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Abstract

earliest and most heavily damaged trees (the oldest exit 
hole found was made in 1998). Because Jersey City 
trees that were classified into the same damage code 
were found through dissection to have been infested in 
different years, the backdating algorithm can at best give 
an interval within which each tree was likely to have been 
infested. This means that there is also an interval within 
which beetles will have first begun to emerge and possibly 
infest other trees (Figure 1).

Uncertain Timing and the Use of  
Likelihood Models
In most epidemiological data there is uncertainty 
about the timing of events, such as when a node is 
first infested, first contagious, and first removed or no 
longer contagious (t

n
, c

n
 and r

n
). We incorporated such 

uncertainty into a likelihood model of the spread of an 
infestation based on a ‘distance’ matrix D and associated 
distance function f(d

ij
). The distance function converts 

an element of D into a transmission rate T
ij
. Our model 

considers the problem of fitting various models to data 
of an epidemic spread of an infection on a set of nodes n 
= 1, 2, 3, . . . , N with fixed spatial relationships to one 

Introduction
The goal of this project was to develop a model that 
describes the local infestation dynamics of the Asian 
longhorned beetle Anoplophora glabripennis (ALB) in 
Bayside, New York City, using data on infested trees and 
uninfested host trees from the New York Eradication 
Program. In most epidemiological data there is 
uncertainty about the timing of events, such as the time 
a host was first infested, first contagious to others, or 
removed and no longer contagious. In the case of ALB, 
uncertainty exists because of our inability to precisely 
‘backdate’ the time of first exit from the level of damage 
observed on the infested tree. The use of a likelihood 
approach, combined with integration over timing 
uncertainty, allowed us to build models incorporating 
several factors that may affect the pattern of ALB spread. 
Information based statistics allowed us to directly 
compare and select the model best supported by the 
observed data. The selected model may then be applied 
to both management and research applications.  

From Program Data to Estimated Infestation 
Events for Modeling
The New York Asian Longhorned Beetle Eradication 
Program records the date each infested tree was found, 
the date the infested tree was removed, and a damage 
code based on the level of damage observed.  We used 
a previously developed relationship between damage 
level and the age of an infestation, based on a Jersey 
City outbreak discovered in October 2002 (Sawyer 
et al. 2004), to ‘backdate’ the timings of infestation 
events in a Bayside, NYC outbreak. For six of the 
infested Jersey City trees, Sawyer et al. (2004) used the 
numbers of growth rings around exit holes to calculate 
the periods of time during which each tree must have 
been first infested and when it was first potentially 
able to infest other trees. These trees represented each 
damage code that was recorded, as well as the four 

Figure 1.—Calculation of tn and cn intervals for Jersey City trees and 
comparison to earliest date of exit as determined from dissections.
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another; in the case of ALB, these nodes are individual 
trees.  So, this is a spatially explicit model that considers 
the density of available hosts and their relationships to 
infested trees. The best-fit parameters for the distance 
function are those that maximize the likelihood of the 
observed ALB dataset.

If we knew the timing of infestation events exactly, we 
would be able to calculate the probability a target tree 
i was not infested by a donor tree j as P = eTij(rj-cj)(the 
probability of drawing zero from a Poisson distribution 
with rate parameter T

ij
(r

j - cj
) - Figure 2a). We can then 

calculate the probability of at least one infestation as 1 
- P.

With uncertainty, however, first infestation occurs during 
an interval, and the contagious period of a donor tree is 
also an interval with uncertain beginning and end (Figure 
2b). Our list of {t

n
, c

n
, r

n
} event triples for each node 

becomes a list of ‘pair-triples’ {{t
n,1

, t
n,2

}, {c
n,1

, c
n,2

}, {r 
n,1

, 
r 

n,2
}}. To calculate the probabilities we therefore have to 

integrate over this uncertainty, which we do under the 
assumption that no time within each interval is more 
likely than any other. Depending on how the intervals 
overlap (there are 15 possible combinations in the general 
model), calculating the probability of infestation can 
involve a combination of double and single integrals. 
The product of the probabilities of infestation for each 
infested tree during the contagious intervals of all the 
other infested trees, and the probabilities of no infection 
for uninfested trees, gives the likelihood of the entire 
dataset (for further details on the general model, see 
Russell and Lu in prepsaration). The general model was 
adapted to specifically analyze the Bayside infestation 

data from New York City, where there was no uncertainty 
about the removal date.

Model Fitting to Bayside, New York
We initially fitted four different distance functions to 
the backdated infestation data in Bayside, New York. 
Limitations in computing speed and memory prevented 
the calculation of all the pairwise probabilities for every 
tree in the data at once, so we created spatially nested 
subsets of the entire dataset and fit the models to each. 
A search function was used to calculate the maximum 
likelihood estimates of the fitted parameters. The MLEs 
were similar across data set extents for each distance 
function except the exponential decay (f(d

ij
)=ae-bd), 

so model selection was limited to the remaining three 
distance functions.

Maximum likelihood models are a natural approach for 
dealing with probabilistic infestation data. Furthermore, 
information-based statistics like Akaike’s Information 
Criterion (AIC) allow comparison of multiple models 
with different levels of complexity (Burnham and 
Anderson 2002). Table 1 shows the results of the model 
selection process for the three distance functions. AIC 
is defined as -2 log L + 2 V, where L is the maximized 
likelihood of a candidate model with V free parameters. 
Comparison of AIC values chose the radius decay 
distance function (lowest AIC value) as the model that 
was best supported by the data.

Simulations and Potential Tools
Using data on host tree locations throughout New York 
City, we created a risk map of ALB spread by performing 
simulations of spread using the selected distance model. 

time

 donor tree:     first contagious           removed/ not contagious

target tree:   first infested 

time

 donor tree:     first contagious           removed/ not contagious

target tree:   first infested 

a. Exact timings 

b. With uncertainty 

Figure 2.—Overlaps in infestation events 
between a donor tree and a target tree.
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The host tree population was divided into cells, into each 
of which a single infestation was seeded. We simulated 
the spread of an infestation until 50 trees in each cell 
were infested, recording the duration of the simulation 
(Map 1). The risk map is visually similar to a map of 
host tree density, which is not surprising given that our 
model is a simple distance function. Nevertheless, the 
risk map provides a quantitative measure that could help 
inform managers of the level of survey that would need 
to be done before an area could be declared uninfested. 
This is especially important in a pest with a high 
detection threshold such as the ALB; in an area where 
ALB spreads more slowly, a higher level of survey effort 
would be required.

Neighborhood-scale simulations were also performed on 
Bayside’s host tree data and compared to the observed 
progression of the infestation. Trees that were infested in 
the greatest proportion of the simulations were the trees 
that were also infested earliest in the real data. There was 

more variation in the proportion of simulations in which 
infestation occurred for trees that were infested later, 
but this is expected because the timing of later events 
is strongly affected by the stochastic nature of the early 
stages of spread when just a few trees are infested.  These 
simulations also identified areas that were only infested 
in the simulations and not actually found infested, and 
vice versa. Differences between model predictions and 
observations may be due to the role of other factors in 
dispersal, such as ALB host preference or the role of 
buildings as barriers to dispersal. Simulations at this scale 
may also be used to guide program managers to areas 
where more survey is required, by locating areas where 
simulated infestations occurred but where none have 
been reported to date.

Future Directions and Other Applications
Future work will add other factors that may affect 
dispersal to the basic distance functions fitted above. 
Because the distance function converts an element of 
D (in this case the distance between two trees) into a 
transmission rate T

ij
, the matrix D does not have to 

be an actual distance, but can be an ‘effective’ distance 
representing the relative difficulty of transmission 
between trees due to host preference and environmental 
characteristics. The general model may also be applied 
to a variety of types of uncertain epidemiological data. 
One such type is ‘regular census’ data, where infestations 
occur at some unknown time in the interval between 
surveys (survey uncertainty). Timing uncertainty may 
also be due to incomplete knowledge of an organism’s 
biology, such as the duration of an incubation period 
before a node is contagious, or before it is no longer 
contagious (biological uncertainty). This study is 
an example of how imperfect operational data can 
nevertheless contribute to research in factors affecting 
invasive species spread, and generate results which can be 
used in turn as management tools for program managers.

Table 1.—Maximum likelihood and AIC values for fitted models.

Model name f(d
ij
) Max. likelihood L AIC value

Radius a / d -85.235 172.47
Radius decay a*e–bd /d -69.0487 142.097
Radius power ad–b -77.1233 158.247

Map 1.—Simulations of selected model on hosts in 
New York City. Dark areas have faster rates of spread.

Map 1.  Simulations of selected model on hosts in New York 
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