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Abstract Explanations for the ubiquitous presence of 
spatially synchronous population dynamics have as- 
sumed that density-dependent processes governing the 
dynamics of local populations are identical among dis- 
junct populations, and low levels of dispersal or small 
amounts of regionalized stochasticity ("Moran effect") 
can act to synchronize populations. In this study we 
used historical spatially referenced data on gypsy moth 
(Lymantria dispar) outbreaks to document that density- 
dependent processes can vary substantially across geo- 
graphical landscapes. This variation may be due in part 
to geographical variation in habitat (e.g., variation in 
forest composition). We then used a second-order log- 

influence on synchrony caused by dispersal. In general, 
synchronization caused by dispersal was primarily 
dependent upon the instability of populations and only 
weakly, if at  all, affected by similarities in density- 
dependence among populations. We conclude that 
studies of synchrony should carefully consider both the 
nature of the synchronizing agents and the pattern of 
local density-dependent processes, including how these 
vary geographically . 
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linear stochastic model to explore how inter-population 
variation in density-dependent processes affects syn- 
chronization via either synchronous stochastic forcing 
or dispersal. We found that geographical variation in introduction 
direct density-dependence (first order) greatly diminishes 
synchrony caused by stochastic it^ but only slightly The field of population dynamics focuses on quantifying 
decreases synchronization via dispersal. Variation in and variation in abundance through 
delayed density-dependence (second order) diluted SYn- space and time. Among these patterns, population cycles 
chrony caused by regional stochasticity to a ksser extent and spatial synchrony have received considerable 
than first-order variation, but it did not have any attention (Royama 1992; Liebhold and Kamata 2000; 

Turchin 2003). Population cycles refer to periodic 
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oscillations in abundance though there may be consid- 
erable variation in both the strength and period of these 
cycles (Berryman 1996; Kendall et al. 1998). Spatial 
synchrony refers to changes in abundance that are 
coincident among geographically disjunct populations 
(Hanski and Woiwod 1993; Ranta et al. 1995; Bjsrnstad 
et al. 1999; Liebhold et al. 2004). 

The apparent ubiquity of synchronous population 
dynamics across a spectrum of animal taxa has recently 
attracted considerable attention. While synchrony is 
easily detected, the causes can be debatable. This is be- 
cause similar patterns of synchrony can be caused either 
by (1) dispersal of individuals between populations, (2) 
movement of natural enemies (e.g., predators) among 
populations or (3) correlation in exogenous stochastic 
forces. The latter phenomenon, often termed "regional 
stochasticity" or the "Moran effect" after the Australian 



statistician who was credited with first recognizing this 
source of synchrony (Moran 1953), will result from cli- 
matic fluctuations impacting (often in a subtle way) the 
dynamics of populations; analyses of historical weather 
time series demonstrate that virtually all weather vari- 
ables are geographically synchronous. Furthermore, this 
climatic correlation declines with distance in a manner 
that often resembles the distance-dependent decline in 
population synchrony of diverse taxa (Koenig 2002; 
Liebhold et al. 2004). 

Substantial theory on spatially synchronous dynam- 
ics is centered on how oscillations driven .by density- 
dependent interactions can be spatially synchronized i s  
a result of dispersal or regionalized stochastic forcing 
(Royama 1992; Ranta et al. 199.5; Kendall et al. 2000; 
Royama 2005). Moran (1953) used a stochastic second- 
order autoregressive model to represent local population 
dynamics and showed that any spatial correlation in 
stochastic forcing would result in synchronization of the 
dynamics of spatially disjunct populations. In detail, 
Moran (I 953) showed that whenever local dynamics are 
linear (or 'log-linear') then the synchrony in dynamics 
would equal the correlation in the stochastic forcing. A 
key assumption in his analysis was that the density- 
dependent processes affecting local population grow;h 
are identical among the spatially disjunct populations. 
Such an assumption is inherent in many of the recent 
investigations of the synchronizing effects of regional- 
ized stochasticity as well as dispersal (Ranta et al. 1995; 
Kendall et al. 2000; Cazelles and Boudjema 2001). 
However, paralleling the theoretical and empirical 
inquiries into population synchrony, there are recent 
studies documenting substantial geographical variation 
in density-dependent processes (Saitoh et al. 1998; Wil- 
liams and Liebhold 2000; Tkadlec and Stenseth 2001). 
Geographic variation in density-dependence will usually 
result in geographic variation in dynamics, particularly 
with respect to intensity of outbreaks and periodicity 
(Henttonen et al. 1992; Bjrarnstad et al. 1998). These 
differences in periodicity and dynamics may be expected 
to affect the tendency of populations to "phase lock" 
(Rosenblum et al. 1996; Blasius and Stone 2000). As a 
result, such geographical variability may dramatically 
affect synchronization. Blasius et al. (1999), using a tri- 
trophic model of multiple patches coupled via dispersal, 
showed that even in the presence of geographical vari- 
ation in model parameters, synchronization may still 
occur but they did not explore the extent to which this 
geographical variation impacted synchronization. 

Motivated by Peltonen et al.'s (2002) analysis of 
spatial variation in gypsy moth dynamics, we investi- 
gated how geographical variation in density-dependence 
impacts spatial synchrony. First, we illustrate geo- 
graphical variation in density-dependence using histori- 
cal data on gypsy moth, Lymantria dispar, outbreaks in 
North America. Next we use theoretical models to ex- 
plore how variation in density-dependence will mould 
the synchronizing effects of dispersal and regionalized 
stochastic forcing. 

A simple model 

We used a stochastic second-order log-linear model to 
represent population dynamics. Although the dynamics 
of most populations are inherently nonlinear (Turchin 
2003), log-linear models often accurately approximate 
the stochastic dynamics of many populations (Rough- 
garden 1975). The model is of the same family as the 
model that Moran (1953) introduced to discuss syn- 
chronization via regional stochasticity [and this class has 
recently been used to study synchronization via dispersal 
(e.g., Barbour 1990; Kendall et al. 2000)l. Within this 
formulation, the dynamics of two populations whose 
densities in year t are represented by X, and Y,  will be 
given by: 

where E,,~ and E ~ , ~  are random normal deviates with 
means of zero and standard deviations ax and ay, 
respectively. For log-transformed values, these dynamics 
translate to the paired second-order autoregressive 
model: 

where x=In(X), y=In(T), a l=cx l+ l ,  az=cx2, b l = P 1 +  1 
and b2=P2. The parameters a1 (or bl) and a2 (or b2) 
represent the strength of direct (first-order) and delayed 
(second-order) density-dependent effects on population 
1 (or population 2). The first function in Eq. 2 can be 
rearranged as: 

That is, the change in population 1's density, R,,,, is 
linearly related to the log of population density in the 
current (direct density-dependence) and previous (de- 
layed density-dependence) generations. This second- 
order model has been widely used as an approximation 
of the oscillatory dynamics of a variety of taxa and is 
known to embrace a diversity of behaviors ranging from 
periodic oscillations to random walks, etc. (Royama 
1 992). Figure 1 a maps the dynamics of the second-order 
stochastic model under various parameter values 
[parameters outside of the triangle result in divergent 
dynamics (Royama 1992)l. Parameter values falling 
within the upper portion of the triangle result in boun- 
ded random-walk dynamics. Inside the arch within the 
lower portion of the triangle, the dynamics will be 
periodic (in the presence of stochastic excitation). 

Geographical variation in gypsy moth dynamics 

The gypsy moth, L. dispar, is a leaf-feeding insect, native 
to most of temperate Europe and Asia but introduced in 



North America. Throughout much of its range, gypsy 
moth populations exhibit episodic outbreaks; previous 
analyses indicate a statistical tendency for either a 10- or 
5-year periodicity (Johnson et al. 2005, 2006). Further- 
more, outbreaks are partially synchronized throughout 
North America (Williams and Liebhold 1995b; Peltonen 
et al. 2002). We fit the second-order log-linear (autore- 
gressive) model to 150 geographically disjunct gypsy 
moth time series from the northeastern USA. The time 
series spanned the period 1975-2002 and represented the 
proportion of land area defoliated in 25x25 km cells. 
The details of time-series construction from annual 
aerial survey maps are given in Peltonen et al. (2002). 
The 150 locations used here were the most frequently 
defoliated areas of the northeastern USA during the 
1975-2002 interval. 

Figure I b shows the estimated second-order model 
parameter values mapped in parameter space. Both the 
first- and second-order parameters exhibited consider- 
able variation. Most parameter values fell within the 
slow period oscillatory region of parameter space in 
concordance with the overall 10-year periodicity of these 
populations, but with significant spatial variation. 
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Fig. la, b Parameter space for the second-order linear model, 
Eq. 2. a Population behavior in various regions of the parameter 
space. Gray lines with arrows correspond to the range of parameters 
explored in simulations. b Parameter values fit to time series of 
yearly area defoliated by the gypsy moth in individual 25x25 km 
cells in the northeastern USA, coded by the dominant forest type 
classified in a map published by Eyre (1980) 
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Geographic mapping of parameter values (Fig. 2) indi- 
cated that values at nearby locations were similar [a 
detailed statistical analysis of this autocorrelation is 
presented in Peltonen et al. (2002)l. In Fig. lb, the 150 
time series are coded according to the dominant forest 
type in which the populations were located. These forest 
types were determined by overlaying time-series loca- 
tions with a forest-type group map (Eyre 1980). Though 
there was general overlap in the parameter values among 
the various forest types, there were some clear trends. 
For example, populations located in the white pine 

Fig. 2a, b Map showing geographical variation in second-order 
model parameters fit to time series of yearly area defoliated by the 
gypsy moth in individual 25x25 km cells in the northeastern US. 
a First-order parameter ( a l )  values. b Second-order parameter (az)  
values 



group tended to have low second-order parameter values 
and may consequently be expected to exhibit more 
strongly periodic dynamics. 

Synchrony and geographical variation 

Given the geographic variation in density-dependence, 
we ask what is the consequence of this variation on 
synchronization of populations? The North American 
gypsy moth has very limited dispersal capabilities (fe- 
males are flightless). It is therefore natural to consider 
regional stochasticity to be the crucial determinant of 
spatial synchrony (Williams and Liebhold 1995b; 
Peltonen et al. 2002). Given our time-series analyses, we 
inquire into how geographical variation in density- 
dependence affects synchronization through regionalized 
stochasticity. For generality, we also investigate syn- 
chronization through dispersal. 

We simulated the dynamics of two linked populations 
using Eq. 2. First we conducted a series of simulations in 
which the first-order parameters, al  and bl, were varied 
from -0.9 to 1.1 in increments of 0.4 (second-order 
parameters were held constant at a2 = b2 = -0.3). Then 
second-order parameters were varied from -0.7 to 0.3 in 
increments of 0.2 (first-order parameters were held 
constant at a l  = b1 = 0.6). These values encompass a 
portion of the parameter space that represents both 
periodic and random dynamics in the stochastic second- 
order model (Fig. la) and encompass the range of 
parameter values observed among North American 
gypsy moth populations (Fig. Ib). For each parameter 
combination, populations were initiated out-of-phase 
and then simulated for 500 generations. The stochastic 
term, E,, was simulated as a random normal deviate with 
mean = 0, standard deviation a = 0.5, and the correlation 
between E,,~ and cYjt fixed at 0.5. For such parameters, 
Moran's theorem provides the baseline correlation of 0.5 
between populations with identical dynamics. We used 
the final 100 generations of each simulation to calculate 
periodograms (to quantify patterns of periodicity) and 
measure synchrony, using the Pearson correlation coef- 
ficient, between the two series. Each parameter combi- 
nation was replicated 500 times, and results were 
summarized as averages across these replicates. 

As described above, simulations incorporated a Mo- 
ran effect in that E,,, and t;;, were correlated (50%). In 
order to simulate the effect of parameter variation when 
synchronization occurred via dispersal, we replicated all 
simulations with E,,~ and E ~ , ~  uncorrelated, but with a 
constant 10% transfer of individuals between popula- 

Obviously, when both populations were governed by 
identical parameter values (i.e., a l  == bl, the diagonal cells 
in online supplementary Fig. 1) their spectra were 
identical, and as parameters diverged, the two popula- 
tions exhibited divergent spectra and difTerent dominant 
frequencies. Also, when first-order parameters were 
identical, the synchrony of the two populations mirrored 
Moran's theorem (50%: the same level as correlation 
between E,,~ and E ~ , , )  but when the parameters increas- 
ingly differed, the level of synchrony eroded to zero 
(Fig. 3). 

The parameter map (Fig. la) shows how the second- 
order parameter is inversely related to the strength of the 
periodicity. The online supplementary material (Fig. 2) 
illustrates this. The synchrony was greatest when sec- 
ond-order parameters were identical (diagonal of Fig. 4) 
and diminished as parameter values diverged. However, 
this effect was not as strong as the effect of variation in 
first-order parameters. Thus, it appears that the Moran 
effect is more sensitive to variation in first-order 
parameters than it is to variation in second-order 
parameters. 

Interestingly, the impact of geographical variation in 
density-dependence on synchronization was quite dif- 
ferent for dispersal-driven systems. As for environmen- 
tal correlation, differences in first-order parameters led 
to spectra with divergent periods (online supplementary 
Fig. 3) and diminished synchrony (Fig. 5). However, 
this decrease in synchrony was much less than in pop- 
ulations synchronized via regional stochasticity (Fig. 3). 

tions each generation. Synchrony was always measured -0.5 0.0 0.5 2 .a 
directly following the dispersal step in simulations. 

As according to theory (Fig. Ia), first-order param- 
b, 

eter values (al, bl) greatly influenced the period of Fig. 3 Surface depicting synchrony (correlation) between time 

oscillations in the simulated series (online supplementary series of populations a and b simulated with various values of the 

Fig, Oscillations had dominant frequencies of first-order parameter in a second-order linear stochastic model 
(Eq. 2) under regional stochasticity. (Standard deviation of E, ,  

0-45 when al  = and .=0.5, correlation between E , ,  and E,, , was 50%; second-order .-*. I '. 
frequencies around 0.1 (period= 10) when a1 = 0.7. a2 = b2 = -0.8) 



Fig. 4 Surface depicting synchrony (correlation) between time 
series of populations a and b simulated with various values of the 
second-order parameter in a second-order linear stochastic model 
(Eq. 2) under regional stochasticity. (Standard deviation of E,, 

crZ0.5, correlation between E,,, and E,,, was 50%; first-order 
parameters a ,  = bk = 0.2) 

Comparing dispersal and regional stochasticity, the 
effect of variability in second-order parameters was even 
more divergent, Variability in second-order parameters 
had no discernable effect on synchronization via 

Fig. 5 Surface depicting synchrony (correlation) between time 
series of  populations a and b simulated with various values of the 
first-order parameter in a second-order linear stochastic model 
(Eq. 2) with 10% dispersal between populations. (Standard 
deviation of E, cr = 0.5, correlation between E,,, and E,,, was 0%; 
second-order parameters a2 = b2 = -0.8) 

dispersal (Fig. 6) even though it did dilute synchrony 
among populations subjected to the Moran effect 
(Fig. 4). The finding that populations with different 
second-order parameters were as synchronous as popu- 
lations with identical second-order parameters is sur- 
prising given that this causes conspicuous divergence of 
the spectra (online supplementary Fig. 4). 

While it is evident from Fig. 6 that differing second- 
order parameters did not cause two populations linked 
via dispersal to be less synchronous than when they had 
identical parameters, the figure does show that syn- 
chrony was greatest when both populations had either 
low or high second-order parameter values. This trend is 
also seen in extreme values of the first-order parameters 
(Fig. 5 ) ,  but it is never evident in populations synchro- 
nized via regional stochasticity (Figs. 3, 4). 

Discussion 

Synchronization of disjunct populations through dis- 
persal is well documented. So also is the "Moran effect," 
in which populations governed by identical density- 
dependent mechanisms will tend to synchronize when 
influenced by regionalized stochastic effects. However, in 
the real world, geographically disjunct populations are 
often regulated by "non-identical" patterns of density- 
dependent feedbacks: spatial heterogeneity is pervasive 
in natural environments, and this can often lead to 
geographic variation in intrinsic dynamics (Bjrarnstad 
et al. 1995, 1998; Tkadlec and Stenseth 2001). The effect 

Fig. 6 Surface depicting synchrony (correlation) between time 
series of populations a and b simulated with various values of the 
second-order parameter in a second-order linear stochastic model 
(Eq. 2) with 10% dispersal between populations. (Standard 
deviation of E ~ ,  CT= 0.5, correlation between E,,, and E,~, was 0%; 
first-order parameters a1 = bl = 0.2) 



on synchrony of such spatial variation is an area that 
clearly deserves more attention. 

The  gypsy moth populations discussed here exhibit 
marked geographical variation in dynamics. The varia- 
tion is  spatially autocorrelated (Peltonen et al. 2002) and 
associated-at least to some extent-with forest vege- 
tation (Fig. lb), testifying that observed variability is 
not simply the result of sampling error, but the result of 
habitat characteristics affecting interactions between the 
gypsy moth, its hosts, and/or natural enemies. A more 
extensive analysis of how gypsy moth dynamics are af- 
fected by habitat variation is discussed by Johnson 
(2006). 

Using computational models we found that differ- 
ences in density-dependent feed backs among popula- 
tions led to lower levels of synchrony than expected 
under Moran's theorem (Figs. 3, 4). Moreover, syn- 
chronization through the Moran effect appears to be 
more sensitive to variation in direct density-dependence 
(first-order parameters) than to variation in delayed 
density-dependence (second-order parameters). The 
first-order parameter is a determinant of the period of 
oscillations (as long as parameters are in the cyclic part 
of the parameter space), while the second-order 
parameter determines the strength of periodicity 
(Fig. la); thus, the finding that variability in first-order 
parameters more strongly dilutes synchronization than 
does variability in second-order parameters indicates 
that variability in oscillation period more strongly im- 
pacts synchronization than does variability in periodic- 
ity strength. 

Given the all-pervasive spatial autocorrelation in 
habitats and community compositions (Legendre 1993), 
nearby populations will tend to have similar density- 
dependent processes (Peltonen et al. 2002) (Fig. 2). As a 
consequence, we may expect greater heterogeneity-in- 
duced erosion of the Moran effect among more distantly 
located populations. Moreover, since climatic correla- 
tion tends to decline with distance (Koenig 2002), 
Moran's theorem alone predicts synchrony to decay 
with distance even in the absence of variation in density- 
dependence. The critical message here is that variation in 
density-dependence among populations should cause 
synchrony to decline more rapidly with distance than 
would be expected from environmental correlation 
alone, and that the details of this divergence depend 
critically on whether the geographic variation is in the 
direct or delayed feedbacks. This prediction was con- 
firmed in simulations incorporating variation in density- 
dependence using linear models fit to gypsy moth data 
(Peltonen et al. 2002). Our present simulations refine this 
prediction. 

Aanes et al. (2003) studied time series of three geo- 
graphically disjunct Svalbard reindeer populations and 
concluded that populations were synchronized via re- 
gional stochasticity; synchrony was diminished by geo- 
graphic variation in density-dependent dynamics, 
though they did not explicitly test for this. Ripa and Ives 
(2003), as part of a larger study of trophic interactions 

and synchronization via regional stochasticity, devel- 
oped equations that predict synchrony between two 
populations under a Moran effect, corrected for the ef- 
fect of variable first-order dynamics. They found that 
variability generally diluted synchronization; our simu- 
lations illustrate their conclusion and extend these rela- 
tionships to the second-order model. 

The simulations reported here indicate that there are 
both sirnilarities and important differences in the way 
variation in density-dependence affects synchronization 
via regionalized stochasticity versus dispersal. When 
direct density-dependence (as measured by first-order 
parameters of the linear model) varies between popu- 
lations, differences in the period of oscillations dilute 
synchronization due to stochasticity, and to a lesser 
extent, synchronization due to dispersal (Figs. 3, 5) .  
However, in the case of delayed density-dependence 
(measured by second-order parameters), variability can 
cause a slight decrease in synchronization due to re- 
gional stochasticity (Fig. 4), but variation does not 
appear to influence synchronization via dispersal 
(Fig. 6). 

Ripa (2000) explored how parameters of the second- 
order linear model affected synchronization induced by 
dispersal and found that that synchrony increased with 
increasing instability. Ripa (2000) also demonstrated 
that instability increases in the parameter space shown in 
Fig. l a  as one moves from the center of the triangle 
toward the margins. It follows from Ripa's (2000) find- 
ings that population instability can be expected to in- 
crease at extreme values of the parameter space that we 
explored (defined by the gray, arrowed lines in Fig, la). 
We confirmed this conclusion by calculating the domi- 
nant eigenvalues for each set of parameters as described 
by Royama (1992). Instability increases with the domi- 
nant eigenvalues (Yodzis 1989) and the higher dominant 
eigenvalues are at  the extreme values of al and a2 (online 
supplementary Fig. 5). These relationships, thus, explain 
our finding that synchrony increased with extreme val- 
ues of either al or a2 in populations linked via dispersal 
(Figs. 5, 6). 

The simulations presented here were all based on log- 
linear population models. However, most real popula- 
tions are probably inherently nonlinear (Turchin 2003; 
Royama 2005). Lande et al. (1999) used a stochastic 
nonlinear model to show that synchrony was propor- 
tional to the ratio of dispersal rate to the strength of 
density-dependence, though they only considered direct 
density-dependent effects. Ranta et al. (1997) compared 
synchronization caused by regional stochasticity under a 
first-order stochastic Ricker model with a similar sec- 
ond-order model, and they found that the second-order 
model generally produced greater levels of synchrony 
though they did not explore a large range of parameter 
values. Subsequently Ripa (2000) used linearized 
stochastic models to arrive at the opposite conclusion: 
the order of density-dependence had little effect on 
synchronization. Engen et al. (2002) used a logistic 
model to show that variation in carrying capacity 



generally diluted synchrony caused by either regional 
stochasticity or by dispersal. 

Royama (2005) recently conducted an extensive 
analysis of the effect of regional stochasticity on syn- 
chronization in another type of non-linear model. 
Royama's model was based upon the standard second- 
order linear model but introduced nonlinearity via a 
constraint on the net reproductive rate. He found that 
populations governed by parameter combinations that 
produce population convergence to equilibrium values 
tended to exhibit levels of synchrony close to those 
predicted by Moran (1953) for linear models. However 
when his nonlinear model produced oscillating popula- 
tions, synchrony was greatly diminished or non-existent. 
While Royama (2005) did not specifically address vari- 
ation in density dynamics among populations, he did 
consider variation among populations in the magnitude 
of the regionally stochastic effect; such variation can 
greatly dilute synchronization. 

In addition to the linear model described above, we 
conducted limited simulations using a stochastic non- 
linear Ricker-like second-order model. Simulations 
indicated that both first-order and second-order param- 
eters influenced both oscillation period and the strength 
of periodicity so it was less obvious how to separate the 
effect of each. Also, we found the associations between 
degree of periodicity and degree of synchronization were 
opposite for first- and second-order parameters. Con- 
sidering these results, as well as similar studies described 
from the literature (op, cit.), it would appear that there 
remains considerable uncertainty about how differing 
types of density-dependence affect synchronization in 
nonlinear systems (Grenfell et al. 1998; Bj~rnstad 2000). 
Different approaches to modeling nonlinear popuIatioii 
behavior seem to produce contradictory results; the 
ultimate resolution to this question may necessitate 
empirical or experimental approaches. 

Any comparison of first-order effects with second- 
order effects is only relevant if we can ascribe these ef- 
fects to specific types of biotic interactions. The types of 
interactions that can cause first-order effects include 
competition, generalist enemies, resource depletion, etc. 
The types of interactions leading to second-order effects 
are perhaps more difficult to identify because they in- 
clude both specific interactions with a clear time lag 
(e.g., the numerical response of a specialist predator, 
maternal effects), as well as a variety of interactions that 
are rnore complex (Royama 1992; Williams and 
Liebhold 1995a) Thus, while it is easy to document 
geographical variability in first- and second-order den- 
sity-dependence from time series, deducing the reasons 
for this variation requires detailed observation or field 
experimentation. 

In conclusion, the results here demonstrate that 
geographical variation in density-dependence should be 
considered when attempting to explain observed 
patterns of spatial synchrony in field populations. 
Clearly, synchrony is influenced by the degree of corre- 
lation in stochastic effects and by geographical patterns 

of dispersal. But perhaps more interestingly, the type of 
density-dependent effects, especially the extent to which 
they produce periodic behavior, and the manner in 
which these effects vary geographically, will also inAu- 
ence patterns. 
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