Cycle-Time Equation for the Koller K300 Cable Yarder Operating on Steep Slopes in the Northeast

Neil K Huyler
Chris B. LeDoux
Abstract

Describes a delay-free-cycle time equation for the Koller K300 skyline yarder operating on steep slopes in the Northeast. Using the equation, we estimated the average delay-free-cycle time was 5.72 minutes. This means that about 420 cubic feet of material per hour can be produced. The important variables used in the equation were slope yarding distance, lateral yarding distance, volume per turn, and stem volume. Cable yarding has an advantage of minimizing the impact on environmentally sensitive areas, especially when complying with Best Management Practices (BMP's) and other forest practices regulations.

The Authors

NEIL K. HUYLER, research forester, is engaged in research on the economics of harvesting and its interrelationship with ecosystem management goals and sustained forestry practices at the Northeastern Station's George D. Aiken Forestry Sciences Laboratory at Burlington, Vermont. He received B.S. and M.S. degrees in wood industry from West Virginia University, and joined the Forest Service in 1963.

CHRIS B. LEDOUX, supervisory industrial engineer, is engaged in forest engineering research at the Northeastern Forest Experiment Station in Morgantown, West Virginia. He received a B.S. degree in forest management from the University of Idaho, and M.S. and Ph.D. degrees in forest engineering from Oregon State University. He joined the Forest Service in 1983.

Manuscript received for publication 4 November 1996

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable.
Introduction

Interest has mounted in the use of cable yarding in the Northeast to resolve harvesting concerns related to environmentally sensitive areas and for adverse logging conditions. In addition, regulations such as Best Management Practices (BMP's) have impacted the logging industry in recent years. Other regulations such as the Federal Water Quality Acts (Hohenstein 1987) and town logging ordinances (Goodfellow and Lea 1985) have had impacts also. These political and public concerns require new ways of managing forested lands under a sustainable forest concept.

Conventional rubber-tire skidders have been the mainstay for logging in the Northeast. It is a proven method of logging both for efficiency and cost effectiveness, even on moderate slope conditions. On steeper slopes, however, road costs, environmental impacts, and logging costs increase significantly (Cubbage and Gorse 1994). Huyler and LeDoux (1995) estimated the cost of applying Vermont Acceptable Management Practices (AMP's) to logging on moderate slopes and results indicated that the added cost of compliance using conventional rubber-tire skidding makes cable yarding more attractive when logging in environmentally sensitive areas. Cable yarding has the potential to overcome these problems and, therefore, provide an alternative harvesting system to meet the increased demand for wood fiber from the Northeast. This paper summarizes the production attributes, operating condition, and cycle time equation for a study using the Koller K300 yarder on state forest land in Massachusetts.

The Yarding Study

Yarder Description

The Koller K300 is a small cable-yarder system designed for uphill logging. The machine is compact with simple engineering, and designed for small wood logging and residue removal operations (Fig. 1). The yarder can be mounted on a farm tractor with a 3-point hitch or can be placed on a trailer for easy transportation over long distances.

The system components and capabilities are: (1) the tractor engine must have a minimum of 50 hp, (2) approximate weight without the tractor is 3,500 pounds, (3) average mainline speed for the tractor-mounted version is 630 feet per minute, (4) cable capacity is 1,150 feet of 3/8-inch cable for the mainline, 1,150 feet of 5/8-inch cable for the skyline, and 100 feet of 9/16-inch cable for the guyline, (5) uses multispan self-clamping carriage and can be set up with intermediate supports and tailspar, and (6) the tower height is 23 feet.

Figure 1.—Koller K300 operating on steep slopes.

Study Site and Crew

The study site is located in north-central Massachusetts on Beartown State Forest, Region 5. A bid contract for a timber sale was written to harvest using a cable yarder. The bid was for the purchase of approximately 103,700 board feet and 256 cubic feet of standing timber as marked by the state forester on 30 acres of forest land. The preharvest volume was approximately 12.5 Mbf/acre.

The post-harvest volume was approximately 9 Mbf/acre with a residual basal area of 70 square feet. Trees removed were mainly overmature, good-quality red oak (Quercus rubra). The remaining stand had a large proportion of large-diameter hemlock (Tsuga canadensis), which explains the
higher than normal volume per acre for the region. Table 1 is the tally sheet for the Koller K300 yarder steep-slope study area.

The mean side slope for the entire sale area is 40 to 50 percent. We measured the side slope on six of the mainline corridors and the average was 55 percent with a minimum of 42 percent and a maximum of 65 percent.

The yarding crew included a yarder operator and a choke setter. Trees were cut before yarding using a directional felling technique by a logging contractor. Usually the trees were felled downslope at a 45° angle to the yarding corridor. This facilitates lateral yarding and reduces the chance of residual stand damage. Communications between yarder operator and the choke setter were by two-way radio.

Time Study Methods

A detailed time and motion study was conducted using the continuous-timing method to determine the total yarding cycle time, which is the amount of time it takes the carriage to travel from the landing area to the woods and the return to the landing and unhook the payload. Six yarding elements were identified and timed to determine the total delay-free yarding cycle time.

<table>
<thead>
<tr>
<th>Species</th>
<th>Tree quality</th>
<th>Total Mbf</th>
<th>No. of trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red oak</td>
<td>Good</td>
<td>78.575</td>
<td>235</td>
</tr>
<tr>
<td>Hemlock</td>
<td>Fair</td>
<td>5.475</td>
<td>21</td>
</tr>
<tr>
<td>Red maple</td>
<td>Fair</td>
<td>5.166</td>
<td>32</td>
</tr>
<tr>
<td>Yellow birch</td>
<td>Good</td>
<td>4.914</td>
<td>24</td>
</tr>
<tr>
<td>Other</td>
<td>Fair</td>
<td>9.546</td>
<td>61</td>
</tr>
</tbody>
</table>

Unhook—Begins at the end of in haul when the carriage passes over the tripblock and ends when the chokers have returned to the carriage.

The work cycle elements were recorded to the nearest one-tenth of a minute. The time data were recorded by two forestry technicians who were trained in continuous-timing study techniques. One technician was stationed in the woods at the hookup location and the second technician was stationed at the landing. Communication was maintained by two-way radio. Over the corridors studied, 80 total cycle times were recorded which comprised the data base for the cycle-time equation analysis.

In addition to the total yarding cycle time, delay time must be considered. Delay time is important to the harvesting operation because it has a direct impact on the final cost of production. The delay percentage can be used to adjust the delay-free-cycle time equation and therefore the cost of production. The cause of each delay was recorded and timed to the nearest one-tenth of a minute. Three categories of delays were used in the delay analysis as follows: (1) operational delay, (2) mechanical delay, and (3) nonproductive delay, which represents delays associated with the principal operating functions of the system.

In addition to the yarding delays and cycle elements, the following yarding variables were recorded and summarized:

| Species Tree quality Total Mbf No. of trees |
|--|---|
| Species Tree quality Total Mbf No. of trees |
| Species Tree quality Total Mbf No. of trees |
| Species Tree quality Total Mbf No. of trees |
| Species Tree quality Total Mbf No. of trees |
| Species Tree quality Total Mbf No. of trees |
| Species Tree quality Total Mbf No. of trees |
| Species Tree quality Total Mbf No. of trees |

Results

Cycle-Time Equation

Regression analysis was performed on the Koller K300 time study data to develop a delay-free-cycle time equation for the machine under the stand conditions stated in the study. The variables included slope yarding distance, lateral yarding distance, volume per turn in cubic feet, and stem volume in cubic feet. The stem volume variable was transformed using the reciprocal to improve the
Table 2.—Mean, standard deviations, and minimum and maximum variable limits, by yarding attributes

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope yarding distance (feet)</td>
<td>425.3</td>
<td>196.82</td>
<td>100.0</td>
<td>675.0</td>
</tr>
<tr>
<td>Lateral distance (feet)</td>
<td>27.5</td>
<td>34.50</td>
<td>0.0</td>
<td>150.0</td>
</tr>
<tr>
<td>Piece volume per turn (cubic feet)</td>
<td>35.2</td>
<td>14.09</td>
<td>13.0</td>
<td>92.1</td>
</tr>
<tr>
<td>Number of pieces per turn</td>
<td>1.5</td>
<td>.38</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

predictability of the equation. The cycle-time equation for the Koller K300 took the form:

\[
\text{Cycle time (in minutes) = 0.223 + 0.004 (Syd) + 0.024 (Ld) + 0.059 (Tv) + 35.23 (1/Sv)}
\]

Where:

- Syd = slope yarding distance in feet
- Ld = lateral distance in feet
- Tv = turn volume in cubic feet
- Sv = stem volume in cubic feet

\[
R^2 = .67
\]

The yarding site attributes given in Table 2 are typical of the cable-yarding operations for the equipment and site and timber sale conditions in the Northeast. The equation is machine specific, and the variable limits (see Table 2) should be observed carefully.

An example of the use of the cycle-time equation follows. If we assume that the harvesting operation has a slope yarding distance of 380 feet, an average lateral yarding distance of 25 feet, a volume per turn of 40 cubic feet, and a stem volume of 35 cubic feet, the delay-free cycle time would be 5.72 minutes. This represents about 10.5 turns per hour and with an average payload of 40 cubic feet per turn would be about 420 cubic feet per hour or about 2.250 Mbf per productive hour.

In similar studies of the Koller K300 by Rossie (1983), similar results were shown in estimating the cycle-time equation. Testing the same four variables as we did in this study, Rossie also found that slope yarding distance and lateral yarding distance had a significant influence on the outcome of the cycle-time prediction model. Also, in a study that included the Koller K300 integrated with a rubber-tire skidder, McIntire (1981) indicated that slope yarding distance, lateral distance, and tree size were influential on the outcome of the prediction model.

Production vs. Delay Time

The productive time or the machine utilization rate for the Koller K300 in this study was 65 percent of the total on-site time. From Figure 2, the operational delay accounted for 21 percent of the total cycle time. For example, the predominant delays were caused by chokers caught either at the log deck or in the lateral yarding hookup element. Also, waiting for the choke setter and choke release failures at the log landing caused delays. Mechanical delays or mechanical failures of the system accounted for 10 percent of the total cycle time. Examples of these delays were mainline breaks, mechanical failure of the carriage, and hydraulic line failures. The category, nonproductive delays, accounted for 4 percent of the total cycle time. These delays were associated with personal time and talking with either choke setter, the on-site forester, or the research team.

Environmental delay is another category that will more than likely become an important part of the total productive time and therefore cost of production in the future. These would include weather-related delays and delays associated with compliance with Best Management Practices (BMP’s) in logging operations. Although these kinds of delays did not occur in our study, they should be considered when estimating the annual scheduled hours of operation for any yarding system. Cable yarding has the distinct advantage over other types of harvesting by reducing the number of skid and haul roads, which minimizes the chance of skid trail erosion and water sedimentation.

As an example of the importance of delay time on the overall cycle time for the yarder, consider the following. We estimated the delay-free cycle time for the Koller K300 to be about 5.72 minutes per cycle. If we adjust the delay-free cycle time with our total delay percentage of 35 percent, it increases our total cycle time to 8.80 minutes per cycle, and this converts to about 6.9 turns per hour.
Conclusion

The Koller K300 yarder cycle-time equation is both machine specific and site specific. This yarder, and other similar yarders on different timber sales, may experience different cycle times and therefore different production levels. However, use of the cycle-time equation for the Koller K300 gives forest operators a management tool for use in estimating production levels and cost of production on similar harvesting operations.

Cable yarding is not used much in the Northeast. In general, the reason given is that it takes more time for preplanning the logging operation. However, once in place, the production rate on steep slopes is comparable to the ground-base systems. Most operations using cable yarders are feasible when operating in a high-product-yield stand and when factors affecting production have been carefully evaluated. Cable yarding also has the advantage of minimizing the impact on environmentally sensitive areas, especially when complying with BMP's and other forest practice regulations. Also, it can be integrated into ecosystem management goals and sustainable forestry practices.

Literature Cited

Describes a delay-free-cycle time equation for the Koller K300 skyline yarder operating on steep slopes in the Northeast. Using the equation, the average delay-free-cycle time was 5.72 minutes. This means that about 420 cubic feet of material per hour can be produced. The important variables used in the equation were slope yarding distance, lateral yarding distance, volume per turn, and stem volume. Cable yarding has an advantage of minimizing the impact on environmentally sensitive areas, especially when complying with Best Management Practices (BMP’s) and other forest practices regulations.

Keywords: cable yarder, cycle time, production, equation
Headquarters of the Northeastern Forest Experiment Station is in Radnor, Pennsylvania. Field laboratories are maintained at:

Amherst, Massachusetts, in cooperation with the University of Massachusetts
Bradley, Maine, in cooperation with the University of Maine
Burlington, Vermont, in cooperation with the University of Vermont
Delaware, Ohio
Durham, New Hampshire, in cooperation with the University of New Hampshire
Hamden, Connecticut, in cooperation with Yale University
Morgantown, West Virginia, in cooperation with West Virginia University
Parsons, West Virginia
Princeton, West Virginia
Syracuse, New York, in cooperation with the State University of New York, College of Environmental Sciences and Forestry at Syracuse University
Warren, Pennsylvania

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means of communication of program information (braille, large print, audiotape, etc.) should contact the USDA Office of Communications at (202)720-2791.

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, DC 20250, or call 1-(800)245-6340 (voice) or (202)720-1127 (TDD). USDA is an equal opportunity employer.

"Caring for the Land and Serving People Through Research"