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Abstract

The possibility of a bimodal log-likelihood function arises with certain data when the combined removal and
signs-of-activities estimator is used. This possibility may present an inference problem——yielding disjoint
confidence intervals for certain confidence levels. One option is to weight the combined likelthood in favor
of the more reliable sample component (e.g., removal or signs-of-activities data) when bimodality does arise.
Simulations exploring the effect of model assumptions on estimation and inference showed that violation of
removal model assumptions by way of unequal capture probability influenced the frequency of bimodal like-
lihoods; similarly, extreme parameter values for probability of capture influenced the number of excessively
large confidence intervals produced. The simulations suggest that the signs-of-activities estimator should be
used in lieu of the traditional removal estimator or the more complicated combined estimator under these
circumstances. The signs-of-activities estimator may be the best overall for combined estimation, though
sensitivity to its assumptions was not explored.
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Introduction

The removal method for sampling wildlife populations is corumonly used to determine population size. In
simplest terms, animals in a closed population that are caught on M attempts are physically removed from
the population, while uncaught animals simply remain in the population. This dichotomy forms the basis
for using the binomial probability distribution as a model for analyzing such experiments. In addition to
the assumption of closure, the other assumptious required for this model are constant probability of capture
for all individuals and the use of constant effort in catching individuals by the experimenter. When these
assumptions are violated, the appropriateness of the removal method becomes suspect; investigators have
proposed other models for such situations {(see White et al. (1982) for a discussion of these assumptions and
alternative methods).

Routledge (1989) presented a modification to the classical removal estimator that considered auxiliary infor-
mation in the form of signs-of-activities and which he called the combined estimator. The combined estimator
allows the investigator to gather other evidence of animal activity that may be related to population size.
These data are used in conjuction with traditional removal data to yield a more refined estimate of popula-
tion size. The signs-of-activities estimator is based on the normal distribution and uses similar techuiques
(i.e., maximum likelihood) in solving for the population size as the removal estimator,

This study grew out of a desire to use this new estimator in the field. The first step was to replicate Rout-
ledge’s results using his data from a combined removal and signs-of-activities experiment with cockroaches.
This proved successful, though in the process we discovered that the cockroach dala used by Boutledge
produced a bimodal profile log-likelihood, and that the possibility of generating a profile log-likelihood of
this form had not been reported. Therefore, the purpose of our original field study took on a new dimension:
to investigate the occurence of bimodality in the combined estimator and its possible relation to violations
of the assumptions in the removal model. This report presents results of simulation experiments designed to
explore this question. Included are appendices of computer code and spreadsheet programs to analyze re-
moval and signs-of-activities data, or conduct similar simulations. Also included are appendices that contain
the derivation of the likelihood functions and extensions to test statistics used throughout.

The Combined Estimator of Routledge

Routledge combined the log-likelihoods A; and Az ({1) and (2) that follow) of a removal model and a signs-
of-activities model, respectively, into the sum X = A + Ay, From this the “combined” maximum likelihood
estimate {(MLE) of the population size { N} is comaputed. The combined estimaator has a much tighter sampling
distribution than the estimator based on the removal model alone, particularly when the catchability rate p
is not large (< 0.5), as Routledge illustrated in his Table 1.

Following the notation of Routledge (1989, p. 112-113), we let

M = the number of removal attempts;
R; = the number removed on the ith attempt;
T: = E‘- =1 B = the total number of individuals removed by the end of the ith attempt, for i =
1,2,.... M,
S= E?il(N —~ Ti-1} = the sum of all the numbers of animals available for capture at each stage,
with Ty = 0;
Ys = the number of signs of activity observed over some time interval of length ¢, prior to the first
removal attempt;
Y; = the number of signs of activity chserved over some time interval of length £, between the ith
and the (i + 1)th removal attempts, for i=1,2,..., M ~ I
Ya = the pumber of sigus of activity observed over some time interval of length ¢, after the last
{Mth) removal attempt;
N = the initial population size.



The removal estimator seeks an eehmate of N assuming that Ry ~ Binomial(/V, p) on the first attempt and
(Rl Er-s R,} ~ Binomial{ N — £ R,,p) on all other attempts, Therefore, an estimate Ng of N is found
by maximizing the log-likelihood

M
= log(N1) — 3 log(Rs!) — log((N — Ta)!) + Tir log(p) + (S — Tae ) log(1 — p)- V)

(131

Setting Ay /8p = O yields the overall success rate, p = Tar /S, upon substituting Ng for N (see Appendix I
for derivation).

The signs-of-activities model assumes that some sign, such as animal tracks or fecal material, is left by
the animals independently of each other and that removal of individuals does . . .not affect the rate (per
remaining ndividual) of deposition or detection of these signs of activity” (Routledge 1989, p. 113). A
further assunption is required: that all old signs of activity can be “. . erased or removed at each sampling
oceasion or, equivalently, that pew signs can be distinguished from old signe” (Routledge 1989, p. 113). The
Signs- 0{~a¢tiwi¢;i¢a model assumes that Y; ~ Normal(b(N ~T;), 0*(N ~T})), and, therefore, b = E[Y{]/(N-T;)
and 0% = Var(Y;)/(N —T;). Then an estimate Ns of N is found by maximizing the log-likelihood

B B tY)
) (( M + 1) log(2ne?) 4 L!ag(N T+ - L s ,ﬁ’(N‘T Lb] ) . {2)

(e

In » similar manner, setting @Ay/8b = 0 yields & = V/(Ng ~ T} and 823/00% = 0 yields * = (M +
za*}m M (Y= BNg = TN/ (Ns — 1), with ¥ = YX viym+ 1), T wﬁﬁﬂﬁTﬂAf+;Lamiﬂ;m

0 {(see Appendix I for derivation), Note that substituting the MLE« of p, b, and ¢® into (1) and (2)
yields two functions that can be solved numencally in terms of N alone to obtain the removal (Ng) or
the signs-of-activities (;"Q’g) estimate, In addition, because the R, and the Y are assumed conditionally
independent, Routlodge combined the iwo log-likelihoods by addition (i.e., multiplying the likelihoods),
yielding the combined log-likelihood

A= hy 4 Ag, (3)

which also can be solved numerically for N alone,

Routledge also presented a method for finding confidence interval endpoints based on the likelihood ratio test
(LRT) statistic. The presence of the nuisance parameters p {catchability rate), b, and o? (slope and error
variance, respectively, per number of individuals remaining in the signs-of-activities model) in the likelihoods
requires the use of the profile log-likelihood for construeting confidence intervals based on the LRT. The profile
log-likelihoods are obtained by substituting the maximum likelihood solutions of the puisance parameters
p. b, and 0% into the log-likelihood function for any given value of N. The profile log-likelihoods A, {N)
and A{N)} for the cockroach data used in Routledge (1989) are plotted in Figure 1, and in Figure 2 for
MN). Therefore, an approximate 1 — o confidence iuterval for N based on the removal model alone can
be calculated by counsidering all points Ny with a profile log-likelihood value that is at least within 1/2x2
of the maximum value A;{¥Ng). This follows from the LRT a%atxsm ~2logAp = ZAI(N } — 2X:(Np) with
asymptotic distribution of Xﬁ for the test Ho @ N = Ny, here, xa is the 1 quantile of the x?(1) distribution
and Ap = L{r; No, p}/ L(r; Na p} is the likelihood ratio for the removal estimate.
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Figure 1.-—Profile log-likelihood for removal (solid line) and signs-of-activities {dashed line} models using

cockroach data from Routledge (1989, p. 117).
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Figure 2.—Profile log-likelihood for combined model using cockroach data from Routledge (1989 p. 117}
The dashed line shows the 79.31% confidence level with the LRT statistic at equality.
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Routledge showed that under the signs-of-activities model, one could replace the chi-square quantile xi by
F,, where

Fo=(M+ 1)10g(1+MFi1>, 4

and F, is the 1 — o quantile of the F(1, M — 1) distribution. Based on this approximation, 1 — « confidence
intervals for N consist of all values Ny for which

—2log Ag = 223(Ng) — 2X2(Nog) € Fa, (5)

where N is the signs-of-activities estimate of N and As = L(y; Mo, b,02)/L(y; N5, b,0?) is the likelihood
ratio for the signs-of-activities estimate.

Simulations by Routledge showed that using this same modified chi-square approximation (5) for the com-
bined estimator produced acceptable results, so he adopted this approach to find confidence limits on the
combined estimate. A 1 — o confidence interval for N under the combined model consists of all values Np

for which

~2logAc = 2M(N¢) — 2MNy) < Fa, (6)

where N¢ is the combined estimate of N and A¢ = Lir.y Ny, p, b, o®)/ L, s ﬁ(:,}),bﬁﬁ) is the likelihood
ratio for the combined estimate.

The Likelihood and LRT Functions

We used the cockroach data presented in Routledge (1989, p. 117) and GRG2-—a generalized reduced gradient
pptimization package (Lasdon and Waren 1979, 1986)—to find the MLEs Ng, Ng, and Ng for N based
wn the removal, signs-of-activities, and cornbined model, respectively. Qur estimates of Ng = 76.700 and
Ng = 235.020 agree with those of Routledge. These optima are readily apparent in the profile log-likelihoods
for these models presented in Figure 1. Upon maximizing the combined likelihood of the roach data, however,
we arrived at an estimate of No = 94.092, using a starting valae (viz. 75.1) close to the original removal
estitnate. However, Routledge's estimate for No was 216.32.

A plot of the combined profile log-likelihood (Fig. 2) shows that the reason for this disagreement is that the
profile log-likelihood is multimodal for the roach data. There is a local optitnum at N¢ = 94.092, strong
enough that the Kuho-Tucker stationary conditions {Wismer and Chattergy 1978) were satisfied to within
1.0 % 1077 at this point. However, the global optimum (also satisfying the Kuhn-Tucker conditions) was
correctly found to be at Ng = 216324 (Routledge’s estimate) when we started GRG2 from a point {viz.
175.1) closer to this value.

The faci that the profile log-likelihood is bimodal for the roach data is not surprising when one considers
simply adding A; and Az in Figure 1. In terms of sufficiency, Kendall and Stuart (1967 p. 38) noted that if
there is no single sufficient statistic ¢ for a parameter #, then a single unique maximum is not guaranteed.
Such is the case under the combined model.

The possible bimodality of the profile log-likelihood function (bi- or unimoedality depends on the observed
data) may present a problem in maxinum likelihood estimation of the combined model in determining the
global maximum. However, insight can be gained into the shape of the profile log-likelihood function by
plotting it over the range of N for which estimates are likely, as in Figures 1 and 2. Indeed, Fisher (1956,
p- 71} and Kendall and Stuart (1967, p. 62) both recommended this procedure for any likelihood function.
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Table 1.~—Simulated removal experiment data set with N = 200, pps = 0.7
(male catchability rate), pr = 0.1 (female catchability rate), ¢ = 0.2,
b=1.0,and M = 3 removals; an equal sex ratio was assumed (i.e., Ny =

Ng = 100)
i R; Y;
0 —_— 207
1 85 117
2 20 97
3 9 87

In the case of a bimodal profile log-likelihood, one also may begin the numerical optimization algorithm at
several different starting points and see where they converge. Kendall and Stuart (1967, p. 38) recorumended
choosing the largest of the local maxima as the global optimum. They also discussed the case that might
arise for certain combinations of samples where the likelihood function has two equal maxima (Kendall and
Stuart 1967, p. 41). Such a combination of samples, they noted, has a low probability of occurrence, and is
not of practical concern.

The possible bimodality of A(N) does have interesting ramifications with respect to the interpretation of
confidence intervals constructed using the LRT statistic technique. Inasmuch as there are two maxima
satisfying 82A/ON? < 0, say N¢y < Neg, there must be a minimum for which 8%5/6N? {Nzﬁm}-’ 0 such

that No; < Nes < Nez. This being the case, there is some 100(1 — a}% confidence level such that (6)
has more than two solutions under strict equality (that is, more than the “traditional” two endpoints are
possible for the confidence interval). In the case of the roach data, one such confidence level is the 79.31%
level with points Ny = 90.00, 101.93,108.46, and 309.40, all satisfying strict equality in (6). In this case, the
actual 79.31% confidence interval is the union of the two intervals: [90.00, 101.93] U [108.46, 309 .40}, and any
points viz. {101.93,108.46) between these sets are not in the interval, just as points < 90.00 and > 309.40
are outside the interval.

The bimodality and hence the o level(s} where disjoint intervals may occur depend on the observed data;
for any given data set, bimodality may occur for one of the more popular levels of &, such as .05 or 0L
Figure 3 shows a combined log-likelihood profile that arose from the simulated data in Table 1. This profile
log-likelihood shows two distinct maxima with the “removal peak” as the global maximum. The simple
removal and signs-of-activities estimates for N were Ng = 116.0 and Ng = 196.9, respectively. When the
combined log-likelihood function is used with these data, it is apparent that two vastly different estimates
for N are possible depending on whether the solution algorithm is started at Ng or Ns. The estimates

NC(,;,R} = 118.5 and ﬁC(st) = 196.9 correspond to the two peaks in Figure 3 when the reduced gradient

algorithm was begun at Ng and Ng, respectively. It is clear that the estimate IVC o) 18 & poor estimate
of the true population size of N = 200; yet it is the global maximum for the log-li eijiimod function. The
question is, then, given no prior knowledge of the population size, which estimate do we choose? The 85%
confidence intervals calculated using the modified chi-square LRT procedure are equally unenlightening in
this case. For the estimate }VC( Rny the intervals are [114.19,135.83]U[194.07, 199.27}; those for the estimate

ﬁc( R aTe (114.11, 139.35]0[193.11, 199.95]. If the recommendations given previously were fol_!owed, N’C( Ra)
would )be chosen as our estimate of N for this experiment. Yet this profile log-likelihood is close to the
“equal maxima” case mentioned by Kendall and Stuart (1967, p. 41). Clearly, neither the estimates nor the
confidence intervals provide direction as to which estimate of N to favor in this situation. If these were real
data, the ramifications could be serious depending on the empirical situation that generated them.



Profile Log ~ likelihood

T LA A S St T L S B S S B N M A S R M [ L M L LSO AL A S UL LI ¥

e 120 130 140 150 160 170 180 180 200 210 220
N

Figure 3.-Profile log-likelihood for combined model using the simulation data set in Table 1. The dashed
line shows the 95% confidence level with the LRT statistic at equality when calculated from the “removal
peak.”

Weighted Likelihood Estimation

To someone familiar with likelihood functions and LRT statistic confidence intervals, the possibility of
bimodality and associated disjoint nature of some confidence intervals arising for certain data sets is no
surprise. In such cases, bimodality should alert the experienced user that certain model assumptions may
have heen violated. The problem then becomes one of determining which assumptions are in violation and
the type of remedial measures that can be undertaken. Yet what happens in the case where standard remedial
measures are not feasible? For the practitioner who is used to the concept of continwous confidence intervals,
these results could indeed be troubling. In addition, as pointed out in the previous example, situations
might arisc where particular realizations of the sample data from an experiment point to no clear distinction
between the two estimates in a bimodal log-likelihood.

One possible remedy is to use a weighted likelihcod approach in the combined model to smooth out the

bimodality issue. For instance, if we assign the weights 0 < oy < 1 and 0 < &3 < 1 to each log-likelihood A,
and )y, respectively, then the combined log-likelihood becomes

,\Wr = ay Ay + anlAg. (7)

Two more constraints are needed to completely formulate this maximization problem in terms of the three
unknowns N, oy, and a3. This problem now can be written as

6



Max Qi Ay -+ pda

{N,m,ag} (8)
St: artaz=1
N—-Ty >0
ay, o > 0,

and solved with GRG2. Unfortunately, this strategy failed for the roach data because A (Ng) is the maximum
attainable value for A¥; that is, (8) will converge to the removal estimate with oy = 1 and oy = § because
these values for a; and ay yield Ay, the removgl log-likelihood (Fig. 1). Model (8) will yield similar results
for all datasets: it always will converge to A;(Ng) when ,\(Ng) > )42(]\:'52 or to A2{Ns) when the reverse is
true. The only other possibility is the unlikely event that A (Ng) = Aa{Ng); it is unclear what weights will
be assigned in such cases as A; and A; depend on the experimental data.

An alternative approach to model (8) is to use the weighted approach, but with maximization only over {N'}
rather than {N, ay,as}. The new objective function would then become

Max (!;,X} 4 Qf')_/\:

(N} (9)

with all of the constraints kept the same as in model (8). The problem then becomes one of choosing aq and
ag outside of the optimization problem with some other auxilliary objective in mind. A priori choices for oy
and ay seem to be one reasonable solution to this problem. The simplest approach allows the investigator to
choose the weights based on intuition or prior empirical evidence. For example, if the investigator decided
to weight in favor of the signs-of-activities estimator and (o1, og) = (0.25,0.75) was chosen, then subsequent
solution of (9) would yield N¥ = 228.781 as the weighted MLE of N (N = 228 is the actual population
size).

This weighted approach is appealing when one considers the possible viclation of the assumption of constant
capture probability for all individuals in the removal method mentioned by Routledge (1989). In the roach
experiment, for example, the trapping method used apparently was highly selective for males, so the female
section of the population was grossly underrepresented in the roaches trapped. This led to an estimate Ng
that was representative only of the males in the population. Where trapping results are able to be judged
as biased because of the lop-sided sex ratio for individuals caught (an a priori assumption of equal sex
ratiog must be tenable to make this observation), adding more weight to the signs-of-activities log-likelihood
seems justifiable, provided that there has been no obvicus violation of assumptions in recording the signs-
of-activities data. This a posteriori weighting simply reflects the investigator’s desire to invest more in the
likelihood that carries more reliable information while still not completely discounting the information in the
down-weighted data.

Unfortunately, simply choosing the weights does not guarantee that the resulting weighted log-likelihood
function will be unimodal. The question arises: what is the minimum weight combination needed to insure
unimodality? An alternative approach that answers this question requires that the investigator choose only
to weight in favor of either A; or )y a priori, but does not require the investigator to actually choose the
weights. Assume for illustration that we chose to weight in favor of the removal estimator. Then a search
technique can be used to find the auxilliary objective min{ay — 0.5} > 0 such that both starting values N
and Ny converge to the same result under model (8) within some specified tolerance. In other words, the
algorithm chooses the minimum amount of weighting associated with the favored log-likelihood (A; or Xz)
that will be needed tc produce a unimodal combined log-likelihood.



To illustrate the search algorithm in simple terms, assume that we desire to weight in favor of the removal
log-likelihood, then on the first step the weights (ay,a3) = (0.75,0.25) are chosen and maximization ie
performed. If the log-likelihood is still bimodal, then the new weights (0.875, 0.125) aze chosen; otherwise,
the iog—iikeiihood no longer is bimodal and less weight is applied—the weights (0.625, 0.375) are used.
Maximization is again performed following this new choice of wexghts At each step, the maximization
problem entails solving (9) twice, with a starting value of N and again with a starting value of Ng. The
optima from these two subproblems are then compared to determine if they both converge to the same
maximum. If they do, further checks are made in a neighborhood of this maximum for differences in signs
of the first derivatives of AW with these new weights to determine if any minima still exist. The algorithm
continues in this fashion, halving the difference in weights between the current and previous values for the
weight that represents the favored log-likelihood, and then adding or subtracting this value to the current
weights depending on the outcome of the above tests, until convergence. This modified bisection search
technique is conceptually simple, but difficult to implement because of the imbedded nonlinear optimizations
and the check-sums on previous steps in the weighting algorithm that must be tracked. The program
RemovSim discussed in Appendix IIT has an option that performs this weighting if the user desires.

This mixed heuristic (bisection search) and classical (constrained nonlinear) optimization method should
find a unimodal combined log-likelihood with global maximum N¥ , with minimal weighting for reasonably
bimodal initial likelihood functions. For the roach data, weighting in favor of the removal estimator yields
the optimal values (a1, as, N¥) = (0.6325593, 0.3674407, 81.997); alternatively, weighting in favor of the the
signs-of-activities estimator yields (0.498154,0.501845, 216.470). Notice that little weighting is needed to
shift the curve toward the “signs-of-activities peak” in the combined log-likelihood because it is the dominant
mode in A for these data (Fig. 2). In addition, when weighting in favor of the signs-of-activities data, the
weighted estimate of N remains 216 because there has been little change in the shape of the profile log-
likelihood with these small weights. However, more substantial weighting is required in the direction of the
“removal peak” because it is an almost ponexistent mode in A (Fig. 2).

As another example, in the case of the simulated data in Table 1, weighting in favor of the signs-of-activities
estimator yields (aq, a3, N¥') values (0.248047, 0.751953, 196.887) because a substantial amount of weight
must be applied to the signs-of-activities mode with these data to produce unimodality in that direction.
This weighted profile log-likelihood (AW (N)) shown in Figure 4, can be compared to the unweighted profile
log-likelihood (A{(N)) for these data. Note that the weighting algorithm has applied just enough weight to
make the “removal mode” disappear, leaving a plateau behind in its stead. With these data, this extra
weighting may be intuitively reasonsble if the investigator believes that the signs-of-activities data are three
times as reliable as the removal data (i.e., oy 2 3 x & here).

The LRT confidence interval procedure (5) and (6) needs to be changed only slightly for the weighted
likelihood method (Appendix II shows the derivation for the weighted signs-of-activities LRT statistic fol-
lowmg Routledge’s asymptotic argument). In general, the test statistic becomes ——2logA Ja* ~ F, where
A¥ = AF x A3 is the likelihood ratio for the weighted combined estimate, and o" = max(ay, ;). When
ay = a3 = 0. 5 it follows that o also equals 0.5 and -~2logAw/a: is simply the unweighted version
(6) proposed by Routledge for the combined method. When a3 > oy (i.e., weighting is in favor of the

signs-of-activities estimator), it follows that a* = a3 and -2logA'C‘f Jo* = -2 (%:J; log Agp +logAs). In
this case, Routledge’s F-approximation works well since the removal LRT statistic, Ag, is down-weighted
by ®1/a,< 1. Similarly, when oy > a3, ~2logA¥ fa* = —2 (logAR+ 220 As), in which case the F-
approximation works well only if the weighting is not excessive. The reason for this is that as a3 — 1,
and ag — 0, then the quantity ;:«fiog As — 0. Thus, we are left with only the removal likelihood ra-

tio —2log A which we know is distributed as a x*(1), not F,. Extreme weighting (i.e., a3 is close to
zero), however, is unlikely in practice because the experimenter will not spend the extra effort of col-
lecting signs-of-activities data and, in turn, down-weight the resulting information to near zero! In fact,
it is reasonable to assume that, for the combined estimator, weighting in most cases is done in favor of
the signs-of-activities estimator. Nevertheless, our weighting scheme provides as the limiting cases the re-

8
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Figure 4.—Profile log-likelihood for weighted combined model using the simulation data set in Table 1. The
dashed line shows the 95% confidence level with the LRT statistic at equality.

moval LRT statistic (—2log Ag) when op = 0, and the signs-of-activities LRT statistic (—2logAs) when
Ky = 0.

Simulation Results

In this section we describe the results of several simulations, the purpose of which were to: 1) investigate how
often bimodality occurs under various conditions, and 2) examine the coverage of the confidence intervals
corresponding to the weighted combined estimator N¥ . We are particularly interested in the effect of
unequal capture probabilities for males (pi) and females (pr), and the effect of varying standard deviation
(o) in the signs-of-activities model on the coverage.

For each choice of capture probabilities (pa, pr) and signs-of-activities standard deviation (o), we generated
1,000 removal series with corresponding signs-of-activities series for initial population size of Ny = 114 males
and Np = 114 females. The values for pys and pr range between 0.7 and 0.1 while ¢ is chosen to be 0.4,
0.7 or 1. These parameter values correspond to those in Routledge’s simulations while the population size of
N = 228 is that of the cockroach data. Weighting always is in favor of the signs-of-activities estimator (i.e.,
a2 > ay) in all simulations. The percentage frequency of the occurrence of bimodality in the unweighted
approach also is reported.

Table 2 includes coverage percentages of nominal 95% confidence intervals for N as described earlier using
all four estimators with equal capture probabilities py = pr = p. Coverage percentages are uniformly close
to the nominal level. In addition, there is no difference in coverage between the weighted and nonweighted
approach, because bimodality occurred in only a small percentage of the most extreme case (p=01,0=1),
as shown in the last column of Table 2. In general, two trends seem to be apparent in Table 2:



Table 2.—Equal probability of capture results of 1,000 simulations for each level of p and o with N = 228,
M = 3 and b = I; for columns 3, 4, 5, and 6, percent coverage of nominal 956% confidence intervals are given;
numbers in parentheses indicate percent of excessively large (Nupper = 10,000) intervals (the last column
shows the percentage of combined profile log-likelihoods that were bimodal)

Signs-of- Weighted
Removal activity Combined combined Percent
o estimator estimator estimator estimator bimodality
0.5 0.4 94.8 96.0 95.7 95.7 0.0
(0) (0.1) () 0 '
0.7 94.0 94.2 94.5 94.5 0.0
©) (0) (0) (0)
1.0 94.4 94.5 95.3 95.3 0.0
(W] (0) 0 (©)
0.25 0.4 96.3 94.1 94.2 94.2 0.0
(19.0) (W] © (0)
0.7 95.8 94.7 94.5 94.5 0.0
(20.9) (0) (0.2) (0.2)
1.0 96.7 96.4 96.3 96.3 0.0
(19.5) (5.1) (1.2) (1.2)
0.1 0.4 93.4 95.4 95.5 95.5 0.0
(80.5) (6.0) (2.3) (2.3)
0.7 95.7 94.4 94.6 94.6 6.0
(80.9) (31.6) (22.0) {22.0)
1.0 93.9 95.7 95.7 95.7 0.3
(80.5) (55.0) (45.3) (45.4)

1. The frequency of excessively large confidence intervals (percentage in parenthesis indicates occurrence of
intervals with upper limit > 10, 000) increases with increasing o at any fixed level of p for all estimators
but the removal estimator (since it has no reliance on o).

2. The frequency of excessively large confidence intervals increases with decreasing p for any fixed level of
a.

The last result is particularly striking for the removal method. The coverage looks good for all values of p
until one looks at the frequency of excessively large confidence intervals for p = 0.1. In this case, most of
the intervals that caught the population size were, for all intents and purposes, infinite. Figure 5 shows the
remaval profile log-likelihood for a typical sample at p = 0.1 with infinite upper confidence interval endpoint.
Note that the log-likelihood is flat; the lower confidence interval endpoint is well defined at Ny = 62.2, but
the upper endpoint is nonexistent. The other three estimators show similar tendencies for small p but not
with the frequency shown by the simple removal method.

Hesults for unequal capture probabilities (py # pr) are presented in Table 3. The only apparent trends
analogous to the equal probability of capture scenario are:

1. The frequency of bimodal profile log-likelihoods produced tend to increase as the capture probabilities
become more disparate.
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Figure 5.—Removal profile log-likelihood (solid) and signs-of-activities profile log-likelihood (dashed) with
associated “infinite” 95% confidence intervals (horizontal dashed lines) for a simulated population with
N=28 M=3b=1p=01andeo =04

2. The frequency of bimodal profile log-likelihoods decreases with increasing o for the most extreme
{pw, pr) scenario.

3. There is no difference between the combined and weighted combined coverage until more than 5%
bimodal profile log-likelihoods were encountered.

For the most part, those estimators containing signs-of-activities information produced results similar to
those in Table 2 except in the most extreme cases where (par,pr) = (0.7,0.1). In these cases, the signs-
of-activities estimator still performed well but the two combined estimators deteriorated with increasing
o. This deterioration is not occurring because of bimodality since the frequency of bimodal profile log-
likelihoods decremses with increasing o; rather, it appears to be more closely linked to the absolute failure
of the removal method in these extreme cases. Table 4 shows the reason for this. The removal estima-
tor was successful only twice in 3,000 simulation attempts; most fajled with a constant average confidence
interval width of approximately 23 individuals. This irmplies a very peaked profile log-likelihood for the
remnoval method with rapidly decreasing tail, biased on the low side of the true population size. How-
ever, the signs-of-activities log-likelihood shows much larger increasing intervals that are unencombered
by the downward bias of the removal log-likelihood. When these two log-likelihoods are combined, the
characteristics of the removal log-likelihood tend to produce a bimodal combined log-likelihood, and the
average width of the confidence intervals for the two combined methods tend to increase only slightly
with ¢ compared to the signs-of-activities intervals. Thus, the combination of the biased removal Jog-
likelihood with the signs-of-activities log-likelihood produces intervals that are too conservative, and, there-
fore, miss the true population size far toc often. Weighting the combined estimator helped, but since
the signs-of-activities estimator outperforms both combined estimators in these extreme cases (and per-
forms equally as well in all other cases for for both equal and unequal probability of capture scenarios),
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Table 3.—Unequal probability of capture results of 1,000 simulations for each level of pys, pr and o with
Ny = 114, Np = 114, M = 3 and b = 1; for columns 3, 4, 5, and 6, percent coverage of nominal 95%
confidence intervals are given; numbers in parentheses indicate percent of excessively large (Nypp.r > 10, 000)
intervals (the last column shows the percentage of combined profile log-likelihoods that were bimodal)

Signs-of- Weighted
Removal activity Combined combined Percent
{pas,pF) T estimator estimator estimator estimator bimodality
(0.5, 0.25) 0.4 82.8 95.9 95.7 95.7 0.1
(© (0) (0) (©
0.7 83.1 94.8 95.1 95.1 0.2
©) (©) ) ©)
1.0 81.3 96.5 96.2 96.2 0.2
(0) (0.2) © (0)
(0.25, 0.1) 0.4 91.6 94.0 094.3 94.3 0.0
(49.4) (0.2) {0) (0)
0.7 90.7 94.6 94.7 94.7 0.1
(45.2) (6.2) (1.0) (1.0)
1.0 91.8 94.1 94.1 94.1 0.0
(47.7) (24.6) (8.4) (8.4)
(0.5, 0.1) 0.4 30.9 95.1 94.7 94.7 5.1
(0) (0) ©) )
0.7 30.4 94.0 94.4 944 4.5
(0.3) (0.4) (0.1) (0.1)
1.0 34.5 93.5 93.7 93.6 5.3
(0.1) (4.5) (0 (0)
0.7,0.1) 0.4 0.2 94.8 80.2 92.2 77.6
©) (0) (©) (24)
0.7 0.0 95.6 67.9 78.3 60.1
(0) (0) (0.5) (22)
1.0 0.0 95.0 52.9 63.3 38.6
(0) (2.0) (0.1) (0.9)

one must guestion the wisdom of investing the extra effort in either of the combined log-likelihood ap-
proaches.

1t is interesting to note that the signs-of-activities method itself is actually a combined estimator of sorts
because it incorporates both removal and signs-of-activities data into its log-likelithood—the removal data
being incorporated through the T; and T terms. However, the signs-of-activities data appear to dominate
the removal data in this log-likelihood because the signs-of-activities estimates are particularly insensitive
to departures from assumptions in the removal data. Departure from normality for the signs-of-activities
data were not studied here, but on the basis of the results of the simulations in Tables 2 and 3, such a study
could prove useful and enlightening. In his quest for an estimator that incorporates auxilliary information,
Routledge may have unwittingly gone one step too far—his signs-of-activities estimator may fulfill his original
goals with the most parsimony.
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Table 4.—Mean confidence interval widths for intervals that caught the true popujation size, and that did
not (in parenthesis) for unequal probability of capture results of 1,000 simulations at each level of o with
{(ppe = 0.7,pF = 0.1), N = 228, M = 3 and & = I; (the last column shows the percentage of bimodal
combined profile log-likelihoods that produced disjoint confidence intervals)

Signs-of- Weighted FPercent

Removal activity Combined combined disjoint

o width width width width intervals
0.4 80.8 (22.7) 53.1 (16.2) 78.5 (37.5) 65.5 (24.8) 22.3
0.7 -- (22.6) 110.2 (26.4) 93.4 (50.0) 89.7 (47.0) 12.3
1.0 -~ (22.6) 246.5 (42.7) 98.4 (55.2) 98.2 (54.3) 9.3

Both Tables 2 and 3 suggest that when the total probability of capture is small for all individuals, a higher
percentage of excessively large confidence intervals is to be expected for all estimators. The removal estima-
tor is particulary sensitive to this; viz., in the equal cases where p = 0.25 and 0.1, and the unequal cases
with (pam,pr) = (0.25,0.1). However, intervals tend to be excessively large only in the most extreme cases
(p = 0.1) in all signs-of-activities-based estimators; though, if o is small even in these extreme cases, these
estimators produce relatively few large intervals. Figure 5 shows that profile log-likelihoods produced from
such samples tend to have heavy tails and thus will produce large or “infinite” confidence intervals; in both
instances, infinite intervals were encountered. However, as the simulations in Table 2 would suggest, infi-
nite removal and signs-of-activities confidence intervals do not necessarily imaply infinite combined intervals.
Indeed, in the case of the sample data for Figure 5, the two combined intervals were [158, 2304}—both the
removal and signs-of-activities methods produced an upper endpoint in excess of 10,000, yet both of the
combined intervals were substantially less. This is not always the case, however, as other simnulations yielded
upper combined endpoints that also were in excess of 10,000. If both the removal and signs-of-activities
estimators produce excessively large confidence intervals, then it is more than likely that there is a problem
with the data. As a result, the combined methods should not be relied on as a possible “fix” to the situation.

Conclusions

The simulations presented in Tables 2 and 3 suggest that bimodality of the combined log-likelihood is a result
of the violation of the assumption of equal capture probability for all individuals. Routledge was aware of
this violation in his cockroach experiment and discussed some simulation results (Routledge 1989, p. 118)
that are similar to ours. We have extended his observations by pointing out the possibility of bimodality in
the combined estimator and excessively large confidence intervals in all estimators under certain scenarios.

The removal method is quite sensitive to the assumption of equal probability of capture and breaks down
with increasing frequency as this assumption is increasingly violated. The removal method’s contribution
to the combined log-likelihood is split equally with the signs-of-activities log-likelihood and thus carries its
poor qualities along with it, producing poor results in the combined estimator under the worst scenarios
studied. Weighting the combined log-likelihood in favor of the more reliable information found in the signs-
of-activities data does not help except in the most extreme cases. The simple signs-of-activities estimator
is immune to the effects that violation of the equal catchability assumption has on the rerngval estimator
because it combines the removal data directly through the definition of its likelihood. Thus, the signs-of-
activities estimator appears to be not only the most robust with respect to the scenarios developed here,
but is also the simplest of the combined information estimators to implement. Finally, all estimators suffer
from the undesireable characteristic of producing heavy tails with excessively large confidence intervals when
the total probability of capture for all individuals is low; in such cases, the combined estimators perform
somewhat better than the signs-of-activities estimator, but the size of the confidence intervals may still be
quite large.
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As a guide to the interpretation of experiments conducted using the removal and auxiliary information,
plotting the profile log-likelihood for reasonable range of Ny is invaluable for determining possible bimodality
and heavy tails associated with the two major problems discussed previously. Spreadsheet programs that
facilitate this in an interactive manner are presented in Appendix IV.
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Appendix I: Likelihood Derivations

This appendix presents a derivation of the removal and signs-of-activities log-likelihood functions presented
in Equations 1 and 2, respectively. To our knowledge, a detailed derivation of the removal log-likelihood has
not been published, though others have outlined it (Moran 1951; Otis et al., 1978; Schnute 1983; Zippin
1956). Nor did Routledge (1989) include a derivation for his signs-of-activities log-likelihood. It seems
reasonable to have these derivations available, presented in a step-by-step manner for the interested reader,
or as an aid to teaching these methods.

The Removal Likelihood

The removal likelihood comes from the bincmial model, but in a conditional sense. To illustrate, on every
removal attempt, an individual is either captured or not with constant probability of capture p. Thus, we
have a basic binomial model for the first attempt: we remove R individuals out of N total individuals with
probability p. However, we have assumed that the population is closed both geographically and demograph-
ically (White et al. 1982, p. 3); therefore, on each subsequent removal attempt, the number of individuals
remaining decreases as illustrated in the following:

Removal Probability
Attempt Model mass function

1 Ry ~ Binomial(N, p) f(Ry) = (§)pr(1 - p)N-Fu

2 Ra|R; ~ Binomial(N — R;,p) f(Re) = (ViR )pMa(1 — p)N-Fa-Ba

3 Rs|Ry + Ry ~ Binomial(N — Ry — Ry,p)  f(Rs) = (N F2)pPe(1 - p)N-Fa-Ra-Rs
Note that the quantity N — Ry — Ry — - - - — R; in the above table can be written as N — Z;-=1 R;=N-T;

so that, in general, R; ~ Binomial(N — T, p) and f(R;) = N"T" DpRi(1 - p)N-Te.

The likelihood for the removal method is given as L(r; N, p) = f(R1) x f(Rz) x f(R3) x --- x f(Ra), which
becomes

) G (é#4)
LirN,p) = M (T (10)
& T [T, R

”

This may be readily derived by decomposing it into three pieces and working with each piece separately,
keeping in mind the conditional nature of the removals given above.

(i) Notice that (5 ) = (A_YZ'ZIA—‘?W’ "Iy = Nﬁ';ﬁé:“ Vo) = (é,%, .... This implies that

N N-Ty N-T; N~ Ty NI (N —Ty)!

( X x X X = X
R; Rz RB RM (N - Tl)!Rl (N Tg)'Rz
N-T)  (N-Ty) _ NI

V= T3)'Rs] (N=Ta) B!~ (N = Toe) [T, R
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Note that the adjoining numerator and denominator terms (N — T;)! cancel except in the last term leaving
the final result.

() Multiplying the individual values in this component of the likelihood yields: p™1 xp®2 x pfis x . . .x pfter =
';‘ R The
Pitimi =p “

(iii) Sumiarly. (1 _p)(N—Tl) X (1 - p)(N-—T;) x (1 - p)(N—-Ts) X oo X (1 ._.P)(N-Tu) - (1 - p)zzx(N"T‘) -
(1 - p)-T0),

Multiplying (i) through (iii) yields the completed likelihood given in (10). Finally, taking the logarithm to
the base e of (10) yields the log-likelihood X; in (1). Part of this log-likelihood (Eﬁ:l log(R;!)) is & constant
term and need not be included in the maximization process.

The ML estimator for the parameter p may be found in closed-form by taking the partisl derivative of Ay
with respect to p, setting this result equal to zero, and solving for p

B _Te_(S=Ta)
dp p 1-p ’

or, after a little algebra,

p= 1M
ST

The Signs-of-Activities Likelihood
It was noted earlier that the signs-of-activities model derives from the normal distribution with mean EfY;] =

(N — T;) and variance Var(Y;) = o*(N — T}); that is, ¥; ~ Normal(E[Y;], Var(¥;)). Given this probability
model, the likelihood is

M —(Y; — E[Y,)])?
cwde =11 sy = ( (};Var?gn )
= (2m)~ [Ii Var(Y.-)'*} exp (- é %@%ﬁ)i}-i) - (11)
Taking the logarithm to the base e of this expression yields
© @ (@) §
Ay = :(M; 1) 105(21(;— -;— glog\/at(}’;) - —;- :5; %})j .

Again, as in the removal likelihood, some algebra must be done on each of the three components of the
signs-of-activities log-likelihood given above to arrive at (2).

(#) Substituting (N — T;)o? for Var(Y;)
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M

= -3 T log (¥ = T)e)

$:=0

,..4
E

l!

Z log(N - T;) - (M; 1) fog{o?).

§==0

(#48) Agsin, substituting for Var(Y;) as in (if), and substituting b(N — T;) for E[Y;] yields

1 & (% —b(N = T))?
:"2‘&5; w=1y

Now combining (i) with the second term in (if) yields — @—’g—ll log(2#x0?), and adding this expression to what
is left in (#¢) and (4if) gives the expression for Az in (2). As in the removal log-likelihood, the last term in
(2) is & constant term and may be disregarded for maximization.

The ML estimators of  and ¢? can be found in closed-form by taking the partial derivatives of X, with
respect to each of these parameters, setting these equal to zero, and solving for each parameter. First, find
the MLE for b

2 _ Y G- HN-TY) =0,

§=0
or

M
S Y= b(M +1)(N - T),
§=0

and recalling the definition of ¥ we get

Finally, the MLE of o is found by noting that log(2#¢?) = log(27) + log(o?) in X,

=0,

dAy (M+1) (Vi = b(N - T}))?
5;% Z N-T;

l“‘ﬂ
or
R 1 (Vi — b(Ns — 'I:))2
4 “Mt1 E Ng — T
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Appendix II: Asymptotic F Extension for the Weighted Signs-of-Activities LRT

This appendix outlines the justification of the use of Routledge’s asymptctic transformed F-distribution for
the weighted signs-of-activities likelihood ratio test through derivation of the likelihood ratio test statistic.
Consider the weighted signs-of-activities likelihood, which is simply the signs-of-activities likelihood given in
{11) raised to the oy power, this can be written as

M
L(y; N,b,e") = [(%)-wfﬂ [’HVM(Y‘.)“%} exp ( Z (l;vaz[;’ )]
i=0 c

= (27 )" [H Var(Y;)™ 'f] exp ( Z (YVar ) ) .

=0

Now, using the last expression for the weighted signs-of-activities likelihood, and substituting b(N ~ T;) for
E[Y;] and (N — T})o? for Var(Y;), we can write the likelihood ratio for the weighted signs-of-activities model
as

satren [ 3 - M (Vibo(No-T:))"
- M1 { No — Ti)o? ] _aa o
W [:(E; N(h by 02) ( ) 112’-—1@(( 0 )JG) xp : Z_—"é (ND“T‘)OO
S - \ ‘ .
£(y; Ns, b, ”2) ..1.{.3.__1" myy [ M - o M {5 -T5) i
) (2 ) : [tl;io((Ns - T;)O’z) J eXp i — —51 'Z;; (Ns m;'i)oﬁ

However, we see in the exponential expressions above that

. ( 1 )Z(y-_bo(m-n))" wd 5o ( 1 )E(Y ii(l\?s“fl‘i))z,

M+1) &= (No—-T3) M+1) & (Ns = T3)

which, when substituted into the last expression for A‘S" above, yields

o

((Ng - T)ao) "‘} exp (-9 (M + 1))

o

(2x)~ H5H [

$

(2):“#2{.

il
-

3

fam

((Ng - T,-)&?) ) 'ﬂ exp (—%(M + 1))

1]
o

after cancellations. Now everything in this expression except for the quantities enclosed in brackets [-- ]
cancels. After some algebra, this leaves

Lo\ SR(M N 7
% iz \ Mo — T
Finally, taking the logarithm of the above quantity yields
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or

ww _nﬁlogAw/az—”(M+1)log( ) ZIOS(NO"" )

But the right-hand side is the same as (A.1) in Routledge (1989, p. 120). Therefore, the asymptotic argument
given by Routledge for his W in (A.1) was simply applied to WW for our confidence intervals in the weighted
case.

Appendix III: Simulation Programs and Related Files

This appendix discusses the use of the computer programs RemovSim and CiSim for simulating removal
and signs-of-activities experiments. RemovSim is used to generate as many simulated combined removal and
signs-of-activities experiments as are desired by the user, or to process existing data from such combined
experiments. RemovSim produces an output file with statistics from these experiments, including estimates
of population size from the removal, signs-of-activities, combined, and weighted combined estimators, and
prints detailed reports on individual simulations.

CiSim reads an input file created by RemovSim and determines the confidence intervals for each of the
population estimates produced by RemovSim. CiSim also produces a detailed output file of the confidence
interval results. These results can be analyzed for statistics such as the percent of times the confidence
intervals have included the true population size by estimator, with a set of SAS? (1990) programs.

RemovSim and CiSim are written in FORTRAN for use on personal computers and have been compiled and
linked with Microsoft FORTRAN. Both programs use a set of proprietary nonlinear optimization sabroutines
known as GRG2 (Lasdon and Waren 1986) to maximize the log-likelihoods and search for confidence interval
endpoints.

RemovSim

Fiure 6 shows a sample run of RemovSim in which 10 simulated removal and signs-of-activities experiments
are generated. RemovSim asks the user several questions; answers given to some questions determine further
questions that are asked of the user and the amount of output that is generated. All default answers in
RemovSim are shown enclosed in angle brackets (<>). The following discusses the questions and answers
for the sample run in Figure 6.

s The title of the run is only used when extra output is requested; if no extra output is desired (see below),
type a carriage return.

e The output file will hold the simulated removal and signs-of-activities experiments and is used as an input
file to CiSim.

! The use of trade, firm, or corporation names in this report is for the information and convenience of the
user. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture
or Forest Service of any product or service to the exclusion of others that may be suitable.
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D:\REMOVAL\SINULAT>removsim

RemovSim: simulates removal & signs-of-activities experiments
for closed populationms...

Enter a title...
Example of equal capture probabilities

Enter the cutput file name...
equal.ind

GRG2 reports are only gemerated if you choose no weighting and
the # of simulations is <=10..,
>>Print all final GRG2 reports (Y/<¥§>)?

Do you want to weight by Removal, Signs or <E>one?
Run <g>imulations or (o)ne experiment?

#*4>Two types of populations may be simulated...

(1) For OFE population with all individuals sharing the same p(capturs),
enter (p,H) for males ORLY, and enter p=0, B=0 for females.

(2) For two subpopulations (m,f) with differing p(capture)s, enter
different values for (p,¥) in the next two guestions. For equal sex
ratios, make ¥ for males and ¥ for females both equal to half of the
population size...

Enter p and ¥ for MALES: .4 100
Enter p and E for FEHALES: 0 0

You have chosen to draw samples from OEHE large population of gize: 100
with p(capture) = .4000

Enter # of removals (2<=K<=9) <3>:
Enter sigma and b: .4 1

Do you wish to fix SIGHA <n>7?

Do you wish to fix b <a>7?

Enter the number of simulatioms to run [1,1000] < 10>:

Enter the seeds for binomial and normal variates as follows...
if SEED < O then SEED is used as is;
if SEED = 0 then <Default> iz used;
if SEED > O then clock time is used.

Enter the binomial seed <-12345>:

Enter the normal seed <-12346>:

Sim #: b

Sim #: 10

(* Execution time = 4.83000 seconds *)
Stop — How run CiSim for CIs.

Figure 6.—Sample run of the program RemovSim with no weighting of bimodal likelihoods, and all individ-
uals in the population assumed to have the same capture probability.

¢ GRG2 reports are technical, covering the results of the nonlinear optimizations on estimating the pop-
ulation size; their description is beyond the scope of this report. Lasdon and Waren (1886) should be
consulted for this information along with the source code for RemovSim. Because this option generates
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much output, you are limited to up to 10 experiments. No GRG2 reports are generated if weighting is
desired because weighting is itself an iterative algorithm that calls GRG2 (also an iterative algorithm)
many times to determine the optimal weights; thus, huge amounts of output are possible without this
restriction. If reports are printed, they are written to the file “REPORT.DMP.” The default answer to this
question (no} was taken by the user in this case.

The user may chooee to employ the weighting algorithm described in the text, or do no weighting of the
combined log-likelihood. If weighting is desired, it will be implemented toward either the removal peak
or the signs-of-activities peak for bimodal log-likelihoods. This condition applies to all of the bimodal
likelihoods generated in an entire simulation run of RemovSim. The default of not weighting the bimodal
log-likelihoods was chosen.

Here you may choose to simulate combined removal and signs-of-activities experiments, or to process the
data from a removal and signs-of-activities experiment that already has been conducted. The user took
the default answer here because simulations were desired.

The comments after the “¢s#¢>” explain that the following questions allow the user to generate samples
from one homogeneous population, or from two groups with differing capture probabilities or numbers of
individuals within the population. This option is useful for looking at the behavior of the estimators in
the case of differing capture probabilities for male and fermale members of the population as discussed in
the section on simulation results, or when there is an unequal sex ratio in the population, or both.

This example simulation run generated experiments from one population where all of the members are
assumed to have equal probability of capture. The next two questions determine this: there are 100
individuale in the population that are assigned a probability of capture of (.4 through the first guestion
pertaining to males, and the population chavacteristics for females are entered as zeros. In RemovSim, if
population information is entered only for males, the simulations will be drawn from one population. If
information is entered for both males and females, two separate but coexisting groups of individuals are
sssumed within the population. In this latter case, removals and signs-of-activities are generated for M
removale from both groupe independently, and are subsequently added together for the total population
values of Ry, Yy, T, etc., which are then used to evaluate the log-likelihoods for parameter estimation.
RemovSim echos back what you have chosen for capture probabilities and population size after you have
answered the two questions cited.

M is the number of removals desired in any one experiment as discussed earlier. RemovSim allows up to
nine removals (implying 10 signs-of-activities observations); the default of three was chosen by the user.

Here the user entered ¢ = 0.4 and b = 1. These quantities are used as parameters in the generation
of normal random varistes for the simulation of signs-of-activities experiments. Recalling that ¥; ~
Normal(B{N — T3),0*(N — T;)), we see that o and b are used to transform standard mormal random
variates to normal random varistes with mean B(N — T}) and variance 6*(N ~ T}) in the generation of the
Y.

The formulas for & and b found in the body of this report show that these quantities depend on the removal
and signs-of-activities data through the T; and the Y}, respectively. However, due to the stochastic nature
of removal and signs-of-activities experiment generation, o and b will not necessarily equal the values
entered in the previous question for each individual experiment. The following two questions allow the
user {0 override the calculation of the guantities o and & from the sample data so that they are fixed at
the quantities entered previcusly for all simulations in the run. These fixed quantities are used instead of
the data-based values for o and b in the evaluation of the log-likelihood and subsequent estimation of N.
By choosing the defsults here, the user electe not to fix these quantities but to take the values of ¢ and b
a8 calculated from the individual simulations.
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e The number of removal and signe-of-activities experiments to be generated for Monte Carlo evaluation of
the estimators is entered here. The default of 10 is unrealistic for any evaluation of estimator precision
and accuracy; at least 500 should be used. It was set low here as a default so that users could look at
small output files to get a feel for the results before committing their personal computers to RemovSim
for longer runs. A run of 500 simulations may take from 10 minutes to well over an hour depending on
the type of computer used, the number of bimodal likelihoods, and whether or not weighting of bimodal
likelihoods is desired.

e There are three options available for the choice of the initial random number seeds for both the binomial and
normal random variate generators (both of these rely on two distinct uniform random number generators).
If a negative number is entered, its absolute value is used as the seed; if zero is entered, -12345 is used
as the seed; finally, if a positive number is entered, the computer’s clock time is used as the initial seed.
Both seeds always are written to the output file so that even if the clock time is used, you always will
be able to duplicate simulation runs. In this run, the default random number seeds were chosen for each
distribution.

e RemovSim simply prints a message every 5th simulation to let you know that something is happening.
When all of the simulations have been completed, the run time in seconds is printed and a reminder is
given that confidence intervals still need to be constructed with the program CiSim.

If it is desirable to weight the bimodal log-likelihoods in favor of either the removal peak or the signs-of-
activities peak, the following question would be answered by responding with either an r or s for removal
or signs-of-activities, respectively.

Do you want to weight by Removal, Signs or <E>one? «

When weighting is desired, two other questions will be posed to the user:

=#s>Hext 2 questions pertain to binary search algorithm...
Enter a tolerance value < .10D-03>:
Enter the number of iterations [1,50] <20>
(negative # to print details):

The first question asks for a tolerance value to be used to terminate the binary search algorithm applied to
the weighting of any bimodal log-likelihoods. After numerous runs of RemovSim by the authors, it appears
that the default value given is a reasonable value, assuring that all bimodal log-likelihoods checked become
unimodel in the fewest number of iterations. The second question asks for the maximum number of iterations
that RemovSim will use in the weighting algorithm to turn a bimodal log-likelihood into a unimodal one.
Again, after much experimentation, a value of 20 is seldom exceeded in the binary search algorithm. We
recommend that the defaults be chosen for these two questions until you are comfortable with RemovSim. If
the last question is answered as a negative number, the absolute value is taken as the maximum number of
iterations, and the output file produced has the output presented in more readable form. However, output
produced with this option must not be used as input into CiSim because it is formatted incorrectly.

Finally, RemovSim may be run not as a simulation program but as a processing program for combined
removal and signs-of-activities experiments that already have been conducted. To process one experiment
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with RemovSim, the data must be entered into an input file in pairs of (R;,Y;)—one per record in “free”
format. For example, the following illustrates an example input file called mjg29.£i1:

0, 219
86 132
32 104
18 85

In this experiment, M = 3 removals were done with (Ro,Ys) = (0,219) and (Ras, Yar) = (18,85). Pro-
cessing these data with RemovSim is simple; rather than accepting the default answer when asked whether
simulations or one experiment is desired, answer as follows:

Run <s>imulations or {o)ne experiment? o

What is the file name for the experimental data?
mjg29.fil

With these responses, RemovSim will process the data from the single experiment, use weighting if desired,
and write the results to the output file as entered earlier in the run (in the case of Figure 6, the results will
be stored in equal.ind). This one experiment can then be processed for confidence intervals with CiSim.

CiSim

Figure 7 shows a sample run of CiSim using the results of the 10 simulated removal experiments from the
run of RemovSim in Figure 6. The sample run is discussed in the following.

e The note at the beginning of the run informs the user that CiSimrequires a file by the name of “IVAET .KEY”
to be present in the current user directory. IWAET.KEY is a simple file consisting of removal experiment
numbers, one per line, that act as a key into the output file from RemovSim. As an example, if the
user wanted to calculate confidence intervals for experiments 2 and 7 in the file EQUAL.IED generated in
RemovSim, then I¥AET .KEY would have two records and would look like the left-hand box in the illustration
that follows. However, if the user later decided to process all 10 of the experiments in EQUAL.IED, then
IWAHT.KEY might look like the rightmost box, or might contain only one record, with zero in the leftmost
column of that record. Thus, if a zero is found in the first record, the entire file is processed regardless of
what might be in subsequent records.

2 ~...1st line... ]
7 ...2nd line. .. 2
...3rd line... T

¢ As in RemovSim, the title is asked for first and is only used if extra output is requested (see below). A
carriage return will default to a blank title.
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D:\REMOVAL\SIKULAT\RUES>cisim

CiSim: Confidemce interval calculation for removal & signs-of-activities
experiments simulated in RemovSim...

s+#>Please note that the file named IWANT.KEY may be used to melsctively
process individual populations from the desired input file. Just put
the population numbers you want to process, ome per recoxrd, in this
file. If you vant to process all populations, place a zero in the
first record of the file.

Enter & title...
Example of equal capture probability confidence intervals

Enter the imput file name (from RemovSim)...
equal.ind

Enter the output file name...
equal.ici

Print all final GRG2 reports (Y/<¥>)7? y

Enter the following for likelihood ratio CIs...
alpha level < .05>:
F value <18.51281883>:
Chi-square value <3.841465221>:

#*#¥>GRG2 ontput will mot be printed; to print details, choose
the imndividual simulations desired with IWANT.KEY!

Simulation #: §
Simulation #: 10

(* Execution time = 8.53000 geconds #*)
Clean completion!

Figure 7.—Sample run of the program CiSim using the output file generated in RemovSim (see Figure 6).

¢ The input file name requested must be a file that was created by RemovSim as explained in the description
of the program RemovSim.

¢ The output file holds the results of the confidence interval estimates for each experiment in the input
file that matches an experiment numnber listed in INANT.KEY (or all experiments). The output fileis in a
format that can be used directly by the SAS summary programs (discussed later).

e You may print the detailed GRG2 optimization reports only if you choose individual simulations using
TWANT.KEY. There is far too much output that will be generated with this option for anything but a smali
pumber of experiments, Even if you answer in the affirmative (“y”) to this question, the program checks
to see if you have requested processing of all simulations. If you have, it overrides your answer and does
not generate a detailed report. This should be satisfactory as details normally are desired for only a small
number of simulation experiments. When generated, the detailed report is output to a file by the name

of “CIREPORT .DHP.”

e CiSim does not have built-in functions for calculating critical values of the F' and chi-square distributions
used in the calculations of the likelihood ratio confidence interval; therefore, these must be entered by the
user from tables or other sources, CiSim queries the user for 1) the o level pertaining to the F and ¥? critical
values that will be entered; 2) the critical F' value (the 1—a quantile of the F(1, M ~1I) distribution} used in
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the calculation of F, in Equation 4; 3) the chi-square value {the 1~ quantile of the y? (1) distribution) used
for finding the confidence intervals for the removal estimates using the likelihood ratio method described
earlier. In this run the user has chosen the default answers to calculation of confidence intervals. The
default answers always produce 95% confidence intervals for each of the simulation experiments in the
input file created by RemovSim, if defaults have been chosen there as well,

e The note (“s#s>..."} given by CiSim simply catches the user’s request for detailed output when all
simulations have been elected to be processed in IWART.KEY. Although there are only 10 experiments in
the input file, this is still flagged as illegal.

o CiSim notifies the user as every 5th simulation experiment is processed and then prints the total execution
time. Execution time for CiSim normally is greater than that for RemovSim because at least two confidence
interval endpoints must be found with GRG2 for every likelihood estimate found in RemovSim. If bimodal
likelihoods are common in the experiments, then up to four endpoints are estimated using GRG2.

Qutput Files

RemovSim generates an cutput file with eight records per simulation experiment. Table 5 details the indi-
vidual records and fields within the records for all of the variables printed by RemovSim with the exception
of records three through seven. These records have the same fields as record two but with analogous infor-
mation for different estimators than the removal estimator. The differences are presented in the following
list.

@ Record three contains analogous information for the signs-of-activities estimator. The field differences are:
3{1] The constant term in the signs-of-activities log-likelihood is

Cae (Y ~ BN - TH))?
022( N(—-’.I} )),

£=0

which reduces to /2(M + 1); 3[4] the code “s” for signs-of-activities; and, 3{7] & 3[8] are 0.0 and 1.0 for
o1 and ary, respectively.

o Record four is for the combined estimator, with starting value equal to Ng. The field differences are: 4{1}
both constant terms in 2[1] and 3(1] are excluded; 4[4] the code “c” for combined; 4[6] the constant code
“r” signifying that the starting value was Np; 4[7) and 4[8] are both equal to one.

e Record five is the same as record four except that the starting value is Ns rather than N, r. Consequently,
the only field that changes is 5[6], with code “s.”

o Record six is the same as records four and five except that the starting value is the true, unknown
population size; thus, 6[6] now has code “p.”

e Record seven holds the weighted combined estimate. In this case, because of the workings of the bisection
search algorithm, both Ng and Ng are used as starting values. Therefore, field 7[6] simply contains “s,”
signifying the weighted estimate. Fields 7{7] and 7[8] will contain the actual optimal weights for o and
oy in the case of a bimodal log-likelihood. If the combined log-likelihood was not found to be bimodal, all
fields except for T[4] and 7{6] will be zero.

Different starting values are used in records four through six for each RemovSim simulation experiment to
facilitate the identification of bimodal log-likelihoods. The individual modes in a bimodal combined log-

likelihood are closely associated with the two independent peaks of the removal and signs-of-activities log-
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Table 5.—Description of the records and fields associated with each simulated removal and signs-of-activities
experiment generated by RemovSim

Record
[Field}* Columns Contents of field
1 {1 1 Contains either x, 8, or n, depending on whether RemovSim has weighted any bi-
modal combined log-likelihoods by the removal, signs-of-activities, or no weight-
ing, respectively.
2] 2-4 Probability of capture for males (note that if 0 is entered in 1[4], this is the
probability of capture for all individuals in the population).
[3)° 5-9 Total number of males in the population (note that if 0 is entered in 1{5], this is
the total number of all individuals in the population).
{4]° 10-12 Probability of capture for females. This may be 0 if the user has selected a
homogeneous population {see 1[2]).
{5)* 13-17 Total number of fernales in the population. This may be 0 if the user has selected
a homogeneous population (see 1[3}).
{6} 18-21 The value of ¢ used for the signs-of-activities normal random variate generator.
{71 22-25  The value of b used in the signs-of-activities normal random variate generator.
[8]° 26~29  The number of experiments simulated by the run of RemovSim in the file.
{9]° 30-31 The number of removal attempts (M).

(10} 32-37 The #mitial random number seed for the binomial random number generator.

11} 38-43 The initial randorn number seed for the normal random nuraber generator.

(12} 44-49  The value of Tar for this simulation.

13} 50-52 The maximum number of iterations that may be used for the weighting algorithm.

{14] 53-55  The actual number of iterations used in the weighting algorithm for the current
simulation experiment.

[15]° 56-61 The convergence tolerance used in the weighting algorithm to judge convergence
to unimodalhty.

[16]® 62 True if ¢ is fixed; False otherwise.

{17}¢ 63 True if b is fixed; False otherwise.

[18]° 64 True if a homogeneous population was chosen (Le., 1[4} & 1[5) are both 0); False
otherwise.

[19] 65 This field relates to the weighting algorithm. If, after the weighting algorithm has
finished this is still True, then there were not enough iterations specified in 1[13]
for convergence. If 1{21}is False, then this also should be False.

120 66 This field will be True if a very large signs-of-activities estimate was generated.
This implies thal the signs-of-activities log-likelihood is very fla?, and, therefore,
also implies that the combined log-likelihood should be unimodal.

{21) 67 True if a bimodal combined log-likelihood; False otherwise.

{22 68 In very rare cases there can actually be a very small second mode in the signs-
of-activities log-likelihood very close to the Ty boundary. If this is the case, this
field will be True; otherwise it will be False.

[23}° 71-76  This is the true {(but unknown!) population size.

{24] 77-80  The siiulation experiment number.

2 1Y 1-22 The value of the log-likelihood for the removal estimator without the constant
oM log(R;!) included.
{2] 23-44 The value of the complete removal log-likelihood with constant included.
{3} 45-57 The removal estimate (Ng) for N.
{4 h8 A constant code “(r)” signifying the removal estimate.
{5 59 This field holds the termination message from GRG2 for the final solution in

the maximization. Values of (-2 imply that GRG?Z has found a good solution
with O being the highest level of confidence through meeting the Kuhn-Tucker
Conditions. Any value 3-5 should not be trusted as an estimate of N that has
met the convergence criteria {Lasdon and Waren 1986).
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Table 5.— Continued

Record
[Field]® Columns Contents of field

[6]° 60 A constant code (“p”) signifying that the initial starting value for maximization
of the removal log-likelihood is the true, unknown, population size (1[23]).

[7)° 61-70 The value for a; = 1.0 used in the maximization of the log-likelihcod. All
maximizations actually use the combined log-likelihood in the form of equation
set (9) so that using 1 here and 0 in 2[8] yields the removal log-likelihood.

{8)° 71-80  The value for ay = 0.0 {see 2[7] for details).

3-7 These records are the same format as record 2, the differences are explained in
the text.
8 [1)° 14 Ry = 0.0 always.
{2] 5-9 Yo.

10-90 (R;,Y;) pairs in FORTRAN (£4.0, £5.0) format for i = 1 to M.
%These fields remain constant for every simulation experiment generated in the run of RemovSim.

likelihoods. Figure 8 shows this correspondence. The smaller peak in the combined log-likelihood corresponds
to the peak in the removal log-likelihood; similarly, the global peak in the combined log-likelihood corresponds
to the sxgns—of—actxwtxes log-likelihood peak. Therefore, using Ng and N as starting values in the search for
maxima in the combined log-likelihood is one method of determining bi- or unimodality of that log-likelihood.
If the two starting values converge to different maxima while satisfying the convergence conditions in GRG2,
then the log-likelihood is bimodal; similarly, if they converge to the same maxima, then the likelihood is
unimodal. Beginning the search from N is another check that may be made on bimodality. This procedure
is used in RemovSim to determine bimodality, it has been tested against numerous profile log-likelthoods as
a check and appears to be a very reliable method for determining bimodality among the methods tested.
These different estimates also are used in confidence interval construction in CiSim.

The output from CiSim is in the form of a file with the first record being a header record, with sets of 10
records per simulation experiment thereafter. The details of this record structure are in Table 6. Similarly
to the RemovSim record structure, the first record in each group contains gemeral information about the
experiment; each subsequent record or pair of records contains confidence interval endpoint information
and log-likelihood values for each of the different estimates. For example, records 6 and 7 contain up to
four confidence interval endpoints for the combined log-likelihood estimate of N with starting value of Ns.
This corresponds to the estimate found in record 5 of the RemovSim output file. Notice that this direct
correspondence of order between records in the RemovSim file and the CiSim file is consistent for the entire
experiment. Also, because a bimodal log-likelihood may have up to four confidence interval endpoints, all of
the CiSim records that correspond to one of the unweighted combined estimates in the RemovSim file use
two records to store this information. If the confidence intervals are not disjoint for a bimodal log-likelihood,
then the first and the fourth fields contain the endpoints; e.g., for records 6 and 7, this information is in 6{1}
and 7{3]. In the case of disjoint intervals, all four fields are used.

As with the different estimates in RemovSim, it may not be immediately obvious why endpoints need to be
calculated multiple times for the same unweighted combined log-likelihood. The answer lies in fixing attention
on the unweighted combined log-likelihood in Figure 8. Notice that the two peaks are not of equal value in A—
the right-most peak corresponding to the estimate arrived at by using Ny as the starting value, has a higher
value of ) than the other peak. Therefore, one can calculate the difference in Equation 6 from each peak,
and arrive at different confidence interval endpoints each time, providing that the two peaks have different
maximum values of X as in Figure 8. In this example, the left-most peak has value )\(NC( Kr )) = —30.19615
with corresponding likelihood ratio endpoints at ’\(No(ﬁ 3= ~34.85196, yielding only two confidence
interval endpoints [148, 257] (the lower horizontal line in Figure 8). However, the right-most peak has
value /\(Ncw y) = —27.11697 with corresponding likelihood ratio endpoints at A(Ny g, y) = —81.77278,
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Figure 8.—Correspondence between modes of removal (large dashes) and signs-of-activities (small dashes)
profile log-likelihood modes with combined (solid) profile log-likelihood modes. The two horizontal dashed
lines show the 95% confidence level with the LRT statistic at equality for the combined model; the top line
is associated with the “signs of-activilies” peak and the bottom with the “removal” peak.

yielding the disjoint interval [152, 184]U[226, 249] (the upper horizontal line in Figure 8). The latter of these
would actually be used as the true confidence intervals for the global maximum at N = 240 (the other mode
produced an estiraate for N of 161) in this simulation experiment; the other information is provided to allow
detailed comparison agaiust plots of the profile log-likelihoods as was done here.

SAS Summary Programs

There are three SAS (1990) programs that are used to summarize the results of the simulation experiments
from paired runs of KemovSim and CiSin. The fiest, MakeRmvl, is used to create a SAS dataset from an
output file from RemovSim. The second, MakeCI, does the same for an output file from CiSim. Directions
for use are given in the program code and are not duplicated here.

The final program, CiSum, is used to summarize all of the simulation results in the output file produce by
RemovSim and CiSim. CiSum produces sutumary reports for each estimator with statistics on intervals sizes
and catch frequency. It also provides summary statistics on the form of the log-likelihoods. These statistics
relate to the boolean variables in record 1 of both output files.

Appendix IV: Spreadsheet Programs
Two spreadsheet programs were developed to analyze individual removal, or removal with signs-of-activities
experitnents. These programs were developed for Microsoft Excel for Windows {version 3.1) running on

personal computers. With a small amount of work (basically changing file names for macro calls), they
also can be run on the Apple Macintosh version of Excel {the programs were originally developed on the
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Table 6,~h~»-Descripti<>n of the records and fields associated with confidence interval estimation from CiSim
for each simulated removal and signs-of-activities experiment generated by RemovSim

Becord
[Field]*  Columns Contents of field
9 ) The very first record of the file is 2 header record, its two fields are. ..

1 1-30 The input file name from RemovSim containing the estimates to which the confi-
dence intervals apply.

{2] 31-45  The x*(1) critical value for the likelihood ratio confidence intervals on the removal
estimator.

The remaining records in the file are in groups of 10 for each of the simulation
experiments in the input file (B{i]).

1 {i° 1 Contains either x, s, or n, depending on whether RemovSim has weighted any bi-
modal combined log-likelihoods by the removal, signs-of-activities, or no weight-
ing, respectively.

[2}* 2-5 The a level chosen for confidence interval construction.

[a) 6-17 The critical F value chosen.

{4]* 18-29  The critical value for F, as calculated frora (4).

{5 31-48  The GRG2 convergence criteria in FORTRAN (a1) format corresponding, in order
of occurence, to each of the different confidence interval endpoinis given in records
2 through 10.

{6] 49 True if the combined log-likelihood is unimodal; False otherwise.

i 50 True if the removal peak is higher in a bimodal log-likelihood; False otherwise.

8] 51-61 The value of Ny at the bottom of the “valley” in a bimodal combined log-likelihood.

{9] 62-72  The value of the full {constants included) log-likelihood at Ny in 1{B].

[10] 7376 The number of golden section search iterations used to find the value of Ny in
1{8].

11 77-80 The simulation experiment number; this number corresponds directly to the sim-
ulation number in 1[24] of the RemovSim input file in h{1].

2 {1} 1-20 Lower endpoint for the removal estimate confidence interval.

[2] 21-40 Full removal log-likelihood value for 2{1}.

[3] 41-60 Upper endpoint for the removsl] estimiate confidence interval.

14] 61-80 Full removal log-likelihood value for 2[3].

3 1-20 Lower endpoint for the signs-of-activities estimate confidence interval.

2] 21-40  Full signs-of-activities log-likelihood value for 3[1].

[3] 41-60 Upper endpoint for the signs-of-activities estimate confidence interval.

{4] 61-80 Full signs-of-activities log-likelihood value for 3{3].

4 1 1-20 Lower confidence interval endpoint for the combined estimate with starting value
Ng.

{21 21-40 Full combined log-likelihood value for 4[1].

{3 41-60 Lower middle confidence interval endpoint for the combined estimate with starting
value Ng in the case of a bimodal Jog-likelihood that produces disjoint intervals;
zero otherwise.

{4] 61-80 Full combined log-likelihood value for 4[3].

5 [1] i-20 Upper middle confidence interval endpoint for the combined estimate with starting
value Ng in the case of a bimodal log-likelihood that produces disjoint intervals;
zero otherwise,

{2] 21-40 Full combined log-likelihood value for 5[1].

3] 41-60 Upper confidence interval endpoint for the combined estimate with starting valie
Ng.

{4] 61-80 Full combined log-likelihood value for 5{3}. ’

6 [1] 1-20 Lower confidence interval endpoint for the combined estimate with starting value
Ns.

{2] 21-40 Full combined log-likelihood value for 6{1].
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Table 6.—Continged

Record
[Field]*  Columns Contents of field

[3] 41-60 Lower middle confidence interval endpoint for the combined estimate with starting
value N in the case of a bimodal log-likelihood that produces disjoint intervals;
zero otherwise.

{4] 61-80  Full combined log-likelihood value for 6[3].

7 {1 1-20 Upper middle confidence interval endpoint for the combined estimate with starting
value N in the case of a bimodal log-likelihood that produces disjoint intervals;
zero otherwise.

2] 2140  Full combined log-likelihood value for 7[1].

3] 41-60 Upper confidence interval endpoint for the combined estimate with starting value
Ns.

{4 61-80  Full combined log-likelihood value for 7{3].

8 (1] i-20 Lower confidence interval endpoint for the combined estimate with starting value
N.

{2} 21-40 Full combined log-likelihood value for 8[1].

3] 41-60 Lower middle confidence interval endpoint for the combined estimate with starting
value N in the case of a bimodal log-likelihood that produces disjoint intervals;
zero otherwise.

{4} 61-80  Full combined log-likelihood value for 8{3].

9 (1] 1-20 Upper middle confidence interval endpoint for the combined estimate with starting
value N in the case of a bimodal log-likelihood that produces disjoint intervals;
zero otherwise.

2] 2140  Full combined log-likelihood value for 9[1].

{3] 41-60 Upper confidence interval endpoint for the combined estimate with starting value
N.

[4] 61-80  Full combined log-likelihood value for 9[3].

10{1] 1-20 Lower endpoint for the weighted combined estimate confidence interval.

{2} 2140 Full weighted combined log-likelihood value for 10{1}.

(3} 41-60 Upper endpoint for the weighted combined estimate confidence interval.

f4] 61-80  Full weighted combined log-likelihood value for 10(3].

*These fields remain constant for every simulation experiment generated in the run of RemovSim.

Macintosh as a teaching aid and subsequently converted to the Windows environment and enhanced). These
programs use the macre and nonlinear solution capabilities of Excel and produce results comparable in
numerical accuracy to those of RemovSim and CiSim that both use GRG2 for numerical solutions.

Before either spreadsheet program can be used to analyze the experimental data, the macro sheet RemvMacs
must be loaded into Excel. RemvMacs contains two macros that are used to calculate the removal and signs-
of-activities log-likelihood functions. FEach macro has variable names with detailed comments and cell notes
accompanying the macro source code, so they are not described in detail here. An understanding of the
macro code is not essential to using the spreadsheet programs that rely on them.

The main part of the RemvSoa spreadsheet program is presented in Figure 9. This page of the spreadsheet
is described below using spreadsheet column letters and row numbers to designate the blocks of cells being
described.

B3 This is the cell to enter s title for the experiment.

B5:Fi¢ This area provides a place to enter the R; and Y; values collected as dats in the experiment.
Currently, the spreadsheet is dimensioned for M = 3 removals; however, this can be changed
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Figure 9.—Portion of the RemvSoa spreadsheet showing the main data entry and optimization sections with
simulated data from Appendix HI.
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by adding more rows to the spreadsheet and simply changing a few formulas in the body of
the sheet. The T; are calculated automatically, as is the quantity log(#:!) in column F. We
recommend that you turn off the automatic calculation when entering the R; and Y; values so
that the entire spreadsheet (which contains many calls to the macro functions) is not updated
automatically each time a new entry is added. Automatic calculation can then be turned on
when entry of data into these cells has been completed.

BI12:C16 M, Ty, and ):f:l log(R;!) are all quantities whose formulas may need to be changed if more
removals are added to the spreadsheet in B5:F10. MinN is just Ty + 1 and is calculated
automatically. M must be entered manually.

B18:C20  These weights are assigned to the objective function in equation set (8) to determine which
log-likelihood function will be used in the maximization problem. In this spreadsheet, the w;
correspond exactly to the a; used as weights in the body of this report {¢f. Equation 7). These
weights must add to either one or two. Setting w; to one and wq to zero gives the removal log-
likelihood; setting the weights to the reverse (i.e, wy = 0, wy = 1) gives the signs-of-activities
log-likelihood; setiing wy = wy = 1 yields the combined log-likelihood; setting them to any
other values that sum to one produces a weighted combined log-likelihood. These weights must
be changed manually to the desired values.

C31:D31  These are the values of A (V) and p for the removal log-likelihood using the R; values from the
experiment. The values for these fields are calculated by the removal log-likelihood macro in
RemvMacs during the maximization process; these are the return values from this macro and
are treated as an array of cells in Excel.

C33 This cell holds the value of Ay(N) calculated using the R; and Y; and the signs-of-activities
log-likelihood macro in RemvMacs during the maximization process.

c3r Cell C26 presents the formula used to calculate A in cell C37 and is the same as (7). As stated
previously, it 18 a combination of the removal and signs-of-activities log-likelihoods that depends
on the weights.

38 The constraint from equation set (9) assuring that N > Ty is calculated here for the optimal
solution.
C39 "This is the maximum likehthood estimate for the total population size {(N). To have Excel solve

for this value for any data entered into the spreadsheet, you must invoke Excel’s “Solver.” Solver
is set up for the optimization in equation set (9) based on the user’s data and cells C37:C39.

All of the calculations necessary for estimating population size using data collected from a removal or
combined removal and signs-of-activities experiment are performed in the section of RemvSoa presented in
Figure 9.

The estimation of confidence interval endpoints using the likelibood ratio method is similar to population
size estimation in that it can be treated as either an optimization, or search problem. As such, confidence
interval estimation may be automated as it is in CiSim, where it is treated as an optimization problem;
however, it may also be visualized as a simple search problem-—this approach lends itself neatly to spreadsheet
applications. Sirply, values of A(Np) are calculated in a list of spreadsheet rows using some desired increment
in Ny, usually from T + 1 to an upper bound. These log-likelthood valucs are then searched by eye to find
the values of A{Ng) such that

AMNo) 2 M) ~ %ﬁ‘-
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i¥x t}fe tist; wi%ere, Co is the appropriate critical value from the x? or F distributions and N is the maximum
hkehhmfi estimate for vV, both depending on which log-likelihood is being maximized. If enough values are
selected in the range of Ny, then profile log-likelihoods also can be plotted on the spreadsheet.

RemvSoa provides a portion of the spreadsheet area beginning in row 44 for just such caleulations. Figure 10
presents a portion of such a listing in cells A47:E77. These cells contain enough values of the combined log-
likelihood (A) in column E to determine the four confidence interval endpoints for the profile log-likelihood
presented in Figure 8. (Normally, enough rows would be used to calculate log-likelihood values by increments
of one or two to produce a complete profile log-likelihood as in Figure 8 on the spreadsheet; the digjomt
subsets of values were used here to facilitate the illusiration of confidence interval construction.) To determine
the confidence interval endpoints for the combined estimate of N using Figure 10, we first caleulate the value
that the log-likelihood will take at these four points. For M = 3, F(1,2) = 185128 (from an F table at
a = .05}, and we see from Equation 6§ that

o, F
A(No) 2 MNe) = —5*,

and Fos = 9.3116 from (4) so that we calculate A{Ny) > —31.7728. Finally, we peruse the list in Figure 10 to
find all values of Nj such that A(Ng) > —~31.7728. Because only whole values of N are shown in Figure 10, we
settle for the closest values of Ny satisfying this inequality. These values, shown as shaded rows in Figure 10,
produce the confidence interval [152, 183]U[226, 248]. This is almost exactly the same interval obtained from
CiSim in Appendix III; the difference is that CiSim caleulated the intervals using an optimization method
that gave a more accurate estimate in terms of significant digits (ie., noninteger values of No) for two of
the endpoints. We could very easily have arrived at the exact same endpoints as CiSim sunply by adding
several more spreadsheet rows around our shaded endpoints where we increment NV by a little finer value,
for example, 0.1 in these added rows. We could then round the 2nd and 4th endpoints to 184 and 249,
respectively, arriving at the same values as CiSim.

As mentioned earlier, the listed values of N with the respective log-likelihood values can be usad to plot the
profile log-likelihood for any set of R; and Y; entered into the spreadsheet. There are two other sections of
the RemvSoa spreadsheet that plot the removal and signs-of-activities profile log-likelihoods on one graph
and the combined log-likelihood on another. These, however, ate not shown here as they are very similar to
Figure 8, which was produced by SAS. Thus, RemvSoa provides all of the tools needed (except the bisection
search for optimal weights procedure) to analyze a combined removal and signs-of-activities experiment as
outlined by Routledge (1989) and this report.

Another spreadsheet program that will not be described here is available for analyzing simple constant cap-
ture probability model removal experiments covered in White et al. (1882, p. 101-108). The spreadsheet
CCPRemvl is laid out in a similar fashion to RemvSoa and includes estimation of N and graphical solution
section complete with profile log-likelihood. It also includes the chi-square goodness-of-fit test and estimated
standard error that can be used to calculate approximate confidence intervals based on the normal distri-
bution. These then can be compared with the likelihood ratio confidence interval endpoints calculated from
the log-likelihood values. In this latter case, the correct x? value is used rather than the modified F, in
evaluating the log-likelihood endpoint values for A (Ne).

Both of these spreadsheet programs have been adapted for M > 3 and have been used as a teaching aid in
s graduate level sampling course at the University of New Hampshire.
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A B | 3 | D E
44 Graphical Solution...
45
46 N... lambda 1... p... fambda 2... lambda...
47 147 -10.50538743| 0.67281106] -26.5791207| -37.0845082
48 148 -9.511111188] 0.66363636| -25.5422548| -35.053366
49 149 -8.834821423| 0.65470852] -24,9290054| -33.7638269
50 150 -8.362971999| 0.6460177| -24.4857535/ -32.8487255
51 151 -8.03481938| 0.63755459| -24.1335998| -32.1685192
= bty
53 153 -7.673661107| 0.6212766] -23.579825| -31.2534861
54 154 -7.598062374| 0.61344538| -23.3490323| -30.9470946
55

72}

56 23 2
57 184 -12.59865136| 0.44512195| -19.2034397| -31.802091
58 185 -12.79796529| 0.44108761| -19.0828097| -31.880775
59| 186 | -12.9957461| 0.43712575| -18.9617424] -31.9574885
60| 187 | -13.19192968| 0.43323442 -18.8401524| -32,0320821
611 -13.3864617| 0.42941176] -18.7179547| -32.1044164
62| | 719.21245443] 0.32589286 -12.7903976] -32.002852
63 -19.34407126] 0.32372506| -12.5170756| -31.8611468
64 g
65| 227 -19.60309773| 0.31947484] -11.9246015! -31.5276993
1661 228 -18.73054498| 0.3173913| -11.6014822| -31.3320272
67| 229 -19.85663972| 0.31533477| -11.257208| -31.1138477
68| 230 ©19.98140034] 0.31330472| -10.8888165 -30.8702168
69| 231 | -20.10484504] 0.31130064 -10.4328457 -30,5976908
70 246 -21.81035682| 0.28404663| -8.53B4138| -30.3487706
71 -21.91 30

73 . . : .
74 -22.2229638| 0.27756654  -10.18615] -32,4091138
75| 251 -22,32358895| 0.27599244 -10.5137919 -32.8373808
76 252 -22.42323107| 0.27443609 -10.8156652  -33.2388362
77 253 -22.62190362] _ 0.2728972] -11.0949563| -33.6168599

wre 10.--Portion of the RemvSos spreadsheet corresponding to Figure 9 showing a list of Ny, p, and log-
lihood values (A{Np), A{No), and A Ny)) used for determining the LRT confidence interval endpoints

aded rows}.
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