
Jordan et al. 2008 SE 59 407 5.5 14.4 - - - - 1 0 0
Bailey et al. 1985 SE 57 472 1 12 1 1 0 - 0 0 0
Sillet et al. 2010 PNW 54 21 22.8 255.1 0 - - - 1 0 0
Clark and Taras 1976 SE 53 221 5.6 24 0 - - - 1 0 0
Reinhardt  2000 IMW 53 201 1 26.4 0 0 0 1 1 0 0
Storey et al. 1955 IMW+ PNW 53 143 1.5 37 1 1 1 1 1 1 0
a The figure of 3,580 trees sampled by Alexander Clark likely includes trees sampled from Clark et al. (1985), Clark et al. (1986), and Clark and Schroeder (1986). These studies along with 
Clark and Saucier (1990) reused data from four previous species-specific studies that he did on yellow-poplar, southern red oak, northern red oak, and scarlet oak. These four studies were 
not cited in this analysis.
b Schlaegel (n.d.) includes multiple bottomland hardwood reports from the early to mid-1980s.



22

Table 5.—Centroid coordinates for the legacy and FIA databases for the 30 species with the greatest estimated biomass across the United 
States.  Distances between the centroids and the diagonal distance across the range of the species’ are given in miles (mi). Error (%) is calculated 
using the centroid error and the diagonal distance error. A dash indicates that there was insufficient data to determine the legacy centroids.

FIA species code

Legacy 
centroid 

longitude

Legacy 
centroid 
latitude

FIA centroid 
longitude

FIA 
centroid 
latitude

Distance between 
centroids 

(mi)

Longitudinal 
difference

(mi)

Latitudinal 
difference

(mi)

FIA diagonal 
distance 

(mi) Error (%)

Douglas-fir -121.9 45.9 -120.8 44.6 167.4 -83.7 145.0 2613.0 6.4

Loblolly pine -85.3 33.0 -86.3 33.4 102.8 95.3 -38.5 2555.0 4.0

Red maple -81.4 40.2 -80.5 41.1 124.6 -74.6 -99.8 3566.9 3.5

White oak -82.5 36.1 -85.4 37.6 310.9 257.9 -173.7 3193.1 9.7

Sugar maple -83.7 45.0 -81.8 43.2 254.5 -158.0 199.5 3229.9 7.9

Western hemlock -124.3 46.4 -124.9 49.3 320.9 41.5 -318.2 3427.4 9.4

Northern red oak -82.0 38.6 -82.4 41.2 297.7 34.7 -295.7 3300.0 9.0

Ponderosa pine -115.1 39.1 -116.3 42.2 358.0 102.0 -343.2 3221.1 11.1

Yellow-poplar -83.0 36.1 -82.3 36.8 99.1 -65.2 -74.6 2510.4 3.9

Sweetgum -83.5 33.7 -85.9 34.0 221.9 219.9 -29.9 4511.9 4.9

Lodgepole pine -114.6 43.2 -115.2 44.3 133.8 45.8 -125.7 3644.8 3.7

Chestnut oak -82.6 36.5 -81.5 37.6 157.9 -97.7 -124.0 2090.1 7.6

Black oak -79.5 38.3 -85.4 38.9 518.4 514.1 -67.3 3107.4 16.7

Engelmann spruce -111.2 43.7 -111.3 42.9 91.7 6.9 91.4 2403.6 3.8

Quaking aspen -93.2 48.3 -96.5 44.6 480.6 250.8 410.1 6592.9 7.3

American beech -79.3 40.5 -78.8 40.9 56.9 -34.8 -45.0 3127.7 1.8

Black cherry -80.5 38.3 -81.4 40.5 258.5 84.6 -244.2 3771.2 6.9

White ash -84.9 37.4 -80.6 41.1 555.3 -371.9 -412.5 3429.6 16.2

Eastern white pine -81.6 38.5 -79.0 42.9 530.2 -217.7 -483.5 2924.0 18.1

Water oak -82.5 32.5 -87.6 32.5 479.3 479.3 3.4 2456.8 19.5

Slash pine -88.0 31.3 -84.5 30.7 339.0 -331.5 70.8 2228.8 15.2

White fir -123.0 44.1 -119.8 40.4 488.1 -266.9 408.8 2288.0 21.3

Post oak -86.8 36.4 -92.0 35.0 495.4 470.4 155.7 3148.8 15.7

Mountain hemlock - - -125.4 49.7 - - - 3755.0 -

Subalpine fir -113.3 45.2 -113.7 44.9 37.4 26.2 26.7 3639.6 1.0

Sitka spruce -133.2 55.9 -135.2 55.7 126.6 125.3 18.3 3336.1 3.8

Grand fir -121.1 45.7 -118.1 46.0 234.1 -232.8 -24.8 1434.0 16.3

Pignut hickory - - -83.9 36.9 - - - 3124.1 -

Eastern hemlock -82.3 38.8 -77.1 43.1 648.4 -441.2 -475.4 2535.8 25.6

Scarlet oak -82.1 36.8 -82.2 37.4 62.2 9.1 -61.5 2426.9 2.6
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Table 6.—Percentage of biomass (% bio) and cumulative biomass percentage estimated by using the FIADB, number of 
trees in the legacy tree database (nleg) with above-stump woody biomass (with or without foliage), and diameter at breast 
height or diameter at ground line for the 30 region/species/d.b.h. class combinations with the greatest biomass in the FIADB. 
Diameter classes are grouped by saplings (1 to <5 inches) then by 10 inch increments (d.b.h. class 10 = 5 to <15 inch trees, etc.) 
The sampling completeness value (SCV) = nleg/%bio *10 and indicates how well sampled a group is. Representation (Rep.) is 
the difference between the percentage that the group comprises out of the entire legacy tree database by number and the 
percentage of biomass that the group comprises in the FIA database. In total 14,073a trees with aboveground biomass (with 
and without foliage) were used here. Data for all region/species/d.b.h. class combinations are available in Table S6.

Region Common name
D.b.h. 
class

% of biomass
(%)

Cumulative 
biomass 

(%) 

Number of trees 
in legacy tree 

database
Sampling 
Objective SCV Rep.

SE Loblolly pine 10 4.6 4.6 1431 46 30.9 5.5
PNW Douglas-fir 20 2.4 7.0 83 24 3.4 -1.8
PNW Douglas-fir 10 1.9 8.9 116 19 6.2 -1.0
NE Red maple 10 1.7 10.6 80 17 4.7 -1.1
SE Loblolly pine 20 1.6 12.2 240 16 14.7 0.3
PNW Douglas-fir 30 1.5 13.7 16 15 1.1 -1.4
SE White oak 10 1.2 14.9 237 12 20.6 0.8
IMW Lodgepole pine 10 1.1 16.0 38 11 3.3 -0.8
NE Sugar maple 10 1.1 17.1 38 11 3.4 -0.8
SE Sweetgum 10 1.1 18.2 444 11 40.8 2.7
PNW Western hemlock 20 1.1 19.3 14 11 1.3 -1.0
IMW Douglas-fir 10 1.1 20.4 30 11 2.8 -0.8
SE White oak 20 1.0 21.4 86 10 8.4 -0.3
IMW Douglas-fir 20 1.0 22.4 1 10 0.1 -1.0
PNW Douglas-fir 40 1.0 23.4 6 10 0.6 -0.9
PNW Western hemlock 10 0.9 24.3 21 9 2.2 -0.7
SE Slash pine 10 0.9 25.2 599 9 67.0 4.5
NE Northern red oak 20 0.8 26.0 7 8 0.9 -0.7
SE Red maple 10 0.8 26.8 134 8 17.7 0.5
SE Yellow-poplar 20 0.7 27.5 65 7 8.9 -0.1
SE Post oak 10 0.7 28.2 26 7 3.6 -0.5
NE Red maple 20 0.7 28.9 5 7 0.7 -0.7
NC Sugar maple 10 0.7 29.6 66 7 9.9 0.0
SE Yellow-poplar 10 0.7 30.3 159 7 23.8 0.9
NE Sugar maple 20 0.6 30.9 15 6 2.3 -0.5
PNW Western hemlock 30 0.6 31.5 4 6 0.6 -0.6
IMW Engelmann spruce 20 0.6 32.1 10 6 1.7 -0.5
IMW Engelmann spruce 10 0.6 32.7 36 6 6.2 -0.2
SE Water oak 10 0.6 33.3 98 6 17.3 0.4
PNW Douglas-fir 50 0.6 33.8 0 6 0.0 -0.6
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Table 7.—The 30 groups that were most undersampled by region/species/d.b.h. class group where SCV was less than one. 
All groupings are ranked according to the percentage of biomass in the FIA database. Data for all region/species/d.b.h. 
class combinations are available in Table S7.

Region Common name
D.B.H.
class

%  of 
biomass

FIADB 
Rank

Number of trees 
in legacy tree 

database
Sampling 
Objective SCV

IMW Douglas-fir 20 1.0 14 1 10 0.1

PNW Douglas-fir 40 1.0 15 6 10 0.6

NE Northern red oak 20 0.8 18 7 8 0.9

NE Red maple 20 0.7 22 5 7 0.7

PNW Western hemlock 30 0.6 26 4 6 0.6

PNW Douglas-fir 50 0.6 30 0 6 0.0

NE White ash 10 0.5 43 3 5 0.7

NE Eastern hemlock 10 0.4 45 1 4 0.3

IMW Utah juniper 20 0.4 49 3 4 0.8

PNW Mountain hemlock 20 0.4 50 0 4 0.0

NE Yellow-poplar 20 0.4 53 2 4 0.5

SE Pignut hickory 10 0.3 58 0 3 0.0

SE Mockernut hickory 10 0.3 59 0 3 0.0

NE White oak 20 0.3 62 2 3 0.6

PNW Ponderosa pine 30 0.3 63 0 3 0.0

NE Black cherry 20 0.3 64 1 3 0.3

NE Chestnut oak 20 0.3 67 2 3 0.6

PNW Mountain hemlock 10 0.3 69 0 3 0.0

NE White ash 20 0.3 70 2 3 0.7

IMW Common or two-needle pinyon 10 0.3 77 0 3 0.0

NE Eastern hemlock 20 0.3 85 0 3 0.0

PNW Douglas-fir 60 0.3 87 0 3 0.0

PNW Sitka spruce 20 0.3 89 2 3 0.8

PNW Western hemlock 40 0.3 91 0 3 0.0

IMW Douglas-fir 30 0.3 92 0 3 0.0

PNW Sitka spruce 30 0.3 96 0 3 0.0

PNW Pacific silver fir 20 0.3 98 0 3 0.0

PNW White fir 30 0.2 100 1 2 0.4

NE Black oak 20 0.2 101 1 2 0.4

PNW Canyon live oak 10 0.2 104 0 2 0.0
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Table 8.—The 30 most underrepresented region/species/d.b.h class combinations. Representation was calculated as 
the percentage of trees in legacy tree database – percentage of biomass in the FIADB.  Data for all region/species/
d.b.h. class combinations are available in Table S8.

Region Common name
D.B.H
 class

%  of 
biomass

FIADB 
Rank

Number of trees 
in legacy tree 

database Representation

PNW Douglas-fir 20 2.4 2 83 -1.8

PNW Douglas-fir 30 1.5 6 16 -1.4

NE Red maple 10 1.7 4 80 -1.1

IMW Douglas-fir 20 1.0 14 1 -1.0

PNW Western hemlock 20 1.1 11 14 -1.0

PNW Douglas-fir 10 1.9 3 116 -1.0

PNW Douglas-fir 40 1.0 15 6 -0.9

IMW Lodgepole pine 10 1.1 8 38 -0.8

NE Sugar maple 10 1.1 9 38 -0.8

IMW Douglas-fir 10 1.1 12 30 -0.8

PNW Western hemlock 10 0.9 16 21 -0.7

NE Northern red oak 20 0.8 18 7 -0.7

NE Red maple 20 0.7 22 5 -0.7

PNW Western hemlock 30 0.6 26 4 -0.6

PNW Douglas-fir 50 0.6 30 0 -0.6

NE Sugar maple 20 0.6 25 15 -0.5

IMW Engelmann spruce 20 0.6 27 10 -0.5

SE Post oak 10 0.7 21 26 -0.5

IMW Ponderosa pine 20 0.5 33 9 -0.4

NE White ash 10 0.5 43 3 -0.4

NE Eastern hemlock 10 0.4 45 1 -0.4

PNW Mountain hemlock 20 0.4 50 0 -0.4

SE Pignut hickory 10 0.3 58 0 -0.3

SE Mockernut hickory 10 0.3 59 0 -0.3

NE Eastern white pine 20 0.4 46 4 -0.3

IMW Utah juniper 20 0.4 49 3 -0.3

NE Yellow-poplar 20 0.4 53 2 -0.3

PNW Ponderosa pine 30 0.3 63 0 -0.3

IMW Quaking aspen 10 0.5 42 12 -0.3

NE Black cherry 20 0.3 64 1 -0.3
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Appendix 2: Common and scientific names for species mentioned in the text and the 
30 tree species with the most biomass in the FIADB

Common namea Genus Species Full scientific name with authorityb
FIA Species 

codec

Pacific silver fir Abies amabilis Abies Amabilis Dougl. ex Forbes 11

White fir Abies concolor Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. 15

Grand fir Abies grandis Abies grandis (Dougl. ex D. Don) Lindl. 17

Subalpine fir Abies lasiocarpa Abies lasiocarpa (Hook.) Nutt. 19

Engelmann spruce Picea engelmannii Picea engelmannii Parry ex Engelm. 93

Sitka spruce Picea sitchensis Picea sitchensis (Bong.) Carr. 98

Common or two-needle pinyon Pinus edulis Pinus edulis Engelm. 106

Lodgepole pine Pinus contorta Pinus contorta Dougl. ex. Loud. 108

Slash pine Pinus elliottii Pinus elliottii Engelm. 111

Ponderosa pine Pinus ponderosa Pinus ponderosa Dougl. ex Laws. 122

Eastern white pine Pinus strobus Pinus strobus L. 129

Loblolly pine Pinus taeda Pinus taeda L. 131

Douglas-fir Pseudotsuga menziesii Pseudotsuga menziesii (Mirb.) Franco 202

Redwood Sequoia sempervirens Sequioa sempervirens (D. Don) Endl. 211

Eastern hemlock Tsuga canadensis Tsuga canadensis (L.) Carr. 261

Western hemlock Tsuga heterophylla Tsuga heterophylla (Raf.) Sarg. 263

Mountain hemlock Tsuga mertensiana Tsuga mertensia (Bong.) Carr. 264

Red maple Acer rubrum Acer rubrum L. 316

Sugar maple Acer saccharum Acer saccharum Marsh. 318

Birch spp. Betula spp. Betula L. 370

Pignut hickory Carya glabra Carya glabra (Mill.) Sweet 403

Shagbark hickory Carya ovata Carya ovata (Mill.) K. Koch 407

Hackberry spp. Celtis spp. Celtis L. 460

American beech Fagus grandifolia Fagus grandifolia Ehrh. 531

Ash spp. Fraxinus spp. Fraxinus L. 540

White ash Fraxinus americana Fraxinus americana L. 541

Black ash Fraxinus nigra Fraxinus nigra Marsh. 543

Green ash Fraxinus pennsylvanica Fraxinus pensylvanica Marsh. 544

Sweetgum Liquidambar styraciflua Liquidambar styraciflua L. 611

Yellow-poplar Liriodendron tulipifera Liriodendron tulipifera L. 621

Cottonwood and poplar spp. Populus spp. Populus L. 740

Quaking aspen Populus tremuloides Populus tremuloides Michx. 746

Black cherry Prunus serotina Prunus serotina Ehrh. 762

Oak spp. Quercus spp. Quercus L. 800

White oak Quercus alba Quercus alba L. 802

Scarlet oak Quercus coccinea Quercus coccinea Muenchh. 806

Water oak Quercus nigra Quercus nigra L. 827

Chestnut oak Quercus prinus Quercus prinus L. 832

Northern red oak Quercus rubra Quercus rubra L. 833

Post oak Quercus stellata Quercus stellata Wangenh. 835

Black oak Quercus velutina Quercus velutina Lam. 837

Elm spp. Ulmus spp. Ulmus L. 970
a A list of all species examined in this analysis is available in Appendix S2 located in supplemental tables file.
b Scientific names from Burns and Honkala 1990a and 1990b.
c Forest Inventory and Analysis species codes (O’Connell et al. 2016).
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generally incomplete and trees are not randomly selected. In this analysis, of the more 
than 1,000 biomass-related articles that were reviewed, trees were destructively sampled 
in over 300 studies to estimate biomass in the United States. Studies were summarized and 
past sampling efforts were explored to illuminate where the largest data gaps occurred in 
terms of tree components sampled, tree size, tree form, tree species, and location. The most 
prominent gaps were in large trees, particularly in Douglas-fir trees in the Pacific Northwest. 
In addition, tree roots were notably undersampled. Lastly, trees of poor or unusual form and 
low vigor were often not sampled, and this may introduce a systematic bias if not dealt with 
appropriately. More than 200 species did not have a biomass model or a single data point. The 
gaps presented here can be viewed as suggestions for future destructive sampling efforts, but 
the magnitude of a gap for a given model will ultimately depend on the selected modeling 
framework and the user’s objectives.

KEY WORDS: U.S. Forest Carbon Inventory, allometric modeling, tree component biomass, 
gaps, tree form and vigor

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations 
and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering 
USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender 
identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, 
income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights 
activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies 
and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, 
large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET 
Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. 
Additionally, program information may be made available in languages other than English. 

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-
3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write 
a letter addressed to USDA and provide in the letter all of the information requested in the form. To request 
a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: 
U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, 
SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: program.intake@usda.gov.

https://doi.org/10.2737/NRS-GTR-184
https://doi.org/10.2737/NRS-GTR-184
http://www.ascr.usda.gov/complaint_filing_cust.html
mailto:program.intake%40usda.gov?subject=

	Gaps in Available Data for Modeling Tree Biomass in the United States
	Contents
	Introduction
	Rationale
	Generalized Allometric Models
	Previous Tree Biomass Allometric Model Compilations
	Current Biomass Estimation Approaches for the U.S. Forest Inventory
	Objectives and Expectations

	Methods
	Recording Information for the Gap Analysis
	Assessment and Quantification of Data Gaps by Location, Species, and Diameter

	Results
	Tree and Component Mass
	Tree Selection
	Geography, Site Selection, and Location
	Data Gaps by Region, Tree Species, and Diameter Class

	Discussion
	Alternatives for Further Sampling
	Model-based Approaches to Fill Data Gaps
	Sampling for Trees of Varying Form, Risk, and Vigor, and Improving Estimates of Component Allometry

	Summary, limitations, and recommendations for future research
	Summary
	Limitations
	Recommendations for Continued Research

	Acknowledgments
	Literature Cited
	Appendixes
	Appendix 1: Bibliography of Reviewed Studies
	Appendix 2: Common and scientific names for species mentioned in the text and the 30 tree species with the most biomass in the FIADB




