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Our understanding of the dynamics of urban 
ecosystems can be enhanced by examining the 
multidimensional social characteristics of house- 
holds. To this end, we investigated the relative 
significance of three social theories of household 
structure-population, lifestyle behavior, and so- 
cial stratification-to the distribution of vegetation 
cover in Baltimore, Maryland, USA. Our ability to 
assess the relative significance of these theories 
depended on fine-scale social and biophysical 
data. We distinguished among vegetation in three 
areas hypothesized to be differentially linked to 
these social theories: riparian areas, private lands, 
and public rights-of-way (PROWS). Using a mul- 
timodel inferential approach, we found that vari- 
ation of vegetation cover in riparian areas was not 
explained by any of the three theories and that 
lifestyle behavior was the best predictor of vege- 

tation cover on private lands. Surprisingly, life- 
style behavior was also the best predictor of 
vegetation cover in PROWs. The inclusion of a 
quadratic term for housing age significantly im- 
proved the models. Based on these research re- 
sults, we question the exclusive use of income and 
education as the standard variables to explain 
variations in vegetation cover in urban ecological 
systems. We further suggest that the management 
of urban vegetation can be improved by devel- 
oping environmental marketing strategies that 
address the underlying household motivations for 
and participation in local land management. 

Key words: urban ecology; population; house- 
hold; social stratification; lifestyle behavior; vege- 
tation; Baltimore; long term ecological research 
(LTER) . 

INTRODUCTION implications for biodiversity and the consumption 
of natural resources. Oldfield and others (2003) 

Recent ecological studies have the noted a relationship between household participa- 
importance of households and their behavior to the tion in outdoor recreation and household land 
biophysical environment. Liu and (2003) management practices. Implied by these ecological 
and ICeilrnan (2003) found that the number of results is the question of whether households are 
households increases much faster than the total generic and unidimensional in the ecological roles 
population, and this rapid increase has they play, or whether they differ various 
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dimensions that affect their ecological behaviors. 

1 June 2006. Although the shift in emphasis from total popula- 
*Corresponding author; e-mail: rngrove@fs.fed.us tion size to households as a unit of analysis is 
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significant and positive, we propose that a multi- 
dimensional characterization of households would 
enable a more complete understanding of the 
motivations, pathways, impacts, and responses of 
households to ecological change. 

Extensive social science research on household 
behavior clearly indicates that households are 
multidimensional. For instance, households have 
been characterized in terms of social class and 
lifestyle (Blumin 1989; Higley 1995), reference 
groups (Merton and Kitt 1950; Shibutani 1955; 
Singer 198 1 ), and consumer activity (Veblen 198 1 
(18991; Horowitz 1985; Schor and Holt 2000; Matt 
2003). These characteristics may explain variations 
among households in the types of employment 
households seek, what they choose to buy, where 
they choose to live, how they organize through 
participation in formal and informal associations, 
and how they spend their leisure time. 

Burch and DeLuca (1984) have shown how 
household characteristics such as housing and set- 
tlement preferences, household size and life stage, 
cultural traditions, access to power and knowledge,. 
and group identity and status can influence social 
and biophysical structures and functions. These 
interactions can be described and examined in a 
human ecosystem context (for example, Machlis 
and others 1997; Redman and others 2004). As 
human ecosystem research is applied to urban 
areas, there is a growing need to answer the 
question of whether the usual suspects-popula- 
tion density, income and education, and ethnicity 
(Whitney and Adams 1980; Palmer 1984; Grove 
and Burch 1997; Dow 2000; Vogt and others 2002; 
Hope and others 2003)-are adequate as explana- 
tory social variables (Grove and others 2005). 

This question is particularly relevant in light of a 
growing recognition among researchers and man- 
agers that there is a wide diversity in the targets, 
goals, and agents of management (Svendsen 2005). 
For example, the set of targets for urban forestry 
management includes such areas as stream valleys, 
large protected parks, abandoned industrial areas, 
neighborhoods, and public rights-of-way (PROWs). 
The set of management agents is also broad and is 
characterized by varying motivations and capaci- 
ties; this set includes local and state agencies, 
nonprofit organizations, businesses, and home- 
owners (Grove and others 2005). Government 
agencies and environmental nonprofit organiza- 
tions increasingly seek to understand the links be- 
tween the distribution of woody and grass 
vegetation associated with various urban forestry 
types and different scales of management. In this 
context, more attention is being paid to the ques- 

tions of why and how landowners do what they do 
on their property and in their neighborhood 
(Burch and Grove 1993; Vogt and others 2002; 
Grove and others 2005). 

Urban vegetation performs a variety of important 
ecosystem functions. Amelioration of urban mi- 
croclimates, particularly temperature extremes, 
and the modification of atmospheric humidity re- 
sult from vegetation cover. Similarly, albedo and 
radiation loads can be reduced by vegetation 
(Sukopp and Werner 1982; Oke 1990). Woody 
plants of appropriate height and location can re- 
duce heating and air conditioning requirements 
through their radiative properties and ability to 
slow winds (Nowak 1994a). Vegetation can absorb 
particulate pollution from the atmosphere and re- 
duce nonpoint water pollution (Randolph 2004). It 
can stabilize stream sides, mitigate storm water 
flow and improve its quality, and convert nitrate 
pollution to harmless gaseous nitrogen. Vegetated 
surfaces can contribute to the perviousness of ur- 
ban areas and enhance the recharge of water tables. 
Plants in urban environments may contribute to 
carbon sequestration and hence play an underap- 
preciated role in global carbon budgets (Nowak 
1994b; Jenkins and Riemann 2003). Vegetation 
also provides habitat for animals in metropolitan 
settings (Breuste and others 1998). 

To begin to understand the link between urban 
vegetation cover and different levels of manage- 
ment, we examined the distribution of grass and 
tree cover in residential areas on the basis of their 
location in riparian areas, private lands, and 
PROWs. We applied three theories of household 
behavior-population, lifestyle behavior, and social 
stratification-to assess the relative significance of 
three levels of management-individual, house- 
hold, and municipal-to the distribution of vege- 
tation cover in these areas. 

There are distinct mechanisms hypothesized to 
link population, lifestyle behavior theory, and so- 
cial stratification to vegetation cover in riparian 
areas, private lands, and PROWs. Social science 
research has focused on theoretical explanations 
that consider either population density (see 
Agarwal and others 2002 for a comprehensive re- 
view in terms of land-use/land-cover models) or 
social stratification (Burch 1976; Choldin 1984; 
Logan and Molotch 1987; Grove 1996) as the pri- 
mary driver of the distribution of vegetation in 
urban ecological systems. Population density is 
presumed to drive vegetative change in that, as an 
area is settled with more people, flora and fauna 
are displaced directly by roads and buildings and 
indirectly by pollution as the by-product of human 
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activities. Social stratification theory has been used 
to explain vegetative patterns in that the relative 
power or influence that different urban neighbor- 
hoods have over public and private investments at 
the municipal level produces an inequitable distri- 
bution of green investments in the city. Wealthy 
residential neighborhoods are more likely to be 
characterized by (a) more homeowners and fewer 
renters and absentee landowners; (b) residents who 
are able to migrate to more desirable and healthy 
areas, who were effective at community organiz- 
ing, and who are willing to become involved in 
Iocal politics; and (c) elites who have differential 
access to government control over public invest- 
ment, pollution control, and land-use decision 
making. In contrast, low-income and heavily pop- 
ulated minority areas are more likely to (a) be lo- 
cated in or next to polluted areas, (b) be unable to 
migrate to more desirable and healthy areas, and 
(c) have fewer human resources in terms of lead- 
ership, knowledge, political and legal skills, and 
communication networks to manipulate existing 
power structures (Logan and Molotch 1987). 

A number of studies have used measures of in- 
come and education to examine the relationship 
between social stratification and vegetation struc- 
ture (Whitney and Adams 1980; Palmer 1984; 
Grove 1996; Grove and Burch 1997; Dow 2000; 
Vogt and others 2002; Hope and others 2003; 
Martin and others 2004). Hope and others (2003) 
and Martin and others (2004) have proposed a 
"luxury effect" to explain the relationship between 
socioeconomic status and urban vegetation. This 
approach is limited by the underlying premise that 
there is a widespread and singular conception of 
luxury, regardless of a household's demography, 
ethnicity, culture, income, or education. Wide- 
spread examples of consumer market fragrnenta- 
tion and diverse lifestyle preferences make it clear 
that this is not the case (Solomon 1999; Weiss 
2000; Holbrook 200 1 ) . 

The concept of a luxury effect is relevant to the 
third social theory we discuss: lifestyle behaviors 
and an ecology of prestige (Grove and others 2004). 
Social differentiation among urban neighborhoods 
frequently becomes manifest in terms of the dif- 
ferent lifestyle choices that households make and 
how those choices change over time. Some of the 
characteristics that affect the choices households 
make about where to locate include socioeconomic 
status, family size and life stage, and ethnicity 
(Timrns 197 1; Knox 1994; Short 1996; Gottdiener 
and Hutchinson 2001; Kaplan and others 2004). 
Building on this approach to lifestyle choices and 
neighborhood differentiation, we have proposed 

- - - -. - - - 

that many environmental management decisions 
and expenditures on environmentally relevant 
goods and services are motivated by group identity 
and the perception of social status associated with 
different lifestyles (Grove and Burch 2002; Grove 
and others 2004, 2006a,b forthcoming; Law and 
others 2004). In this case, a household's land 
management decisions are influenced by its desire 
to uphold the prestige of its community and out- 
wardly express its membership in a given lifestyle 
group. From this perspective, housing and yard 
styles, green grass, and tree and shrub plantings are 
status symbols, reflecting the different types of 
neighborhoods to which people belong (Jenkins 
1994; Scotts 1998; Robbins and others 2001; Rob- 
bins and Sharp 2003). These status symbols are not 
luxuries and vary among different lifestyle groups. 

A critical element that may be missing from each 
of these social theories is a temporal component. 
Researchers have found that housing age is signif- 
icantly associated with plant species composition 
(Whitney and Adams 1980), diversity (Hope and 
others 2003), abundance (Martin and others 2004), 
and lawn fertilizer applications (Law and others 
2004). Researchers have also found a temporal lag 
between changes in neighborhood socioeconomic 
status and vegetation cover (Grove 1996; Vogt and 
others 2002). However, some urban foresters have 
disputed the significance of housing age, particu- 
larly in the case of older housing; indeed, they have 
described numerous examples of similar housing 
age and extreme differences in vegetation cover. 
They have also noted the absence of empirical 
studies of urban tree growth and mortality rates 
and successional dynamics for different types of 
urban forest management (Smith 2004; M. F. 
Glavin, personal communication). 

A second critical element that may be missing 
from each of these social theories is a biocomplexity 
perspective-spatial, temporal, and organizational 
(sensu Pickett and others 2005)-particularly an 
awareness of organizational complexity. Organiza- 
tional complexity, expressed spatially as the pro- 
gression from within-unit processes to boundary 
regulation, cross-unit regulation, and functional 
patch dynamics, may be particularly important to 
this research because it assists in identifying and 
associating different levels of management with 
corresponding urban forest management types and 
social theory (Figure I).  Specifically, different lev- 
els of social organization may correspond to dif- 
ferent vegetation types and social theories (Grove 
and Burch 1997; Grimm and others 2000; Vogt and 
others 2002). Figure 1 illustrates this potential 
organizational complexity, with riparian areas at 



Urban Households and Distribution of Vegetation 581 

Figure 1. Hypothesized model 
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the individual level associated with population data, particularly cadastral information, have more 
theory, private lands at the household level asso- often than not been maintained by local govern- 
ciated with lifestyle behavior theory, and PROWS at ments in hard-copy format. Recent advances in 
the neighborhood level associated with social remote sensing and the widespread adoption of 
stratification theory. In other words, at different geographic information systems (GIs) by federal, 
levels of social organization, different social pro- state, and local governments have greatly increased 
cesses may determine the distribution of vegetation the availability of high-resolution geospatial data. 
cover. Further, by conceiving of the system as Vegetation can be derived from high-resolution 
organizationally complex, we can examine how imagery and combined with digital parcel data, 
different social theories may be complementary which includes property boundaries for each parcel, 
rather than conflicting. This is important because it 
can provide a foundation for the generation of a 
new human ecosystem theory describing the re- 
ciprocal relationships among levels of organization 
(Grove and others 2005; Pickett and others 2005). 

The empirical ability to examine and compare the 
relative significance of these three social theo- 
ries-population, lifestyle behavior, and social 
stratification-associated with vegetation cover in 
riparian areas, private lands, and PROWs is new. 
Until recently, only relatively coarse-resolution 
geospatial data have been available to carry out 
such analyses. Regional vegetation-cover data have 
typically been derived from 30 m resolution Landsat 
Thematic Mapper (TM) satellite imagery. Socio- 
economic analyses have normally been carried out 
at the level of a US census tract, in which a single 

and digital surface-water data to distinguish among 
vegetation in riparian areas, private lands, and 
PROWs. Figure 2 compares and contrasts the types 
of analyses that can be done with coarse-resolution 
data from Landsat-derived vegetation and US cen- 
sus block groups and high-resolution data from 
IKONOS-derived vegetation and parcel boundaries. 

Research Question and Hypotheses 
Based upon our summary of recent developments 
in theory and data, we ask, What is the relative sig- 
nificance of population, lifestyle behavior, and social 
stratification theories to the distribution of vegetation 
cover--grass and trees-in riparian, private lands, and 
PROWs in urban ecological systems? We propose four 
hypotheses: 

tract contains approximately 2,500-8,000 persons, HI Population. Population density will be most sig- 
or a US census block group, which contains be- nificant to the distribution of vegetation cover in 
tween 200 and 400 households. Other geospatial riparian areas. This reflects the idea that only 
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plare 2. Comparison of 
wbWely coarse-scale 
C1:100,000) and h e -  
scPLe (1:10,000) 
vegetation analysis that 
can be performed using 
Landsat-(1) and 
IKONOS-(2) derived 
vegetation data. Tbe 
relatively coarse 
resolution of Landsat, at 
30 m (la, lb ) ,  only 
allows for vegetation 
summation at the block 
group level ( l c ) .  At 1 m, 
IKONOS satellite 
imagery (2a) provides a 
much more precise data 
source from which to 
derive vegetation (2b). 
When combined with 
parcel data, private land 
(2c) and pubbc right of 
way (2d) vegetation can 
be distinguished. 
IKONOS imagery 
courtesy of Space 
Imaging, LLC. 

recently have public agencies, community cover in PROWS. Public agencies are legally 
groups, and private homeowners identified responsible for the management of vegetation in 
vegetation management in urban riparian areas PROWS. The distribution of vegetation will be 
as an important issue (Maryland Porest Service inequitable, reflecting the relative influence that 
2004). Thus, the direct and indirect settlement neighborhoods have over municipal investment 
effects associated with population density will be decisions. 
the most significant driver of vegetation cover in I& Housing Age. Housing age will be significant to the 
riparian areas. distribution of vegetation cover in riparian areas, 

Hz Lifistyle Behavior. Lifestyle behavior will be most private lands, and PROWS. Land cover is dra- 
significant to the distribution of vegetation cover matically altered when new homes are built in 
on private lands. A household's land manage- urban areas. Vegetation cover develops over time 
ment decisions are influenced by its desire to and reflects the time that has elapsed since it was 
uphold the prestige of the community and ex- established (Whitney and Adams 1980; Hope and 
press its membership in a given lifestyle group. others 2003). Because of disagreements among 
This group can be interpreted as a manifestation researchers (Whitney and Adams 1980; Hope and 
of the household's placement in a lifestyle group, others 2003) and urban forestry professionals (M. 
representing its group identity and social status. P. Galvin, personal communication; Smith 2004), 

H, Social Stratiflccttion. Social stratification will be we propose that the relationship is nonlinear, 
most significant to the distribution of vegetation. with housing age being more significant when 
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homes are new and less significant when homes 
are old. 

Site Description 
Urban ecosystems are strikingly heterogeneous and 
scale dependent (Grirnrn and others 2000; Pickett 
and others 2001). Baltimore, Maryland (lower 
left: 39'1 1'31"N, 76P042'38"W; upper right: 
39O22'30"N, 76O31'42"W), houses 614,000 people 
in 276 neighborhoods (Figure 3). In 2000, the City 
of Baltimore had 258,518 households and 300,477 
household building units, with an average of 2.5 
persons per household. The city includes a variety 
of housing types, of which 14.8% are single-family 
detached units, 28.4% are multifamily units, and 
55.6% are town homes. The median age of these 
housing units as summarized by the US census 
block group, is 58 years, with a median low of 4 
years and a median high of 64 years. The city has 
experienced extensive demographic and economic 
changes over the past 50 years, with its population 
declining from nearly 1.2 million in the 1950s to its 
current level (Burch and Grove 1993). At the same 
time, the Baltimore metropolitan region has had 

one of the highest rates of deforestation in the 
northeastern United States because of urban sprawl 
(Horton 1987). Located in the deciduous forest 
biome, on the banks of the Chesapeake Bay, the 
nation's largest estuary, Baltimore City is drained 
by three major streams and a direct harbor wa- 
tershed. 

Databases 
Categorization of Neig-hborhoods: Popularion, Life- 

style Behavior, and Soda2 Stratifidon. Neighbor- 
hood measures of population, lifestyle behavior, 
and social stratification are based on the Claritas 
PRIZM (potential rating index for zipcode markets) 
categorization system, which was developed by 
demographers and sociologists for market research 
(Weiss 1988, 2000; Holbrook 2001; Grove and 
others, 2006a, forthcoming). There are two primary 
goals of the PRaM classification system. First is to 
categorize the 250 million people of the American 
population and their urban, suburban, and rural 
neighborhoods into lifestyle clusters using census 
data about household education, income, oecupa- 
tion, race/ancestry, family composition, and hous- 
ing. Second is to associate these clusters with 
characteristic household tastes and attitudes using 
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additional data such as market research surveys, 
public opinion polls, and point-of-purchase receipts 
(Weiss 1988, 2000). 

Claritas uses factor analysis and US census data 
to generate several group measures. This process is 
also known as "social area analysis", an urban 
studies method employing factor analysis (Bell and 
Newby 1976; Johnston 1976; Murdie 1976; Hamm 
1982). Claritas has identified six primary factors 
that expIain neighborhood variance: social rank 
(for example, income, education), household (for 
example, life stage, size), mobility (for example, 
length of residence), ethnicity (for example, race, 
foreign versus U.S. born), urbanization (for exam- 
ple, population and housing density), and housing 
(for example, owner versus renter status, home 
values) (Lang and others 1997; Claritas 1999). The 
PRIZM categorization system has three levels of 
aggregation: 5, 15, or 62 categories. The five-group 
categorization is arrayed along an axis of urbani- 
zation. Disaggregating from 5 to 15 categories adds 
a second axis: socioeconomic status. The 62-group 
categorization disaggregates the socioeconomic 
status axis into a lifestyle categorization with 
components including household composition, 
mobility, ethnicity, and housing characteristics 
(Claritas 1999). The three PRIZM aggrega- 
tions-urbanization, socioeconomic status, and 
lifestyle-correspond, respectively, to population 
density, social stratification, and lifestyle behav- 
ior-the three theories we suggest influence the 
distribution of vegetation cover. To date, PRIZM 
has been used in several studies of urban vegeta- 
tion, including Martin and others (2004), Grove 
and others (2006). 

A GIs data layer of PRIZM categories was created 
for Baltimore City by joining US Census Block 
Group boundaries data from geographic data 
technology's (GDT) dynamap census data with a 
PRIZM classification for each block group from the 
Claritas 2003 database (http:/lwww.claritas.com). 
Each of the 710 block groups was assigned a unique 
PRIZM category. The GDT census boundaries were 
used instead of the US Census Bureau and Claritas 
boundaries because of their higher positional 
accuracy when compared with 1 : 12,000-scale 
KONOS imagery. The Baltimore City boundary 
derived from the GDT census data served as the 
common boundary for all geaspatial operations. 

Median House Age. Median house age for each 
block group was obtained from the Geolytics census 
2000 attribute database (Geolytics 2000), and each 
block group was assigned a median house age va- 
lue. Land-use history was not included in this 
analysis because the current land use in Baltimore 

City was in place or had been converted from 
agricultural use by the early 1900s (Besley 1914, 
1916). 

Parcel Boundaries, Property parcel boundaries 
were obtained from the City of Baltimore. These 
parcel boundaries, converted to digital format from 
the city's cadastral maps, were current as of July 
2001. Although the City of Baltimore does not 
document the accuracy of the parcel data set, the 
parcel polygons were overlaid on top of 1 : 12,000- 
scale l m  IKONOS imagery. Fifty parcel/PROW 
boundaries that could be seen clearly on the 
IKONOS imagery were compared to the parcel 
polygons. A mean difference of approximately * 2 
pixels (2 m) between the two data sets was noted. 
The BaItimore city parcel data did not have the 
same geographic extent as the block group data, 
with parcels either extending across the city's bor- 
der or falling short of it. Where city parcel bound- 
aries fell short of the city boundary, parcel data 
from Baltimore County were appended to the city 
data. 

Vegetation Data. The vegetation data used in 
this study came from the strategic urban forests 
assessment (SUFA) for Baltimore City (Irani and 
Galvin 2003). Four land-cover classes were derived 
from 1:12,000 scale IKONOS satellite imagery 
(Space Imaging, LLC) acquired in October 2001: 
other (developed), grass, forest, and water. After 
fusing the 1 m panchromatic imagery with the 4 m 
imagery to create a pan-sharpened 1 m multispec- 
tral image, Irani and Galvin (2003) applied a series 
of algorithms to extract land cover. At the time of 
this publication, no information was available on 
the accuracy of the classification. However, a 
qualitative assessment of the accuracy indicated 
that there was generally excellent discrimination 
between the other, vegetation (forest and grass), 
and water classes. 

Hydrologic Data. Hydrologic data were obtained 
from two sources: (a) 1:24,000-scale hydrologic 
data from the United States Geological Survey 
(USGS) and (b) water features depicted in the 
SUFA LULC data set (see above). A comparison of 
the two data sets with 2001 1 m pan-sharpened 
multispectral IKONOS imagery indicated that the 
SUFA LULC data set provided a more precise 
delineation of water feature boundaries (stream, 
lake, and harbor banks). However, many lower- 
order streams that exist in the USGS data set were 
not present in the SUFA data set. In an effort to 
create the optimal water data set, water-feature 
boundaries from the SUFA data set were combined 
with the stream centerlines from the USGS data set. 
Using the IKONOS imagery as the reference data 
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set, editing was performed to ensure that all 
streams were connected and to correct positional 
errors that existed in the USGS stream centerlines 
data set. Finally, water features were assigned one 
of the following codes: stream centerline, stream 
shoreline, pondllake shoreline, or harbor 
shoreline. 

Geographical Analyses 

Segmentation of Vegetation and Characterriation of 
US Census Block Groups. Riparian vegetation, pri- 
vate-land vegetation, and PROW vegetation were 
each summarized at the block group level following 
a three-step process: (a) thematic polygon (riparian 
area, private land, PROW) boundaries were ex- 
tracted and created from source data, (b) the the- 
matic polygon boundaries were combined with 
forest and grass vegetation polygons from Mary- 
land Dept. of Natural resources (DNR's) SUFA 
vegetation layer, and (3) thematic boundary area 
and vegetation area were summarized and nor- 
malized at the block group level. 

Four separate riparian buffer analyses were car- 
ried out: (a) 100 ft (30.5 m) buffer around all 
streams (centerlines and shorelines), (b) 100 ft 
buffer around all water features, (c) 300 ft (91.5 m) 
buffer around all streams, and (d) 300 ft buffer 
around all water features. The choice of buffer size 
was based on riparian guidelines for water quality 
(100 ft) and wildlife habitat (300 ft) of streams 
established by the State of Maryland (Goetz and 
others 2003; Maryland Forest service 2004; 
A. Hairston-Strang, personal communication 2004; 
M. F. Galvin, personal communication). Non- 
stream riparian areas were included to examine 
their significance to the results. Each of the four 
buffered layers was individually intersected with 
both the forest and grass polygons from the SUFA 
LULC data set and the block group boundaries. The 
result of this intersection was a layer in which only 
those vegetation polygons that fell within the 
buffer remained, each of which was assigned a 
block group identifier. This enabled for the sum- 
mation of riparian forest area and riparian grass 
area by block group for each of the four methods. 
A parallel analysis was done to compute the 
riparian area for each block group. Each of the four 
riparian buffer layers was intersected with the 
block group layer, resulting in a layer consisting 
only of riparian polygons, each polygon assigned to 
one block group. The riparian area was then 
summarized for each block group. Finally, riparian 
forest area and riparian grass area were normalized 
to percentages at the block group level by dividing 

by the total area of riparian land within the block 
group. 

PROW land was extracted from the parcel 
boundary data set by identifying all "nonparcel" 
polygons. As implied, no parcels exist in "nonpar- 
cel" areas. In Baltimore these nonparcel areas 
correspond to roads and the rights-of-way along 
roads. Railroad and transmission lines parcels are 
privately owned and not considered PROW land. 
Topology rules were created to detect nonparcel 
areas, create new polygons from the gaps in the 
data set, then assign these polygons to the PROW 
category. As was done with the riparian analysis, 
the PROW layer was intersected with both the 
forest and grass polygons and the block group 
boundaries in one step and only the block group 
boundaries in another. PROW forest and grass 
areas were normalized at the block group level by 
dividing by the total area of PROW land within 
each block group. 

For the private-land vegetation summarization, 
the parcel boundaries were first linked to the 2003 
Maryland property view assessment and taxation 
database through a relational join to obtain land- 
use codes. Only those parcels with land-use codes 
aside from "exempt" and "exempt commercial" 
were retained for the private-land analysis. 
Approximately 70% of Baltimore City's parcel land 
fell into the "private land" category. However, the 
amount of exempt and exempt commercial land 
varied at the block group level, with the majority 
of block groups' parcel land being less than 
30% exemptlexempt commercial (median = 16%, 
mean = 23%). As with the two previous analyses, 
the private-lands layer was intersected with the 
forest and grass polygons from the SUFA layer and 
the block group boundaries in one step and only 
the block group boundaries in another. The forest 
and grass private-land areas were normalized at the 
block group level by dividing by the total private 
land area in the block group. 

A summary of the area occupied by riparian 
areas, private lands, and PROWS is presented in 
Table 1. On average, riparian land occupied less 
than 0.1 % of the block group area, PROW land 
19%, and private land 55%. Due to errors in the 
parcel data, private land was overestimated and 
PROW land underestimated for three block groups 
in the city that occupied less than 1 % of the total 
area under study. These three block groups were 
retained in the analyses. A total of 710 block groups 
were used in the analyses. Riparian areas were 
included in 169 block groups based on 100 ft buf- 
fers around streams only, in 228 block groups using 
a 300-ft buffer around all water features; 707 block 
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Table 1. Summary of Area Statistics for Block Groups along with Riparian Areas, Private Land, and Public 
Right-of-way (PROW) 

- - -- 

Area (ha) 

Unit of Analysis Mean SD Min. Max. 

Block group 
Riparian areas 
Private lands 
PROWs 

groups contained PROWs; and 710 block groups 
had private lands present. 

Statistical Analyses. A series of 28 logistic 
regressions were performed and compared to 
determine which combinations of PRIZM catego- 
rization ( 5 ,  15, or 62 categories) and median house 
age best predicted variation in each of four re- 
sponse variables (percent PROW tree and grass 
cover and percent private tree and grass cover). 
Twenty-four additional logistic regressions were 
performed and compared to determine which 
PRlZM categorization best explained variation in 
each of eight response variables related to riparian 
vegetation. In a logistic regression, a response var- 
iable that is binary or a rate ranging between 0 and 
1 is predicted as a function of a series of continuous 
or discrete predictor variables. Logistic regression 
uses a maximum-likelihood estimator that converts 
the dependent variable into a Iogit variable, or the 
natural log odds of the response occurring. In this 
case, our predictor variables are all discrete, each 
representing a dummy variable for a different 
PRIZM category. This yields the following equation: 

exp (Po + PIX1 + . . . + BP-1xp-l) 
E { Y )  = 

1 + exp (Po + + - . - + Pp-lxP-l) 
(1) 

where E{Y) is the expected response value, Po is an 
intercept variable, and P, is the coefficient repre- 
senting estimated odds ratio for variable X, holding 
all else constant. Logistic regression was used rather 
than linear regression or analysis of variance 
(ANOVA) because our response variable is a per- 
centage. Not only do percentages tend to violate 
the assumptions of normality (normal distribution 
of responses for each category level), but they are 
also bounded between 0 and 1, whereas predictions 
from regression and ANOVA are not bounded. Al- 
though logistic regression is typically used for 
regressing binary (0, 1) response variables, it has 
been found to be superior in its predictive power to 
linear-regression approaches when the response is 
a percentage (Zhao and others 2001 ). This is partly 

because linear-regression models have increasingly 
poor predictive abilities as the actual value ap- 
proaches the bounds of 1 and 0. A particular 
problem is that solving a linear model can result in 
values outside of those bounds. AIthough logistic 
regression is generally used with continuous pre- 
dictors, it has been used successfully with categor- 
ical predictors and found to perform better than 
ANOVA under certain conditions (Whitmore and 
Schumacker 1999). PRIZM categories are coded as 
factors, and each category for a given PRIZM cate- 
gorization is treated as a factor level or dummy 
variable, so a significance test statistic for a given 
factor can be interpreted as a test that the mean 
response for that group is significantly different 
than for the entire population. In the models where 
it is included, median housing age is coded as a 
quadratic term (the untransformed term plus the 
term squared). 

We used the rnultimodel inference approach of 
Burnham and Anderson (2002) to determine 
whether PRIZM's 15 or 62 classifications, median 
housing age, or some combination best explained 
the variation in each of the 28 private-land and 
PROW response variables. We used similar meth- 
ods to determine whether PRIZM's 15 or 62 clas- 
sifications best explained the variation in each of 
the 24 riparian response variables (Table 2).  
Hence, for private-land and PROW models, we 
have groupings of seven comparative models for 
each response variable; whereas for the riparian 
variables, we have groupings of three comparative 
models for each response variable. In no case are 
two models with different response variables 
compared. For the models with median housing 
age by block group, a quadratic term for age is 
included, to account for our hypothesis that the 
effect of age on vegetation is nonconstant. Multi- 
model comparisons indicated that, in almost all 
cases, the model with the quadratic term was 
superior to those without; hence, for the sake of 
simplicity, only results with the quadratic term are 
given here. 
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Table 2. Summary Response and Predictor Variables of Logistic Regression Models 

Name Response Predictors 

P R O W 1  Percentage of PROW covered by trees 
, 1 4 4  

PRIZM5 
P R O W 2  

,,,, PRIZM 1 5 P R O W 3  
,,,, PRIZM62 PROWT4 
8 8 8 ,  

AGE 
P R O W 5  

,,,, 
PRIZM5+AGE 

P R O W 6  
d , , ,  

PRIZM I 5+AGE 
P R O W 7  PRIZM62+AGE 
PROWGl Percentage of PROW covered by grass 

,,,, 
PRIZM 5 

PROWG2 
d , , ,  

PRIZM 1 5 
PROWG3 

,,,, PRIZM62 PROWG4 AGE 

PLT 1 
PLT2 
PLT3 
PLT4 
PLT5 
PLT6 
PLT7 
PLG 1 
PLG2 
PLG3 
PLG4 
PLG5 
PLG6 
PLG7 
RTa 1 
RTa2 
RTa3 
RGa 1 
RGa2 
RGa3 
RTb 1 
RTb2 
RTb 3 
RGb 1 
RGb2 
RGb3 
RTc 1 
RTc2 
RTc3 
RGc 1 
RGc2 
RGc3 
RTd 1 
RTd2 
RTd3 
RGd 1 
RGd2 
RGd3 

Percentage of private land covered by trees 
1 1 1 ,  

Percentage of private land covered by grass 
,111 

Percentage of areas within 100 ft of streams covered by trees 
111, 

Percentage of areas within 100 ft of streams covered by grass 
1 1 1 1  

Percentage of areas within 100 ft of all water bodies covered by trees 
, 1 1 1  

Percentage of areas within 100 ft of all water bodies covered by grass 
d d , ,  

Percentage of areas within 300 ft of streams covered by trees 
i d , ,  

Percentage of areas within 300 ft of streams covered by grass 
, 4 8 1  

Percentage of areas within 300 ft of water bodies covered by trees 
1 4 4 ,  

Percentage of areas within 300 ft of water bodies covered by grass 
, 1 4 4  

- - 

PRIZM 5+AGE 
PRIZM15+AGE 
PRIZM62+AGE 
PRIZM5 
PRIZM 1 5 
PRIZM62 
AGE 
PRIZM5+AGE 
PRIZM 1 5+AGE 
PRIZM62+AGE 
PRIZM5 
PRIZM 1 5 
PRIZM62 
AGE 
PRIZM5+AGE 
PRIZM15+AGE 
PRIZM62+AGE 
PRTZM 5 
PRIZMI 5 
PRIZM62 
PRIZM 5 
PRIZM 1 5 
PRIZM62 
PRIZM 5 
PRIZM 1 5 
PRIZM62 
PRIZM5 
PRIZM 1 5 
PRIZM62 
PRIZM5 
PRIZM 1 5 
PRIZM62 
PRIZM5 
PRIZM 1 5 
PRIZM62 
PRIZM5 
PRIZM 1 5 
PRTZM62 
PRIZM5 
PRIZM 1 5 
PRIZM62 

PROW, public rights-of-way. 
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Burnham and Anderson's (2002) approach re- 
lies on the information theory approach pioneered 
by Akaike (1973, 1978), which shows that mini- 
mization of the Akaike information criterion (AIC) 
can help to select the "order" of likelihood of a set 
of nested or nonnested models. The more com- 
monly used F-tests can only be used for nested 
models. That is, for k possible models of an 
underlying process, AIC scores help to tell us 
which of those models approximate that under- 
lying process the best. Traditional model fit met- 
rics, such as R-squared, are often not appropriate 
for comparison because a model with more vari- 
ables is by definition more statistically "flexible" 
than one with fewer (which is why R-squared will 
always go up with the addition of parameters), 
meaning that the more complex model will 
always appear superior. However, complexity 
comes at the expanse of parsimony; therefore, it is 
commonly accepted that a better model is one that 
increases fit relative to the number of parame- 
ters (Myung and others 2000; Wagenmakers and 
Farrell 2004). On the other hand, AIC, penalizes 
models that are less parsimonious. By accounting 
for the tradeoff between model fit and complexity, 
it can show us which models best compromise 
between the two. The AIC is given by the equa- 
tion (Burnham and Anderson 2002; Turkheimer 
and others 2003): 

ATC = -2 log L ( M )  + 2k (2) 

where k is the number of parameters plus one and 
log L ( M )  is the maximized log likelihood for the 
fitted model. 

The AIC cannot be interpreted on its own, but 
only as a relative measure, to be compared to the 
AIC scores for other models. If the AIC score from 
model A is lower than that for model B, it is an 
indication that model A is more likely to be correct. 
However, although a lower AIC is an indication of a 
more likely model, that information does not ex- 
plain how much more likely one model is over 
another, and in some cases small differences in AIC 
scores can lead to a false sense of confidence that 
one model is better than another (Wagenmakers 
and Farrell 2004). Akaike weights (Burnham and 
Anderson 2002) show the probability of the more 
complex model being the correct one and are given 
by the equation: 

where k is the number of models. 

In reporting our results, we use population density, 
social stratification, and lifestyle behavior to signify 
the PRIZM system aggregated to 5, 15, and 62 
categories respectively. Table 3, which includes 
results for models with private-land and PROW 
response variables, shows that the most complex 
model-lifestyle behavior and housing age-best 
explains PROW grass, private-land trees, and pri- 
vate-Iand grass, indicating that the loss in parsi- 
mony from greater model detail is outweighed by 
increases to model fit. For PROW trees, on the 
other hand, the third model-lifestyle behavior-is 
listed as best, indicating that any gains to fit made 
by adding house age are outweighed by losses to 
model parsimony (this result held even if the 
quadratic term for house age was not included). 
The seven-way Akaike weights suggest that there is 
little probability that the second-best model is 
actually the best in any of the cases. 

The order of the models is also illustrative in 
teasing out the relative contribution of the different 
explanatory variables. For PROW trees, the fact 
that model 7, lifestyle behavior and house age, is 
second, despite housing age not significantly 
improving on the model, suggests the importance 
of lifestyle behavior relative to population density 
and social stratification. For PROW and private- 
land grass, the fact that model 6-social stratifica- 
tion and housing age-is second best suggests that 
housing age may be a more important contributor 
in making model 7 the best, whereas for private- 
land trees, the fact that model 3-lifestyIe behav- 
ior-is second suggests the relative importance of 
lifestyle behavior in doing the same. 

In addition, pseudo R-squared values on model 
4, housing age only-tend to be much higher 
for grass (0.12 and 0.19 for PROW and private 
land, respectively) than for trees (0.06 and 0.09) 
(Table 4). 

For the models with riparian-land response 
variables (Table 4), the simplest model-popula- 
tion density-is always identified as the best, no 
matter how riparian buffers are specified. However, 
this does not prove that population density is nec- 
essarily an adequate predictor of riparian vegeta- 
tion. Rather, it suggests that we fail to prove that 
social stratification or lifestyle behavior adds any 
significant explanatory power, relative to the loss of 
parsimony they introduce. Very low pseudo R- 
squared values on the models with just population 
density suggest that if it' is an important predictor, 
our models have failed to capture population 



Table 3. Summary Results for Logistic Regression Models for Private Land and pubIic Rights-of-way PROW Including AIC Scores, Seven-way 
Akaike Weights, Model Rankings, and Pseudo R-squared Values 

Response 
Variable 

Model Name Residual Residual Dierence from Akaike Pseudo 
and Terms d f Deviance Log-likelihood AIC Best Model Rank Weight (%) R-squared 

--- 

PROW trees PROWTI: PRIZM5 
PROWT2: PRIZM 1 5 
PROWT3: PRIZM62 
PROWT4: AGE 
PROWT5: PRIZMS+AGE 
PROWT6: PRIZM15 + AGE 
PROWT7: PRIZM62 + AGE 

PROW grass PROWG1: PRIZM5 
PROWG2: PRIZM 1 5 
PROWG3: PRIZM62 
PROWG4: AGE 
PROWG5: PRIZM5+AGE 
PROWG6: PRIZM 1 5+AGE 
PROWG7: PRIZM62i-AGE 

Private land trees PLT1: PRIZM5 
PLT2 : PRIZM 1 5 
PLT3: PRIZM62 
PLT4: AGE 
PLT5: PRIZM5 + AGE 
PLT6: PRIZM15 + AGE 
PLT7: PRIZM62 + AGE 

Private land grass PLG1: PRIZM5 
PLG2: PRIZM 1 5 
PLG3: PRIZM62 
PLG4: AGE 
PLG5: PRIZMS-tAGE 
PLG6: PRIZM 1 5+AGE 
PLG7: PRIZM62+AGE 

AIC, Akaike Information Criterion. 



Table 4. Summary Results for Logistic Regression Models for Riparian Land Including AIC Scores, three-way Akaike Weights, Model Rankings, 
and Pseudo R-squared Values 

Response Model Model Residual Residual Dierence from Akaike Pseudo 
Variable Name terms df deviance Log-likelihood AIC Best Model Rank Weight ( O h )  R-squared 

Riparian forest-100-ft buffer of streams RFa 1 
RFa2 
RFa3 

Riparian Grass-100-ft buffer of streams RGa 1 
RGa2 
RGa3 

Riparian Forest-100-ft buffer of all water bodies RFbl 
RFb2 
RFb3 

Riparian Grass-100-ft buffer of all water bodies RGbl 
RGb2 
RGb3 

Riparian Forest-300-ft buffer of streams RFcl 
RFc2 
RFc3 

Riparian Grass-300-ft buffer of streams RGc l 
RGc2 
RGc3 

Riparian Forest-300-ft buffer of all water bodies RFdl 
RFd2 
RdF3 

Riparian Grass-300-ft buffer of all water bodies RGdl 
RGd2 
RGd3 

PRIZM 5 
PRIZM 1 5 
PRIZM62 
PRIZM5 
PRIZM 1 5 
PRIZM62 
PRIZM 5 
PRIZM 1 5 
PRIZM62 
PRIZM5 
PRIZM 1 5 
PRIZM62 
PRIZM5 
PRIZM 1 5 
PRIZM62 
PRIZM5 
PRIZM 1 5 
PRIZM62 
PRIZMS 
PRIZM 1 5 
PRIZM62 
PRIZM 5 
PRIZM 1 5 
PRIZM62 
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Table 5. House Age Coefficients, t Statistics, and Significance Levels from Private Land and public Rights-of- 
way (PROW) Logistic Regression Models 

Age  Coefficients House Age t House ~~e~ f 
- 

PROWT4: AGE 
PROWT5: PRIZM5 + AGE 
PRO WT6: PRIZM 1 5 + AGE 
PROWT7: PRIZM62 + AGE 
PROWG4: AGE 
PROWG5: PRIZM5 + AGE 
PROWG6: PRIZMl5 + AGE 
PROWG7: PRIZM62 + AGE 
PLT4: AGE 
PLT5: PRIZM5 -+ AGE 
PLT6: PRIZM 1 5 + AGE 
PLT7: PRTZM62 + AGE 
PLG4: AGE 
PLG5: PRIZM5 + AGE 
PLG6: PRIZM 1 5 + AGE 
PLG7: PRIZM62 + AGE 

' ~ i ~ n i f i c a n t  at 90% confidence level. 
2 ~ i g n i f i ~ a n t  at 95% confidence level. 

density's importance (possibly because PRIZM re- 
cords it as a categorical rather than continuous 
variable). The role of population density as a pre- 
dictor should be further explored. 

Coefficients and test statistics for the age terms in 
the models where they appear are provided in 
Table 5. In the interest of space, coefficients on 
PRIZM categories are not given. The first two col- 
umns of Table 5 contain coefficients and Wald test 
statistics for the median housing age variable; and 
the second two columns contain the same for the 
squared term for that variable. In all cases, the 
coefficient on the untransformed variable is posi- 
tive, ranging between 0.094 and 0.16, whereas in 
all cases, the squared term is negative, ranging 
between -0.00 1 1 and -0.00 18. The stars next to the 
test statistics indicate that the squared term is sig- 
nificant at the 95 % confidence level (according to a 
Wald test) for most but not all of the private-land 
models, whereas none are significant for the PROW 
models. Moreover, the untransformed term is 
insignificant for all but the private-land grass 
models. This result is somewhat inconsistent with 
the AIC model comparisons, which indicated that 
in all cases but PROW trees, median housing age 
improves the model, and that in most cases, the 
quadratic term also improves the model over a 
simple linear term for housing age. 

To address this inconsistency, we ran a series of 
quasi-likelihood regressions on ail models, includ- 
ing housing age. The logistic regression model as- 
sumes a binomial distribution of errors which, 

especially in the case of proportion data, may not 
always be the case. It is possible that this is partly to 
blame for overinflation of standard errors, and 
hence lower than expected test statistics on coeffi- 
cients. A less restrictive generalized linear model 
uses "quasi-likelihood" estimation, which requires 
definition of only the mean and variance func- 
tion without assuming a specific distribution 
(McCullagh and Nelder I989). It is frequently 
warranted in cases where data are highly under- 
dispersed or overdispersed and has been used on 
percentage data (Wedderburn 1974). This approach 
requires the user to specify a link and variance 
function. For this model, we chose logit for the 
former, because our data are bounded by 0 and 1, 
and constant variance for the latter, because 
residual plots indicated little pattern to the spread 
of errors. 

The resulting coefficients and test statistics show 
a very similar range for coefficients, but much 
higher t statistics overall (Table 6). The fact that the 
coefficients on housing age terms for PROW tree 
models are significant is not necessarily inconsis- 
tent with the fact that model 3-lifestyle behav- 
ior-has the lowest AIC score, because its 
explanatory power might be outweighed by its 
penalty to parsimony. All coefficients are signifi- 
cant at the 95% confidence level, and all but one 
are significant at the 990h level. 

The signs on the two age variables suggest a 
parabolic relationship between housing age and the 
probability of presence of vegetation, holding 
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Table 6. House Age Coefficients, t Statistics, and Significance Levels from Private Land and Public Rights of 
way (PROW) Quasi Likelihood Regression Models 

Age Coefficients House Age t House ~~e~ t 

PROWT4: AGE 
P R O W S :  PRIZM5 + AGE 
PROWT6: PRIZMl5 + AGE 
PROWT7: PRIZM62 + AGE 
PROWG4: AGE 
PROWG5: PRIZM5 + AGE 
PROWG6: PRIZM 15 + AGE 
PROWG7: PRIZM62 + AGE 
PLT4: AGE 
PLT5: PRIZM5 + AGE 
PLT6: PRIZM 15 + AGE 
PLT7: PRIZM62 + AGE 
PLG4: AGE 
PLG5: PRIZM5 + AGE 
PLG6: PRIZM 1 5 + AGE 
PLG7: PRIZM62 + AGE 

'~ign@cant at 95 % confidence level. 
'~ignificant at 99% confidence level. 

PRIZM class constant. Because the dependent 
variables represent the probability that there will be 
100% tree or grass cover, we can interpret them as 
expected percentage tree or grass cover proxies. 
Hence, Figure 4A (tree cover) and B (grass cover) 
show how, under quasi-likelihood estimation, ex- 
pected cover increases and then decreases in a 
parabolic fashion with housing age. The maximum 
occurs between 40 and 50 years. This does not 
necessarily mean that houses lose vegetation as 
they age beyond 40 or 50 years; rather, it means 
that houses built at that time are associated with 
lower vegetation levels for any number of reasons. 
Although not shown here, the curves derived from 
the logistic regression are extremely similar. 

Theoretical Implications 
The results from our analyses indicate that we 
should accept hypotheses 2 and 4 and reject 
hypotheses 1 and 3. In other words, lifestyle 
behavior was the best predictor of vegetation cover 
on private lands, and median housing age was 
significantly associated with vegetation cover for 
riparian areas, private lands, and PROWs. Although 
population density was the best predictor of vege- 
tation cover for riparian areas, the pseudo R- 
squared values were so low that it casts doubt on 
the model. Finally, social stratification was not the 
best predictor of vegetation cover in PROWs. 

The poor performance of the population density 
model for all four combinations of riparian areas 
makes it clear that alternative theories and models 
are needed. For instance, historical legacies of 
zoning and development in riparian areas may 
exist. Also, larger-scale ecosystem processes, such 
as changes in riparian groundwater flow and 
associated urban hydrologic drought may play a 
significant role in the distribution of vegetation 
cover in riparian areas (Lowrance and others 1997; 
Groffman and others 2003). 

Lifestyle behavior and median housing age were 
the best predictors of the distribution of vegetation 
cover on private lands. This suggests that house- 
hold land management decisions, influenced by a 
household's desire to assert its membership in a 
given lifestyle group and to uphold the prestige of 
the household's neighborhood, best predicts vari- 
ations in vegetation cover on private lands. 

In most cases, public agencies are responsible for 
the maintenance of existing trees in PROWs, and 
homeowners are responsible for the maintenance 
of existing grass in these areas. Surprisingly, social 
stratification was not the best predictor of vegeta- 
tion cover for PROWs. Rather, lifestyle behavior 
was a better predictor of the distribution of tree 
cover, and lifestyle behavior and median housing 
age was a better predictor of grass cover in PROWs. 
To explain this phenomenon, we hypothesize that 
homeowners invest both in their own prop- 
erty-private lands-and in the PROWs in front of 
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Median house age 

Figure 4a. Probability that tree cover is 
equal to 100°/~ on private land as a 
function of median age of block group, 
based on quasi-likelihood logit 
regression. 4b Probability that grass 
cover is equal to 100% on private land 
as a function of median age of block 
group, based on quasi-likelihood logit 
regression. 

Median house age 

their house. This result is consistent with our 
hypotheses for private lands, given that the 
appearance of a household's property is affected by 
both the Iand around the home and the PROWs in 
front of the house. 

Results for both private lands and PROWs are 
consistent with previous research that found 
socioeconomic status to be an important predictor 
of vegetation in urban residential areas (Whitney 
and Adams 1980; Palmer 1984; Grove 1996; Hope 
and others 2003; Martin and others 2004). The 
reason for this is that although lifestyle behavior 
was a better predictor of vegetation cover than so- 
cial stratification, socioeconomic status is major 
data component of both of these PRIZM categori- 
zations. Thus, it is reasonable to find that analyses 
using socioeconomic status would yield significant 

results. Our findings indicate, however, that 
including additional household characteristics 
associated with lifestyle behavior provide better 
results, at least for vegetation cover. This distinction 
is amplified by the fact that our preliminary analysis 
of space available for planting vegetation-parcel 
area minus building area-is predicted best by social 
stratification and not by lifestyle behavior (A. R. 
Troy and others, unpublished). Thus, social strati- 
fication is a better predictor of the possibility for 
vegetation, but lifestyle behavior is a better predic- 
tor of the vegetation cover that is realized. Given 
that most of the previous research has focused on 
species composition, diversity, and abundance, this 
point needs to be examined further. 

The results including median housing age 
showed that it was important to add a temporal 
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component to the analyses. Median housing age is 
an increasingly important predictor of vegetation 
cover in private lands and PROWs until it reaches 
40-50 years, when age declines as a predictor. The 
parabolic form of this result could help to reconcile 
the findings from Whitney and Adams (1980), 
Hope and others (2003) and Martin and others 
(2004) with observations from M. F. Galvin (per- 
sonal communication) and Smith (2004). Most of 
the field samples of Hope and others (2003) and 
Martin and others (2004) were collected in areas 
where the median housing age was between 0 and 
50 years (Figures 4.A. 1 and 5.A. 1 ), whereas Galvin 
and Smith studied areas where the median housing 
age was more than 40-50 years (Figures 4.B.2 and 
5.B.2). The contrasting findings would be consis- 
tent with the quadratic form of the equation 
describing the significance of median housing age. 
Larger data sets stratified by median housing age 
and bracketing a potential 40-50 inflexion point 
would need to be tested to determine whether this 
relationship exists for species composition, diver- 
sity, and abundance. 

A second temporal component of this research is 
related to the issue of association versus cause and 
effect. Our research used data that were collected 
within a 2-3-year period; thus, we can only claim 
associations among these data. The addition of 
time-series data would enable us to examine cause- 
and-effect relationships, such as whether specific 
lifestyle groups locate in areas with particular 
combinations and amounts of vegetation cover, or 
whether specific lifestyle groups manage for and 
cultivate particular combinations and amounts of 
vegetation cover. We believe that this issue is 
probably more complex. It could be, for instance, 
that some lifestyle groups would be more likely to 
move, whereas other lifestyle groups would be 
more likely to cultivate. In other words, the direc- 
tion of the cause-and-effect relationship between 
household characteristics and vegetation cover may 
not be the same direction, and it may not occur at 
the same rate for all lifestyle groups. To examine 
this question further, time-series data and house- 
hold interviews would be necessary. 

Management Implications 
The results of our research indicate that lifestyle 
behavior is a significant predictor of vegetation 
cover on both private lands and PROWs. These 
findings suggest that there is potential for novel 
management approaches that would implement 
environmental marketing strategies. Urban forest- 
ers and environmental planners now acknowledge 

the need to develop support for and participation 
in their programs among diverse constituencies 
(Svendsen 2005; Grove and others, accepted 
J. M. Grove and others, 2006a, unpublished). 
Examples of these constituencies include home- 
owners, neighborhood associations, developers, 
and business groups. Urban foresters and environ- 
mental planners might develop marketing strate- 
gies whereby they "sell" greener neighborhoods to 
different neighborhood-based consumer markets, 
building on their desire for social status and group 
identity. Indeed, Robbins and Sharp (2003) have 
described recent trends in how the manufacturers 
of lawn-care chemicals market their products to 
various consumer group by associating "commu- 
nity, family, and environmental health with 
intensive turf-grass aesthetics" and fostering 
household demand for "authentic experiences of 
community, family, and connection to the non- 
human biological world through meaningful 
work." To promote the goaIs of urban foresters and 
environmental planners, an ecological marketing 
strategy could be developed systematically by using 
the tools of geodemography and cluster-based 
market segmentation. In this way, they could 
measure different lifestyle groups' preferences and 
motivations for various environmental behaviors 
and then devise communication strategies and 
management activities that would address those 
preferences and motivations in a spatially explicit 
context. 
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