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[1] A dual unscented Kalman filter (UKF) was used to assimilate net CO2 exchange
(NEE) data measured over a spruce-hemlock forest at the Howland AmeriFlux site in
Maine, USA, into a simple physiological model for the purpose of filling gaps in an eddy
flux time series. In addition to filling gaps in the measurement record, the UKF approach
provides continuous estimates of model parameters and uncertainty. The process explicitly
recognizes uncertainty in the measurement data and model structure, providing
approximate, effectively optimal state and parameter estimates with less subjectivity than
in many previous gap-filling methods. The dual UKF is a recursive predictor-corrector
estimation method whereby noisy measurement data are used to continuously update
nonlinear process model predictions of the desired states, in this case net ecosystem
exchange, among others. Two parallel filters are run simultaneously in the dual approach,
one for state and the other for parameter estimation. The unscented transformation
employs a deterministic sampling of ‘‘sigma points’’ from the joint density that captures
the first two moments of the distribution to the second order. Nonlinear process models are
applied to these sigma points to propagate the joint density within the filter framework.
The UKF estimate of annual NEE in 2000 at the Howland Forest totaled �296.4 ± 2.4 g
carbon m�2 (mean ± standard deviation) using nocturnal data when the square root of the
momentum flux (u*) exceeded 0.25 m s�1. This NEE value is about 9% higher than a
previous estimate where gaps were filled by physiological models fitted to monthly,
seasonal, and annual data. Model estimates are sensitive to the threshold set for accepting
or rejecting nocturnal flux data (‘‘u* threshold’’), and we show that uncertainty in annual
estimates is dominated by the choice of u* threshold.
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1. Introduction

[2] Exchanges of matter and energy between the surface
and atmosphere are fundamental to the operation of the
Earth’s climate system, and provide critical constraints on
many important biogeochemical cycles. The eddy covari-
ance method is increasingly applied to measure surface-
atmosphere exchanges of latent and sensible heat, carbon
dioxide, and a variety of trace gases [Baldocchi, 2003].
This method is robust and reliable when applied over flat,
homogeneous surfaces during times of well-developed
atmospheric turbulence. Eddy covariance has many advan-
tages including high temporal resolution (data are fre-
quently recorded at 10 or more Hz and integrated over
30–60 minutes), and good spatial integration. Unfortu-
nately, stable atmospheric conditions often occur at night,
uncoupling surface exchange from the measurement system.

Additionally, eddy covariance equipment may not operate
during certain weather conditions (heavy rain, ice), and may
fail, like all measurement systems, for a variety of reasons.
The result is that long-term flux records have many gaps. If
the goal of the research requires complete records, such as
for studies of evaporation or carbon sequestration, gaps must
be filled. A variety of methods have been applied to address
the problem of filling flux data gaps, including linear
interpolation, lookup tables, simple process models, neural
networks, and Kalman filter approaches [Falge et al., 2001a,
2001b; van Wijk and Bouten, 1999; Jarvis et al., 2004], with
simple process models being the predominant approach.
[3] Another important use for eddy flux data is to provide

parameter estimates for biological models that predict fluxes
on the basis of environmental data such as solar radiation
and temperature [Luo and Reynolds, 1999; Reichstein et al.,
2003]. Those using this data-based or inverse modeling
approach with flux data have derived model parameters
using nonlinear least squares, maximum likelihood, and
Kalman filter methods [e.g., Hollinger et al., 1999; van
Wijk and Bouten, 2002; Jarvis et al., 2004; Williams et al.,
2005].
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[4] The Kalman filter is an optimal, minimum mean
square error estimator for linear systems. When system
dynamics are intrinsically nonlinear, the extended Kalman
filter has customarily been used, although other approaches
such as statistical linearization have been developed [Gelb,
1974, p. 203; Maybeck, 1982, p. 243]. In general, the
extended Kalman filter performs a truncated first-order
Taylor linearization on the system equations about the
current state, to which the linear filter equations are applied.
The extended Kalman filter has been used extensively [e.g.,
Gelb, 1974; Jazwinski, 1970; Lewis, 1986], however, it does
suffer from possible divergence problems because the
linearization does not always capture the correct dynamics
of the underlying system [e.g., Jazwinski, 1969; Fitzgerald,
1971]. As a result, several new filtering methods have
recently been introduced on the basis of the Kalman filter.
Rather than seeking to linearize the nonlinear dynamics of
the system, these new derivativeless methods deterministi-
cally sample the joint density of the states in such a way that
the mean and covariance are preserved. The full nonlinear
system dynamics are then applied to these sample points in
order to propagate the density through the prediction step of
the filter.
[5] Kalman filters generally take the form of a two step

recursion, unless these steps have been purposefully com-
bined [e.g., Lewis, 1986, p. 70]. In the prediction step, the
filter uses the system process equations to perform a time
update on the previous filter states before any new measure-
ments are available at the next time period. Once the
measurements become available at the new time period,
they are combined in an optimal adjustment to the previous
prediction of the states in the measurement update step. This
two-step predictor-corrector recursion is then applied at
each successive time period.
[6] A formulation to the nonlinear system equations that

is adopted here assumes additive noise terms plus unknown
parameters. In this case, the equations can be written

xk ¼ f xk�1;wk�1ð Þ þ Nk�1 ð1Þ

yk ¼ h xk ;wk�1ð Þ þ Hk ð2Þ

where xk (nx � 1) is the state of the system at time
k, wk (nw � 1) are parameters, which both must be
estimated simultaneously from the noisy measurements
yk (ny � 1). In addition, the Nk are the zero-mean random
process noises with covariance Qk that drive the nonlinear
system function f. The Hk are the zero-mean measurement
noises with covariance Rk that have corrupted the
measurements yk. The system function h may be either
linear or nonlinear. Note that no normality assumption has
been placed on the noise sequences. Kalman’s original
derivation [Kalman, 1960] did not assume normality, only
that the joint density of the system states could be
propagated by their first two moments. In addition, many
other formulations to the system equations exist; these
allow for, among other things, deterministic inputs and
correlated noise sequences [Gelb, 1974; Maybeck, 1982].
[7] The Kalman filter was developed for time series

where the data are autocorrelated, which makes it an
attractive candidate for estimating missing flux data. In this

paper we demonstrate the use of the unscented Kalman filter
(UKF) for estimating annual net ecosystem CO2 exchange
(NEE) using incomplete and noisy eddy covariance data
recorded above a spruce-hemlock forest in the northeastern
U.S. In addition to providing an objective and unbiased
method for filling gaps in the data record, we show how
interpretations derived from the time-varying model param-
eter estimates from this filter are consistent with our
understanding of the ecological processes that regulate
surface-atmosphere exchanges.

2. Methods

2.1. Flux Measurements

[8] Measurements were made at the Howland Forest
AmeriFlux site in central Maine, USA (45�150N, 68�440W,
60 m asl). This site is composed of approximately 20 m tall
commercial softwood forest owned by GMO Renewable
Resources, LLC. Forest stands are dominated by red
spruce (Picea rubens Sarg.) and eastern hemlock (Tsuga
canadensis (L.) Carr.) with lesser quantities of other coni-
fers and hardwoods. Forest live basal area measured in plots
around the main Howland research tower (45.20407�N,
68.74020�W) was about 50 m2 ha�1 with live biomass
about 120 t C ha�1 [Hollinger et al., 2004]. Fluxes were
measured at a height of 29 m with a system consisting of
model SAT-211/3K 3-axis sonic anemometer (Applied
Technologies, Inc., Longmont, Colorado, USA) and model
LI-6262 fast response CO2/H2O infrared gas analyzer
(LiCor, Inc., Lincoln, Nebraska, USA), with data recorded
at 5 Hz. The flux measurement system and calculations are
described in detail by Hollinger et al. [1999, 2004].
Deficiencies in the low- and high-frequency response of
the flux system were corrected by using the Horst/Massman
approach of calculating a transfer function based on stabil-
ity and theoretical spectra [e.g., Massman and Lee, 2002] to
correct for missing low-frequency contributions and a ratio
of filtered to unfiltered heat fluxes to account for missing
high-frequency fluctuations. Half-hourly flux values
were excluded from further analysis if the wind speed
was below 0.5 m s�1, scalar variance was excessively high
or extremely low, rain or snow was falling, for incomplete
half-hour sample periods, or instrument malfunction. Data
from nocturnal periods were excluded when the friction
velocity, u*, was less than a threshold of 0.25 m s�1. The
sign convention used is that carbon flux into the ecosystem
is defined as negative.
[9] The measurements were collected at 30 minute inter-

vals k, k = 1,. . ., N in the calendar year 2000 yielding N =
17,568 half-hour measurement intervals in that year. The
measurements used in the subsequent analysis are assumed
to be corrupted with noise, as formally shown in the filter
measurement equation (2). The measurement vector yk at
time k is given as

yk ¼ NEE PPFD T½ 	0

¼ y1;k y2;k y3;k
� �0

where NEE is net ecosystem exchange of CO2 (mmol
m�2 s�1), PPFD is photosynthetically active photon flux
density (mmol photons m�2 s�1), and T is air temperature
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in �C. Diurnal measurement periods were differentiated by
defining PPFD 
 5 mmol m�2 s�1 as night. There were no
missing data in the photon flux and temperature measure-
ments. However, 42 percent of the NEE measurements
were missing in the year 2000 because of either instrument
failure, or exclusion for one or more of the reasons
described previously.

2.2. Process Model

[10] In general, the Kalman filter prediction step is driven
by models of the system dynamics. The filter can accom-
modate a large degree of complexity in the underlying
models, e.g., ranging from stochastic differential equations
in the continuous time filter, to simple models that predict
the state of the system on the basis of the noisy measure-
ments, or even simple random walk formulations when the
process structure is unknown. Regardless of the complexity
of the underlying models, they should provide a sensible
mathematical and biological description of the system. This
is especially important in the case where there are large gaps
of missing data that require filling because the filtered
estimates for these gaps, which rely on the system models,
must make sense biologically.
[11] Our goal was to use simple process models that

adequately describe the system states with a minimal
number of parameters. The reason for this is twofold.
First, it serves to illustrate that the Kalman filter does not
require overly complex system models in order to produce
very good estimates. Second, because we are illustrating a
new method, a simple, tractable system model will not
detract from the understanding of the filtering techniques
employed. As model complexity increases, it becomes
increasingly likely that no single set of parameter values
will be optimal, but that many model parameter sets will
fit the data more or less equally well: equifinality [Franks
et al., 1997].
[12] The model for NEE chosen here is the frequently

used ‘‘big leaf’’ Michaelis-Menten model, namely,

NEE ¼ A� PPFD

K þ PPFD
þ R ð3Þ

where A is the maximum rate of uptake (mmol CO2 m
�2 s�1),

K is the half saturation constant (mmol photons m�2 s�1),
and R is ecosystem respiration (mmol CO2 m�2 s�1).
Ecosystem respiration could be treated as either a
parameter, or a system state. The latter definition is used
here. Thus we chose to model respiration with the simple
Lloyd and Taylor [1994] model

R ¼ Rp exp
�E0

Tþ273:15�T0 ð4Þ

where Rp is baseline respiration rate relative to pool size
(mmol CO2 m�2 s�1), E0 is akin to an activation energy in
�K, and 0 
 T0 
 T + 273.15.
[13] The system state vector, xk at time k is composed of

the same first three elements as the measurements, plus R
and an estimate of the integration of NEE. The system
equation for the integration of NEE (INEE) is discretized for
the filter as

INEEk ¼ INEEk�1 þ NEEkDk ð5Þ

where Dk = 30 � 60 = 1800 s is the time step. The
remaining two system states (PPFD and T) are modeled as a
simple random walk, in lieu of a more complicated
description of the process. In general, the random walk
model is

xk ¼ xk�1 þ nk ð6Þ

where nk is a zero mean random noise perturbation with
positive variance. The filter provides a mechanism to
include similar random noise variation in each of the
process equations. Therefore the final state vector is given
as

xk ¼ NEE PPFD T INEE R½ 	0

¼ x1;k x2;k x3;k x4;k x5;k
� �0

[14] The above system process models are defined for the
growing season. However, the Howland research site is
characterized by a 4-month-long winter season with temper-
atures well below freezing and a 1 m deep snowpack.
Neither the NEE nor Lloyd and Taylor models are applica-
ble at this time of the year. The NEE model cannot be
applied since the first term, photosynthesis, is inhibited by
subzero temperatures [Teskey et al., 1995]. The Lloyd and
Taylor model fails in winter because our formulation is
based solely on air temperature. During the growing season,
respiration at Howland comes from both belowground and
aboveground sources in a ratio of about 60:40. At this time
of year, the soil acts to low-pass air temperature variations,
and air temperature provides a reasonable estimate of the
system state. In the winter, however, when respiration
comes mostly from the soil [Davidson et al., 2006], the
deep snowpack uncouples soil temperature from air tem-
perature and so air temperature does not accurately repre-
sent the temperature of the respiring material. We therefore
exclude T and adjust these two process equations for the
dormant season to

R ¼ Rp exp
�E0

273:15�T0 ð7Þ

NEE ¼
R; PPFD < 5mmol m�2 s�1 nighttimeð Þ

A; otherwise daytimeð Þ

8<
: ð8Þ

Note that the model for NEE has different day and nighttime
definitions. This was necessary because there can be warm
days in the fall, and during midwinter thaws, subsequent to
the switch to the dormant season models, in which
photosynthesis occurs. Unfortunately, however, the mod-
ified Lloyd and Taylor model (7) only allows for respiration
to occur. The maximum rate of uptake parameter, A, has
therefore been used during the daytime of the dormant
season as a simple time-varying parameter to accommodate
this potential late-season photosynthetic activity. Note that it
also accommodates daytime respiration for the majority of
days where there is no photosynthesis occurring.
[15] Determination of the initiation and completion of the

growing season was made using a deterministic switch based
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on recorded soil temperature. When the daily soil tempera-
ture reaches 0�C, in both spring and fall, the switch is made
to the alternate process model formulations. For the year
2000, this happened at Julian days 84 and 328. In our current
model, the switch occurs only once each in spring and fall;
alternative possible formulations will be discussed later.
[16] There are five system parameters in this model

formulation: A, K, Rp, E0 and T0. However, because of a
high degree of correlation between E0 and T0, we fixed T0 =
261.2�K, on the basis of a least squares fit of the June 2000
data to model (4). This left a total of four unknown
parameters, which are collected into the parameter vector
wk, namely,

wk ¼ A K E0 Rp

� �0
¼ w1;k w2;k w3;k w4;k

� �0

[17] The vectors yk, xk and wk make up the system noisy
measurements, unknown states and unknown parameters,
respectively. It should be noted explicitly that the parame-
ters are time-varying in this formulation.

2.3. Scaled Unscented Transformation

[18] The unscented transformation (UT) was first intro-
duced by Uhlmann [1995]. The main idea behind the
unscented transformation, alluded to earlier, is to completely
capture the first two moments of the joint density in both of
the filter steps with a deterministic sampling of ‘‘sigma
points’’ from that density, and subsequently apply the
nonlinear dynamics to these sampled points. It was founded
on the simple observation that it should be easier to
approximate a probability distribution than an arbitrary
nonlinear function [Uhlmann, 1995; Julier and Uhlmann,
2004]. It should be noted that the unscented transformation
is quite general in that it can be applied to any problem that
requires nonlinear transformations of probability distribu-
tions, not just filtering problems. However, the main moti-
vation for its development was to address the shortcomings
of the EKF linearization approach [Julier and Uhlmann,
2004]. These shortcomings are manifested in two primary
ways. First, derivation of the Jacobian matrices used in the
extended Kalman filter, if they exist, can be difficult, and
programming these often large calculations is error prone.
Secondly, it has been known for some time that the extended
Kalman filter can indeed diverge because the truncation of
higher-order terms in the Taylor linearization of the dynam-
ics can yield poor mean and covariance estimates of the
system state [e.g., Jazwinski, 1969; Fitzgerald, 1971]. Some
corrections and filter ‘‘tuning’’ can be made to address this
second issue, such as Monte Carlo analysis and the addition
of stabilizing noise. However, ameliorations must be under-
taken on a case-by-case basis, as such problems tend to be
problem-specific. In addition, these methods may actually
result in the unintended consequence of inflating the vari-
ance in some portions of the state space, while providing no
correction for the bias [Julier and Uhlmann, 2004]. Other
specialized methods also exist, but are complex and may be
applicable only to specific classes of problems, e.g., where
the error distributions are Gaussian.
[19] Julier and Uhlmann [1997, 2004] present the deri-

vation for the UT along with an example inherent to target

tracking, illustrating that converting from polar to Cartesian
coordinates using linearization is both biased and inconsis-
tent. For comparison, the UT shows no bias and correctly
captures the state covariance. The basic UT has been
developed further, to incorporate higher-order moments of
the distribution, among other things [e.g., Tenne and Singh,
2003; Julier and Uhlmann, 2004]. Extending the sigma
point set to incorporate higher-order moments requires a
larger set of points and increases the computational burden
in the filter. Pragmatically, if only the first two moments of
the distribution are estimated, as in the Kalman filter, using
an extended sigma point set incorporating higher-order
moments, such as skewness, could actually be detrimental,
for example, if the skew of the sigma point set does not
align with that of the true distribution. However, the scaled
sigma point set can incorporate the effect of higher-order
moments through a scaling constant that shrinks or expands
the set as desired [Julier and Uhlmann, 2004]. Choosing a
small scaling factor concentrates the points about the mean,
and thus minimizes the effect of higher-order moments, and
vice versa. An additional weighting scheme allows incor-
poration of higher-order moments, such as kurtosis, when
known.
[20] The UT and UKF have been applied to nonlinear

estimation problems in a variety of fields such as global
positioning systems [van der Merwe and Wan, 2004], space-
craft attitude estimation [Crassidis and Markley, 2003],
ballistic missile tracking [Saulson and Chang, 2004] and
object tracking in image analysis systems [Chen et al., 2002].
In this paper, we use a modification of the scaled unscented
transformation, originally developed by Julier and Uhlmann
[2002]; themodification is due to van derMerwe [2004], who
presented an alternative rearrangement that allows the sigma
point selection and scaling to occur in one step, thereby
reducing calculations. As before, let nx be the dimension of
the state space, x, with mean �x and covariance Px. Select
2nx + 1 sigma points by letting l = a2(nx + k) � nx and
drawing

X0 ¼ �x

X i ¼ �xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ lð ÞPx

p� 	
i

i ¼ 1; . . . ; nx

X i ¼ �x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ lð ÞPx

p� 	
i�nx

i ¼ nx þ 1; . . . ; 2nx

w
mð Þ
0 ¼ l

nx þ l
i ¼ 0

w
cð Þ
0 ¼ l

nx þ l
þ 1� a2 þ b
� 	

i ¼ 0

w
mð Þ
i ¼ w

cð Þ
i ¼ 1

2 nx þ lð Þ i ¼ 1; . . . ; 2nx

ð9Þ

The sigma point set S = {X i, wi
(j); i = 0, . . ., 2nx, j 2 (m, c)}

is composed of the sigma points X i and their respective
mean (m) and covariance (c) weights wi

(j). The weights can
be positive or negative and must sum to one [Julier and
Uhlmann, 2004]. The parameters 0 
 a 
 1 and b � 0
control the spread of the sigma points and weighting for
higher-order moments; parameter k � 0 is not critical and is
often set to zero [van der Merwe, 2004, p. 56]. For a, the
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smaller the value, the smaller the sigma-point spread and the
less likely to pick up anomalous effects in the distribution.
For Gaussian distributions, b = 2 is optimal [Julier and
Uhlmann, 2002, 2004].
[21] Given an arbitrary nonlinear transformation on

the state g, the scaled unscented transformation consists
of the following four steps [van der Merwe, 2004, p. 56]:
[22] 1. Choose the parameters a, b and k as described.
[23] 2. Determine the set S of 2nx + 1 sigma points and

associated weights from (9).
[24] 3. Apply the nonlinear transformation g to each

sigma point, namely,

Yi ¼ g X ið Þ; i ¼ 0; . . . ; 2nx

[25] 4. Calculate the mean, covariance and cross covari-
ance, respectively, of the transformed sigma points as

�y ¼
X2nx
i¼0

w
mð Þ
i Yi

Py ¼
X2nx
i¼0

w
cð Þ
i Yi � �yð Þ Yi � �yð Þ0

Pxy ¼
X2nx
i¼0

w
cð Þ
i X i � �xð Þ Yi � �yð Þ0

[26] A simple example will provide some intuition into
the UT and the effect that the choice of parameter values can
have in drawing the sigma points. Let the untransformed
state vector for this example be composed of PPFD and T.
The mean and covariance were calculated from June 2000
measurements where PPFD � 1500 mmol photons m�2 s�1,
yielding

�x ¼ 1753:54 16:5½ 	

Px ¼
18766 �62:3

�62:3 16:6

� �

The transformation g is from a maximum likelihood fit of
models (3) and (4) to the June 2000 data

R ¼ 35 exp
�46:4

Tþ273:15�262:2

NEE ¼ �20� PPFD

524þ PPFD
þ R

Thus the states PPFD and T are mapped into the states NEE
and R through g. The results of applying the unscented
transformation on this example with b = 2 are shown in
Figure 1. In Figure 1a, a = 1, k = 0.15 and it will be noted
that the sigma points align with the 66 percent confidence
ellipse. In addition, note that the weight w0

(m) is small and
positive. In Figure 1b, a = 0.4, k = 0; the resulting set of
points is much tighter around the mean, illustrating the
effect of reducing a. As mentioned above, adjusting the
spread of the sigma points allows one to include the effect
of higher-order moments if desired. Finally, notice that the
weight w0

(m) is large and negative. The bottom panel shows
the effect of applying the nonlinear mapping g. Note that the
sigma points have transformed accordingly to capture the
new mean and covariance of the states NEE and R. In

addition, this example serves to illustrate the notable
difference that can occur in the first two moments with
even a simple nonlinear transformation.
[27] This simple example also illustrates that while the

sigma points capture the essential information of the joint
distribution, they are not a probability density function
[Julier and Uhlmann, 2004]. Thus the weights can be
positive or negative, providing they meet the constraint of
summing to unity. As mentioned by Julier and Uhlmann
[2004], there are a number of important properties of the
UT. First, it is algorithmic, and can be easily programmed
in a ‘‘black-box’’ sense regardless of the complexity of the
nonlinear transformations, with computational cost on the
same order of magnitude as the EKF. Relatedly, because
the sigma points can straddle discontinuities, g need not
be a continuous function set. Finally, the sigma points
from the UT, including the scaled UT, calculates the
projected mean and covariance to the second order (i.e.,
in the Taylor series expansion) and therefore implicitly
includes a second-order ‘‘bias correction’’ that is not in
the EKF.

2.4. Dual Unscented Kalman Filter

[28] A number of methods have been developed to handle
uncertainty in parameter estimates in addition to state
estimation. For example, the Schmidt-Kalman filter
[Jazwinski, 1970, p. 285] accounts for the effect of uncer-
tain parameters on the estimate of the state without explic-
itly estimating the parameters themselves. In addition, the
state-dependent approach [Young, 2000] is a general
method used to estimate unknown states and parameters
considered to be statistically dependent, through a multi-
step autoregressive filtering and modeling process. Two
other general methods, have been developed to simulta-
neously estimate the unknown states and parameters from
the noisy measurements using the Kalman filter, namely,
joint and dual estimation [van der Merwe, 2004; Wan and
van der Merwe, 2001]. While the former methods are
noteworthy, we concentrate on the latter two methods,
specifically the dual filtering paradigm.
[29] The joint Kalman filter takes the approach of aug-

menting the state vector with the parameters to form a joint
state vector ~xk = [x0k, w

0
k]
0 [Gelb, 1974, p. 348; Jazwinski,

1970, p. 282]. This joint state is now estimated through a
single Kalman filter recursion. The alternative is to run two
parallel filters, one on the state and the other on the
parameters; this is known as the dual approach. In the dual
setting, the parameters are treated as known within the state
filter at any given time, k, while the states are treated as
known in the parallel parameter filter. Both the joint and
dual approaches can be run within either the extended or
unscented Kalman filter frameworks [van der Merwe, 2004;
Wan and Nelson, 2001; Wan and van der Merwe, 2001].
The main difference between the two approaches, aside
from the number of filters required, is that the joint filter
explicitly allows for cross parameter and state dependen-
cies. For example, let the joint covariance for the augmented
state be

Pk ¼
Pxk Pxkwk

Pwkxk Pwk

2
4

3
5
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In the dual filtering approach the cross covariances are not
explicitly estimated, so that it effectively assumes that the
cross covariances Pxkwk

= Pwkxk
= 0. It could be argued,

therefore, that if correlation is suspected between states and
parameters, the joint approach would be preferred [van der
Merwe, 2004, p. 104]. However, experiments performed by
van der Merwe [2004] show little difference between the
two approaches. The reason may be due to the fact that
switching parameters and states between the dual filters,
coupled with using the exact same measurements in both
filters, acts as a type of constraint on the filters and
implicitly develops the cross covariance terms, as our
results will demonstrate.
[30] The joint and dual unscented Kalman filters have

been largely developed to address problems in estimation
with neural networks such as in the control of unmanned
aerial vehicles [van der Merwe, 2004; Wan and van der
Merwe, 2001]. In neural network problems, unknown

parameters are often referred to as weights, and the estima-
tion of the weights is often termed identification. Sitz et al.
[2002] have also applied the joint UKF to a continuous time
estimation scheme for nonlinear systems. They demonstrate
the efficacy of the technique using the classical Lotka-
Volterra and Lorenz systems. In addition, VanDyke et al.
[2004] have applied the dual UKF approach to spacecraft
attitude dynamics estimation problems. In the following, the
dual UKF is presented in the form of the state and parameter
filters. While the filtering equations themselves are similar,
the differences in the system models require separate
presentations.
2.4.1. State Filter
[31] Julier and Uhlmann [2004], van der Merwe [2004],

and Wan and van der Merwe [2001] present a general
system framework allowing for correlated system or process
noise [see also Gelb, 1974, p. 78]. However, it is often the
case that the noise structure is assumed to be additive,

Figure 1. Bivariate sigma points (a and b) before transformation and (c and d) after transformation. The
left- and right-hand plots show the effect that differing values for parameters a and k have on the spread
and weighting of the sigma points. In Figures 1a and 1b, the sigma points (pluses) are weighted
proportional to awi

(m) as shown by the circles; solid circles imply positive weights, and dashed circles
imply negative weights. The confidence ellipses are for a bivariate normal distribution at the 66, 90 and
95 percentiles. Figures 1c and 1d illustrate the transformed sigma points. Details on parameter settings are
given in the text.
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which is the assumption here. The dual UKF system model
for the state with additive stochastic noise is

xk ¼ f xk�1; ŵk�1ð Þ þ Nk�1 ð10Þ

yk ¼ h xk ; ŵk�1ð Þ þ Hk ð11Þ

with Nk�1 and Hk noise sequences as defined in (1) and (2).
The ŵk�1 are estimates of the parameters from the previous
time step in the parameter filter and are treated as constants
in the state filter. The state filter recursions are given in the
following steps [Julier and Uhlmann, 2004; van der Merwe,
2004; Wan and van der Merwe, 2001]:
[32] 1. Initialize the filter:

x̂0 ¼ E x0½ 	; Px0 ¼ E x0 � x̂0ð Þ x0 � x̂0ð Þ0
� �

[33] 2. Calculate the sigma point weights as in (9).
[34] 3. Repeat the following for k = 1,. . ., N: (1) Calculate

the sigma points as in (9):

X k�1 ¼ x̂k�1; x̂k�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ lð ÞPxk�1

q
;

�

x̂k�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ lð ÞPxk�1

q �
ð12Þ

(2) filter prediction equations:

X kjk�1
* ¼ f X k�1; ŵk�1ð Þ ð13Þ

x̂kjk�1 ¼
X2nx
i¼0

w
mð Þ
i X i;kjk�1

* ð14Þ

Pxkjk�1
¼

X2nx
i¼0

w
cð Þ
i X i;kjk�1

* � x̂kjk�1

� 	
X i;kjk�1
* � x̂kjk�1

� 	0 þ Qk

ð15Þ

X kjk�1 ¼ x̂kjk�1; x̂kjk�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ lð ÞPxkjk�1

q
;

h

x̂kjk�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ lð ÞPxkjk�1

q i
ð16Þ

Ykjk�1 ¼ h X kjk�1; ŵk�1

� 	
ð17Þ

ŷkjk�1 ¼
X2nx
i¼0

w
mð Þ
i Yi;kjk�1 ð18Þ

and (3) filter measurement equations:

Pyk ¼
X2nx
i¼0

w
cð Þ
i Yi;kjk�1 � ŷkjk�1

� �
Yi;kjk�1 � ŷkjk�1

� �0
þ Rk

ð19Þ

Pxkyk ¼
X2nx
i¼0

w
cð Þ
i

�
X i;kjk�1 � x̂kjk�1

�
Yi;kjk�1 � ŷkjk�1

� �0
ð20Þ

Kk ¼ PxkykP
�1
yk

ð21Þ

x̂k ¼ x̂kjk�1 þKk yk � ŷkjk�1

� �
ð22Þ

Pxk ¼ Pxkjk�1
�KkPykK

0
k ð23Þ

where Rk and Qk are the system and process noise
covariances, respectively. Note that we redraw new sigma
points in (16) to incorporate the new information in the
prediction density; van der Merwe [2004, p. 109] discusses
other possible strategies.
[35] In our model formulation, the process models, f, are

given by (3)–(8). The measurement model is an identity
mapping with

h ¼ H ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

2
66664

3
77775

Since this form of h is linear, we can substitute the linear
Kalman filter measurement update recursions [e.g., Gelb,
1974, p. 110] for the above UKF measurement recursions,
with the state update, (22), remaining the same, namely,

Kk ¼ Pxkjk�1
H0 HPxkjk�1

H0 þ Rk

� ��1

ð24Þ

Pxk ¼ I�KkHð ÞPxkjk�1
ð25Þ

where I is the identity matrix of dimension (nx � nx). There
are several other possible formulations and options available
for the UKF as presented in the literature cited. Incidentally,
the substitution of the linear form of the Kalman recursions
for the update step exemplifies the flexibility of the UKF;
alternatively, had our process dynamics been linear and our
observation dynamics nonlinear, the UKF would have only
been used in the update step [Julier and Uhlmann, 2004].
2.4.2. Parameter Filter
[36] It is well established [e.g., Bell and Cathy, 1993;Wan

and Nelson, 2001; Plummer, 1995] that the EKF can be
used in parameter estimation and approximates a recursive
modification to Newton’s method. The UKF, like the EKF,
can be used for parameter estimation for both clean and
noisy time series; in the latter case joint or dual estimation
strategies are used. van der Merwe [2004] has shown that
the UKF can be interpreted as an iterative stochastic Gauss-
Newton method, which builds up an approximation to the
inverse of the Fisher information matrix used in the Fisher
scoring step (see van der Merwe [2004, chap. 4] for details).
In addition, the UKF has been shown to outperform the
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EKF in dual estimation in terms of smaller and more
consistent covariance estimates, lessening the likelihood
for filter divergence.
[37] The system equations for the parameter filter, which

is coupled with (10) in the dual setting are

wk ¼ wk�1 þ Uk�1 ð26Þ

yk ¼ h f x̂k�1;wkð Þ;wkð Þ þ �������������k ð27Þ

Here the Uk and ���k are the process and measurement noises,
with covariances Qwk

and Rwk
, respectively.

[38] The unscented parameter filter recursion steps are as
follows [van der Merwe, 2004; Wan and van der Merwe,
2001]:
[39] 1. Initialize the filter:

ŵ0 ¼ E w½ 	; Pw0
¼ E w� ŵ0ð Þ w� ŵ0ð Þ0

� �

[40] 2. Calculate the sigma point weights as in (9).
[41] 3. Repeat the following for k = 1, . . ., N: (1) Filter

prediction equations:

ŵkjk�1 ¼ ŵk�1 ð28Þ

Pwkjk�1
¼ Pwk�1

þQwk�1
ð29Þ

(2) calculate the sigma points as in (9):

Wkjk�1 ¼ ŵkjk�1; ŵkjk�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ lð ÞPwkjk�1

q
;

h

ŵkjk�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ lð ÞPwkjk�1

q i
ð30Þ

and (3) filter measurement equations:

Ykjk�1 ¼ h f Wkjk�1; x̂k�1

� 	� 	
ð31Þ

ŷkjk�1 ¼
X2nx
i¼0

w
mð Þ
i Yi;kjk�1 ð32Þ

Pyk ¼
X2nx
i¼0

w
cð Þ
i Yi;kjk�1 � ŷkjk�1

� �
Yi;kjk�1 � ŷkjk�1

� �0
þ Rwk

ð33Þ

Pwkyk ¼
X2nx
i¼0

w
cð Þ
i

�
W i;kjk�1 � ŵkjk�1

�
Yi;kjk�1 � ŷkjk�1

� �0
ð34Þ

Kk ¼ PwkykP
�1
yk

ð35Þ

ŵk ¼ ŵkjk�1 þKk yk � ŷkjk�1

� �
ð36Þ

Pwk
¼ Pwkjk�1

�KkPykK
0
k ð37Þ

where Rwk
is set equal to Rk in the state filter since the same

measurements are used in each filter. Note that because of
the nonlinear form of (31), it is not possible to use the linear
Kalman filter recursions as replacements for the UKF
update step in the parameter filter, as we did in the state
filter.
[42] In the above, the diagonal matrix Qwk

can be set by
one of several different methods [van der Merwe, 2004;
Nelson, 2000]. We used a method analogous to recursive
least squares

Qwk
¼ diag ~l�1 � 1

� 	
Pwk

� 	
ð38Þ

with 0 
 ~l 
 1 known as the forgetting factor and where
‘‘diag(�)’’ means diagonalize the resulting matrix by setting
off-diagonals to zero. This scheme adjusts Pwkjk�1

such that it
is slightly larger than Pwk�1

, which has the effect of
discarding older data more quickly. Smaller values of ~l
increase this effect; however, we found that values of ~l
close to one (0.9975) produced the most stable filter results.

2.5. Missing Observations

[43] Missing observations cause gaps in the measurement
record that can sometimes be extensive. Filling gaps is a
necessary component of the estimation process, whether for
periodic (daily, weekly, etc.) or integrated estimates. The
yearly integration of NEE is a key component to our flux
analysis; therefore minimum mean square estimates of the
missing values are a crucial component to obtaining this
final estimate.
[44] In our measurement record, the series for PPFD and

T were complete, but approximately 42 percent of the NEE
observations were missing. In univariate time series, ac-
commodating missing values is simple. The innovations, or
prediction errors, are defined as the sequence

vk ¼ yk � ŷkjk�1

� �
k ¼ 1; . . . ;N ð39Þ

Therefore, if a measurement is missing at time k, the
innovation is also missing. In the univariate case, this is
handled by setting the Kalman gain to zero (Kk = 0), or,
more formally by setting R to infinity. The result is that
x̂k = x̂kjk�1 and similarly, Pk = Pkjk�1. In other words, the
update step could simply be skipped with this assignment
[Kitagawa, 1999]. The motivation becomes clear when
regarding the state update (22), which may be rewritten as
x̂k = x̂kjk�1 + Kkvk. Setting Kk = 0 in the univariate case
cancels the effect of the missing innovation. Similar
observations may be made for the covariance update since
both the covariance (Pyk

) and cross covariance (Pxkyk
)

terms will be missing. Incidentally, this alternate form of
the state update also serves to illustrate the predictor-
corrector structure of the Kalman recursions; applying the
optimal weighting matrix, Kk, to the innovation generates
a correction to be added to the state prediction x̂kjk�1,
obtaining x̂k [Maybeck, 1979, p. 218].
[45] In the multivariate case, where there are gaps for

some variables and not for others, there is still valuable
information in the nonmissing components of the measure-
ment vector at time k so the update step should not be
skipped. Regarding the definition of our measurement
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vector yk, NEE appears as the first measurement variable
y1,k. Setting the first row of the measurement matrix H and
the corresponding component of the innovation vector to
zero will account for the missing observation and allow the
information from nonmissing components of yk to be
utilized in the KF update [Shumway and Stoffer, 2000,
p. 330]. This same procedure is used in both of the dual
filters and for the linear or unscented update step.
[46] The forward pass of the Kalman filter as given in the

dual UKF recursions provides minimum mean square
estimates for the missing observations conditional on all
of the past data. In addition, a smoother can be run, which
provides estimates based on all of the data, past and future.
If the intent is to use periods of the individual time series
for, e.g., weekly estimates, then the smoother will provide
estimates with lower variance. However, because the back-
ward recursion of the smoother is initiated with the last state
and covariance updates (i.e., x̂N and PxN

), the smoother will
not provide different estimates for the final yearly integrated
estimate for NEE.
[47] The fixed interval smoother used here was due

originally to Fraser and Potter [1969], and Wan and van
der Merwe [2001] have applied it to the UKF state filter.
The smoother estimate is developed by running a UKF
backward in time, yielding state prediction and covariance
(x̂kjk+1, Pxkjk+1

) before including the observation at time k in
the backward update step. The smoothed estimates are then
given by

P�1
xkjN

¼ P�1
xk

þ P�1
xkjkþ1

ð40Þ

x̂kjN ¼ PxkjN P�1
xkjkþ1

x̂kjkþ1 þ P�1
xk
x̂k

� �
ð41Þ

Equation (40) leads to the conclusion that PxkjN

 Pxk

.
Therefore the smoothed estimate will be at least as precise
as the filtered estimate, and generally will be better. The
exception is the terminal time N when they are identical
[Maybeck, 1982, p. 7]. We use this approach to develop dual
unscented Kalman smoother (UKS) estimates for the states
in gap filling.

2.6. Filter Noise Covariances and Initial Conditions

[48] In the Kalman filter, the measurement and process
noise covariances are assumed known without error. Deter-
mination of the noise covariance matrices and initial con-
ditions for the Kalman filter has been the subject of a large
body of research in both engineering and statistics. Unfor-
tunately, much of this research has been done on linear
Kalman filters, often under the assumption of Gaussian
noise, conditional densities, and innovations. For example,
maximum likelihood is commonly used in an off-line
setting to estimate the hyperparameters in the system and
process noise covariances R and Q [Harvey, 1989, p. 140].
In addition, the initial state of the filter is normally assumed
known (e.g., see the initialization step for both filters). If
unknown, a diffuse prior often is used by setting the initial
covariance to yI, where y is chosen to be suitably large
such that (yI)�1 � 0 [p. 121 Harvey, 1989]. Other methods,
such as the expectation-maximization (EM) algorithm have
been developed to jointly estimate the initial states and the

filter covariances [Shumway and Stoffer, 1982]. However,
each of these maximum likelihood-based methods involves
Gaussian assumptions, which Hollinger and Richardson
[2005] have shown do not hold in the case of our flux
measurements. In addition, it is doubtful that such methods
directly adapt to nonlinear estimation problems, especially
in the case of running simultaneous dual filters. A further
complication arises when the covariance matrices are time-
dependent, increasing the number of parameters that must
be estimated.
[49] Acknowledging these difficulties, we have used a

diffuse prior approach when initial conditions are unknown
or inestimable, while other quantities have been estimated
either through ML or Monte Carlo methods. Because of the
seasonality in environmental conditions inherent at this
latitude, it seems reasonable that some measurement and
state variances will differ between the dormant and growing
seasons, and this has been allowed for in our formulation. In
all cases, the noises are assumed uncorrelated and diag[�]
means construct a diagonal matrix.
[50] The filters are started with k = 1 beginning 1 January

2000 using the dormant season model (7) and (8). The
initial conditions for the state filter use the diffuse prior
approach with Px0

= 100I and x̂0 = 0. This latter value can
be loosely interpreted as a reasonable value for the state on a
winter night, but with low confidence. The parameter filter
was initialized with values developed from process models
fitted to the April and May 2000 data, since fits to dormant
season data are not estimable for these models. In model (3),
maximum likelihood estimates were used on the basis of the
methods developed by Hollinger and Richardson [2005],
while the associated variance estimates were determined
from Monte Carlo runs as explained by these authors. The
initial state and covariances are

ŵ0 ¼ 0:5; 386:9; �25:0; 4:9½ 	
Pw0

¼ diag 0:574; 4662:6; 17:1; 0:322½ 	

In addition, models (3) and (4) were coupled so that the
initial parameters were estimated jointly by ML for the
models as in the current filtering approach. In the state space
formulation, R is a time-varying state; therefore the
estimates for these initial conditions on the parameters can
be assumed only to be some time-integrated average
condition. The constant parameter T0 = 261.2�K in (4)
was also developed from a least squares fit of the model to
the June 2000 data as mentioned earlier.
[51] The measurement model covariance was determined

from the measurement record and from instrument preci-
sion. The identical measurement record was used for both
filters; therefore Rwk

and Rk are also identical. The mea-
surement variances are

Rk ¼
diag 1; 219; 5½ 	; dormant season

diag 7:29; 488; 5½ 	; growing season

8<
:

Note that in the dormant season, the variability in both NEE
and PPFD are less than during the growing season. This is a
consequence of restricted respiration and photosynthetic
activity coupled with shorter day length.
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[52] The state filter requires covariances for the dormant
and growing seasons in the Qk matrix. For those states
(PPFD and T) where process equations are assumed to be
random walks, the corresponding elements in Qk were set
equivalent to those in Rk. The growing season variance on
NEE was taken as the overall variance from the model fitted
to (3) as given by Hollinger and Richardson [2005], and
was assumed to be half this value in the dormant season. In
addition, the variance for R was the estimated model
variance for the Lloyd and Taylor model, (4), fitted by
Richardson and Hollinger [2005]. The process covariance
matrices for both seasons are

Qk ¼
diag 7:37; 219; 5; 10:0; 0:15254½ 	; dormant

diag 14:74; 488; 5; 10:0; 0:15254½ 	; growing

8<
:

The state variable INEE accumulates variance from all of its
components; therefore it could justifiably be set to zero.
However, because the magnitude of the spatial error in the
integration is uncertain, we set it to a small, finite value on
the order of the estimated variance for NEE.
[53] Lastly, we set Pxkjk�1

and Pwkjk�1
back to their initial

conditions at the switch to the growing season in response
to several separate idiosyncrasies in our model formula-
tion. First, the process dynamics are different between
dormant and growing seasons, as previously explained.
Second, we constrain the variance on E0 to be constant at
half its initial value during the dormant season in order to
keep this parameter tight and allow excess variation to go
directly into Rp, while it remains unconstrained during the
growing season. Thirdly, K remains unestimated (fixed)
during the dormant season and as a result, the filter
variance artificially inflates during this time period and
must be reset. Finally, with the exception of A, the initial
conditions for the parameter filter were developed on the
basis of April and May data, and therefore any evolution
to their variances over the dormant season must be
discounted once the switch has been made. Inasmuch as
the two filters are coupled, the state variances should be
reset as well.

3. Results

[54] Figure 2 presents the time courses for three of the
system states T, R, and INEE. One prominent feature of the
INEE trajectory is the close association between our switch-
ing time with the ecosystem’s actual switch from carbon
source to sink. This is seen, with a slight lag period in the
spring, as ecosystem photosynthesis begins to offset respi-
ration. In the fall, it appears that respiration begins to
dominate slightly before our switching point; however,
because the soil is not frozen at this time, and some daily
temperatures (Figure 2, top) do indeed rise above freezing
for extended periods, the trajectory rises only gradually into
December. The final filtered estimate for INEE was
�296.45 g C m�2, with estimated standard deviation of
2.44 g C m�2 (which is an estimate of random uncertainty
as discussed later). This estimate of Howland forest annual
NEE in 2000 is about 25 g C m�2 (9%) greater than
previously published estimates [Hollinger et al., 2004].

The previous estimate relied on monthly models identical
to equation (3) to fill in missing daytime data, and Fourier
series to estimate missing nocturnal values. While difficult
to judge from the scale of the figure, the confidence
intervals on INEE increase as the year progresses because
of the integral definition of this system state. Confidence
intervals on the other system states remain fairly constant or
increase during periods of missing values, as would be
expected. Another apparent trend is the midsummer flatten-
ing of INEE trajectory in response to increasing ecosystem
respiration and associated moderation of ecosystem photo-
synthesis (not shown).
[55] The time-varying parameter estimates from the for-

ward filter are presented in Figure 3. There are several
points worth noting in these trajectories. First, during the
dormant season, A stays close to its initialization value of
0.5 mmol m�2 s�1. At the switch, however, it quickly
acclimates to its role in the big leaf model, and reaches a
maximum (because of our sign convention) in August. A is
negatively correlated with R throughout the year (Table 1).
The correlation during the dormant season is due to the
periods where photosynthesis occurs on warmer days as
mentioned above. The strong negative correlation and asso-
ciated mirror image of the two trajectories during the growing
season clearly shows the seasonal relationship between A and
R. This result probably stems from the well-known relation-
ship between foliage photosynthetic capacity and foliage
respiration [e.g., Reich et al., 1998] and the postulated
relationship between current photosynthesis and root respi-
ration [Hogberg et al., 2001]. Changes in the A parameter
show gradual reestablishment of forest photosynthetic ca-
pacity in the springtime and a precipitous drop in this
capacity following the first hard frost in the autumn. The
plateauing of A and rapid increase of Rp in June appear in
association with the production of new foliage.
[56] The K parameter (PPFD for half-maximum photo-

synthesis) decreases from our initialization value to a low of
about 200 mmol m�2 s�1 in April, returns to about 400 mmol
m�2 s�1 in May and then gradually rises through the
autumn to about 800 mmol m�2 s�1 before dropping again
in November. The increase in linearity in the PPFD:canopy
photosynthesis relationship late in the season may be related

Table 1. Summary of Correlations Between Estimated Forward

Filter States and Parameters for the 2000 Howland Data

States

Parameters

A Ka E0 Rp

Dormant Season
NEE �0.024 � � � 0.062 0.042

PPFD 0.038 � � � �0.161 0.212

T 0.028 � � � 0.054 0.372

INEE 0.362 � � � �0.958 0.724

R �0.434 � � � 0.423 0.387

Growing Season
NEE �0.025 0.070 �0.014 0.065
PPFD �0.065 �0.073 �0.122 0.108
T �0.630 0.089 �0.528 0.659
INEE 0.706 �0.805 �0.041 �0.405
R �0.775 0.145 �0.568 0.886

aThe parameter K is unused during the dormant season.
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to the low sun angle and consequent lower PPFD intensities.
Variation in leaf-level factors such as %N or canopy factors
such as leaf area index could also contribute to the observed
variation in the K parameter.
[57] The baseline respiration rate, Rp and ecosystem

respiration are clearly highly correlated (Table 1) with very
similar trajectories. This is expected from the construction
of the respiration model where E0 is a ‘‘shape factor’’ for the
temperature response of respiration. The confidence interval
widths at the switch between the dormant and growing
season in March for Rp also illustrates the effect of resetting
the initial conditions for the growing season at the switch. If
the variances were not reset, it could allow Rp to shift more
radically at this junction point. However, because we also
relax the constraint on the variance of E0 at this point, E0 is
allowed to vary freely as the full Lloyd-Taylor model comes
online under the influence of temperature; these combined
effects tend to keep Rp stable during this period, while
allowing E0 to absorb the variation in respiration at the
onset of the growing season.

[58] It should be noted that there have been no constraints
of any kind imposed upon our model at the switch from
growing to dormant seasons in the fall. Yet all of the
parameters seek their winter-spring dormant season values,
bearing in mind the confidence of the estimates. Because
the fall-winter dormant period is independent of the winter-
spring season, our results suggest that the spring switch is
the most sensitive of the two. Indeed, in numerous sensi-
tivity runs, we found this to be true, resulting in the initial
condition and variance switches described earlier.
[59] Figure 4 presents state trajectories for nine days in

the month of August 2000. The two random walk models
(PPFD and T) tend to track the measurements closely (note
again that the measurement record for these states are
complete). The exception is daytime PPFD on several of
the more variable days (e.g., 7–9 August). Intermittent
cloud cover will affect these measurements and the
smoothed estimates tend to discount this higher observed
variability; that is, they smooth the effect of passing clouds.
This result is quite reasonable because the spatial average

Figure 2. Kalman smoother estimates for the states T, R and INEE for the year 2000 data, with 95%
confidence intervals (dashed) shown for the dormant season on R and the entire year on INEE. The
vertical bars at the base of each graph show the missing values while the growing season is delineated at
the top by letter G.
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PPFD over the flux source (footprint) region will be less
variable than the point measurement made at the flux tower.
The estimates for respiration are clearly driven by temper-
ature, the alignment shown is nearly perfect. Again, since T
is the driving variable in our model, this result is also
reasonable.
[60] Finally, the trajectory for NEE illustrates clearly the

efficacy of the Kalman filter as a gap-filling method, even
with our simple model. It is difficult to resolve the individ-
ual effects that PPFD and T have on the daytime NEE
trajectory from the figures alone because of the correlation

between PPFD and T (�0.54 for this period). However,
correlations between NEE and PPFD for this period were
�0.92, while those between NEE and T were �0.55,
implying that PPFD is indeed the main driver of the system
at this time of year under our model. However, where PPFD
is zero at night, there is no photosynthesis and NEE is
equivalent to nighttime respiration; therefore the sole driv-
ing variable at night is temperature. This effect can be
discerned quite clearly on the night of 4 August where all
NEE measurements are missing. Here, NEE peaks early in
the twilight hours and decreases as T decreases into early

Figure 3. Kalman filter estimates for the four model parameters for the year 2000 data, with 95%
confidence intervals (dashed) shown where appropriate. The vertical bars at the base of each graph show
the missing values while the growing season is delineated at the top by letter G.
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morning. On nights such as 5 August, where a few measure-
ments interrupt the gaps, the smoother clearly adjusts from
all model prediction to an optimal combination of model
and data with corresponding downward adjustment in
variance. In addition, the estimates for 7 August show
how low light levels and cooler temperatures under heavy
overcast, are accounted for in the estimates. Finally, there is
a gap of several days at the end of this period (not all are
shown) where the model predictions, driven by the com-

plete measurement records for PPFD and T evidently do
quite an adequate job at describing the trajectory for NEE
during this period, when compared against similar days with
complete data records. The conclusion to be drawn is that
while our model is simple, it appears to be quite powerful in
capturing a good degree of the system dynamics in rela-
tively few state variables and associated few parameters.
[61] Incidentally, while the yearly trends in parameter

estimates are interesting when viewed as a whole, for short

Figure 4. Kalman smoother estimates for the states PPFD, T, R and NEE for several days in August
2000, with 95% confidence intervals (dashed) and noisy observations (circles). The vertical bars at the
base of each graph show the times where measurements of NEE are missing while those at the top
delineate nighttime.
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periods like our nine day illustration, they tend to be
relatively constant and show only a mild degree of variation
(see Figure 3). This is to be expected since the system itself
is in a fairly steady state over such short periods. Large
jumps in parameter values during such a period would be
alerting to some exogenous inputs into the system that are
not incorporated in the model.
[62] The confidence intervals on the yearly INEE trajec-

tory and the 9-day PPFD trajectory are difficult to discern
because the variances are small; their magnitude is shown in

Figure 5 for the August example. Figure 5 clearly illustrates
the increasing nature of the variance (as shown through the
standard deviation) for INEE as mentioned earlier. In
addition, it illustrates that there are essentially two distinct
steady states that both the NEE and T variances tend to take,
corresponding to whether NEE measurements are present or
not; missing NEE values tend to raise the variances for these
states to the higher level. In both cases, there is also a
discernible difference in daytime and nighttime variance
estimates for both NEE and T. PPFD is the exception, the

Figure 5. Kalman smoother standard deviation estimates for the states PPFD, T, NEE and INEE for
several days in August 2000. The vertical bars at the base of each graph show the times where
measurements of NEE are missing while those at the top delineate nighttime.
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two levels seem to be missing and the variance values tend
to fluctuate coincident with the steep downslope or upslope
of the PPFD curve in the transition from day to night or vice
versa. This may be at least partially an artifact of our setting
all measurement values with PPFD < 5 mmol m�2 s�1 to
zero in the preprocessing stage which affects the random
walk model. Because the smooth estimates benefit from
both forward and backward recursions over the data, this
trend is established in both directions.

4. Sensitivity

[63] As mentioned earlier, one of the main assumptions
leading to optimality of linear Kalman filters, or near
optimality of nonlinear filters, is that the noise variances
are known. We estimated these variances directly from the
data. However, other methods for the estimation of these
variances based on filter estimates have also been men-
tioned and include ML using the method of scoring on the
prediction error decomposition form of the log-likelihood
[Harvey, 1989, p. 140; Gove and Houston, 1996], and EM
algorithms [Shumway and Stoffer, 1982], both of which
make assumptions about the distribution of the error
processes at a minimum. Because any discussion of sensi-
tivity must be interpreted in light of the Kalman gains,
which are influenced by these variances, we begin with a
brief discussion of the role this matrix plays in the forward
filter.

[64] The Kalman gain matrix, Kk, is the optimal weight
matrix for combining measurements and model predictions
in the update step (21). It is composed of the cross
covariance between the predictions (from resampled sigma
points) and the measurements, Pxkyk

, weighted by the
inverse of the measurement covariance Pyk

. Given our linear
identity system transform, h = H, the gains are identically
computed by (24). The gains can range from positive to
negative depending on the cross covariances. Because of the
structure of H in our formulation, the diagonal elements of
Kk will be constrained to range between zero and one.
When the gains are close to zero, preference is given to the
model and the measurements are discounted; conversely,
when the gains are near one, the measurements are preferred
over the process model. In a simple univariate measurement
system, this correspondence is exact; however, in a multi-
variate setting, the gain matrix has dimension nx � ny which
means that even when there are missing values for one
measurement variable, the gains will reflect, to some extent,
the influence of the other measurements and state predic-
tions in the resulting estimates. For example, when NEE is
missing at time k, the first column of the gain matrix (as
well as the residual for NEE) will be zero, but the rest of Kk

will be nonzero. Therefore the update estimate, x̂k, and its
associated variance estimate, Pxk

, will be composed of the
prediction step estimate plus a weighted linear combination
of the other nonmissing innovations (or prediction cova-
riances) at this time period. Similarly, negative gains act like

Figure 6. Forward Kalman gain estimates, Kk, for the state NEE and measurements NEE, PPFD and T
for several days in August 2000. The vertical bars at the base of each graph show the times where
measurements of NEE are missing while those at the top delineate nighttime.
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negative covariance terms, changing the sign of that inno-
vation’s contribution to the estimated state x̂k in (22).
[65] An example illustrating the influence of the gains on

the estimates for NEE for our 9-day period in August can be
seen in Figure 6. From Figure 6 it can be seen that when
NEE is missing, the associated gains for PPFD and T are
nonzero and therefore the prediction estimate for NEE will
be adjusted by a weighted linear combination of these two
innovation errors in the update step. When NEE is not
missing, the NEE gains dominate those for PPFD and T so
that most, but not all, of the updated estimate for NEE
comes from its own innovation adjustment.
[66] Given this explanation, it should be clear that the

Kalman update step is a highly integrated combination of
information between states and measurements; in other
words, there is a large degree of interaction between the
variables of interest and one should not mistakenly infer that
the states are estimated independently of one another.
Because the Kalman filter propagates the joint density of
the states through prediction and update steps, however, the
cross link to the measurements through the gains can be
easily overlooked.
[67] The influence of the Kalman gains are important

because the state update estimates in the forward filter are
the best estimates at any given time period in the forward
recursions. A similar gain matrix also exists for the back-
ward recursions, but not, per se for the smoothed estimates
themselves. More importantly, the gains are influenced by
the noise covariances Rk and Qk, and their affect on the
gains can be assessed through sensitivity analysis in the
process of filter tuning. The larger the number of states and
measurements, the more difficult any sensitivity analysis is
to undertake because of the interactions entering into the
estimates that are partially manifest through the gains as just
described. Any analysis must be undertaken conditionally,
by modifying only one or two variance components at a
time while holding the others constant. In addition, some
criterion must be chosen for assessing the effects of the
analysis. Because the final estimate of INEE and its vari-
ance are of major importance, we limit the discussion to the
final forward filter estimate of these quantities.
[68] We ran numerous sensitivity trials in the tuning phase

of the filter. In general, we noticed that the model we present
is quite robust to changes in both initial conditions and
individual (and sometimes joint) variance components. One
interesting point to notice is that the standard deviation of
our estimate for INEE is only 2.44 grams. Increasing the
variance component for INEE in Qk tenfold, produced no
significant difference in either the state estimate or the
estimated variance. Similarly, since it has been established
that NEE (directly) and PPFD (via (3)) are the major
contributors to INEE in our model, modifying their respec-
tive components of Rk and Qk would be of interest. Increas-
ing the measurement noise variance component for NEE in
Rk tenfold during the dormant season and adding a fourfold
increase in the measurement noise components for NEE
during the growing season as well, resulted in no significant
change to either the state or variance estimates for INEE.
However, adding to these the same increases in the variance
component for NEE in Rwk

in the parameter filter reduced
the overall state estimate of INEE by 24 grams and the
associated estimated standard deviation by half a gram.

These results suggests that the model is much less sensitive
to increasing the measurement noise variance during the
dormant season than during the growing season. In addition,
it illustrates that the uncertainty of the estimate is quite
robust to changes in NEE measurement noise variance.
However, the estimate itself was decreased because of the
tendency of the gains to weight more favorably in terms of
the model, discounting the NEE measurements under the
scenario of increased measurement noise forcing. Adding
the increased variance to the parameter filter affected the
growing season trajectory for E0 while the other parameters
remained largely unchanged. Similar results were found by
increasing the process noise variance components for PPFD
by 1000 in both the dormant and growing seasons.
[69] In order to observe any substantive change in esti-

mated variance for the final INEE estimate, it was necessary
to increase the measurement noise variance on PPFD
fourfold for the growing season. This still only raised the
final estimated standard deviation by 2 grams; however, it
did also quite drastically increase the estimated INEE by
close to 70 grams. Fortunately, this final scenario is so
extreme, that it would be considered outside the possible
variance domain for our model.
[70] One last point to bring out is the suggestion from the

above runs that changing the variances in Rwk
for the

parameter filter exert a significant influence on the final
estimate. However, this change in variance was in addition
to parallel changes in Rk that had already been made.
Adding these effects in a different order, it is easy to show
that the change was really due to the increased variance
component on NEE during the growing season for both
filters. However, this raises the interesting question
concerning the effects of the parameter variances on the
final estimates when all initial conditions and variances are
held to those in our original formulation. To help answer
this question, Rwk

was set equal to the identity matrix in a
new filter run. The estimate for INEE was �295.94 grams
with a standard deviation of 2.28 grams. All parameters
effectively tracked the original estimates exactly during the
dormant season and A, K and Rp were very close during the
rest of the year. The main deviation was found in growing
season estimates for E0. Even then, however, the overall
trajectory was very similar, just raised higher during the late
spring and early summer and converging again in Septem-
ber. This exercise is important because it illustrates the
robustness of the filter to changes in parameter measure-
ment variance components. The parallel track taken by E0

(with slight adjustments in Rp) could be due to equifinality,
which has been observed in several other inverse modeling
analyses of surface-atmosphere exchange [Franks et al.,
1997; Schulz et al., 2001]. The main effect of decreasing the
measurement variances in the parameter filter is to corre-
spondingly decrease the estimated variances and subsequent
confidence interval widths. Since the parameter filter is
indeed a minimizer, this result makes a good deal of sense;
it is discussed in greater detail by van der Merwe [2004].

5. Discussion

[71] In this study the dual approach to state and parameter
estimation was used. However, as noted earlier, a related
joint approach could also have been used. Theoretically, the
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difference between the two is that the joint approach
assumes explicit statistical dependence between states and
parameters by allowing estimation of the cross state-param-
eter covariance terms, whereas in the dual approach these
terms do not exist, effectively tantamount to assuming
independence. However, even though the states and param-
eters were estimated in this quasi-independent manner under
the dual filter (i.e., the cross covariances were implicitly
zero), the correlations between states and parameters from
our filter estimates (Table 1) show that the state-parameter
switching at each time period does indeed introduce some
implicit dependence. It would therefore be an interesting
experiment, given this dependence, to see whether a joint
modeling approach might be fruitful within our filter model
formulation and whether the results obtained would differ
significantly. This might be undertaken as part of a larger
Monte Carlo simulation study. It is anticipated, however,
that the estimate of INEE calculated via the joint approach
would be similar to the present estimates.
[72] Two other Kalman-based methods have been devel-

oped recently that are very similar to the UKF. Ito and
Xiong [2000] developed the central difference filter, while
Nørgaard et al. [2000] independently developed the divided
difference filter. Both filters use Sterling’s interpolation
methods to propagate the first two moments through the
filter using a derivativeless deterministic sampling approach
as in the UKF. Because the algorithms are so similar, these
two filters can be considered the same for all practical
purposes. In comparisons with the UKF, van der Merwe
[2004] has found that they both yield very similar results.
[73] The literature on optimal estimation is vast, and

numerous different filtering algorithms have been devel-
oped over the years to address different shortcomings to the
Kalman filter when applied outside its original intent (i.e.,
linear propagation of the first two moments of the joint
density). Methods for parameter estimation, nonlinearities,
estimation of initial conditions, Bayesian extensions and
many others have been developed; however, the basic set of
recursions developed by Kalman still lay at the heart of
most of these extensions. This is also true of two methods
that have recently been applied to eddy flux data. In the first
study, the state-dependent parameter (SDP) estimation ap-
proach [Young, 2000] was applied to eddy covariance data
on an hourly time step [Jarvis et al., 2004]. The SDP
approach makes no a priori assumptions about the process
models; rather it uses a multistep approach culminating in
an empirical process formulation. In the SDP approach, the
Kalman filter and smoother are run on nontemporally sorted
data with time-varying parameters following a random walk
model, facilitating simultaneous gap filling in this sorted
state space. Final model identification was subsequently
conducted from the final Kalman smoother estimates inte-
grated over a daily time step to capture seasonal variation,
producing site-specific empirical process models with con-
stant parameter estimates.
[74] In a slightly more recent study, Williams et al. [2005]

have employed a very powerful method known as the
ensemble Kalman filter (EnKF), originally developed for
high-dimensional modeling of ocean systems [Evensen,
2003]. The EnKF is a Markov Chain Monte Carlo approach
that runs a parallel ensemble of filters together in time. The
ensemble nature of this filter obviates the need to propagate

forward high-dimensional covariance estimates as part of
the filter algorithms, while also handling nonlinear dynam-
ics without resorting to linearization. Williams et al. [2005]
applied the EnKF to data that had been previously filled and
integrated to a daily time step to accommodate their process
models. Their application embedded the filter within a
minimizer (sums of squared innovations) to estimate con-
stant parameter values and initial conditions. Harvey [1989,
p. 129] discusses the conditions under which such a
criterion function is asymptotically equivalent to a maxi-
mum likelihood approach assuming linear Gaussian noise.
This approach results in fixed initial conditions and constant
parameter estimates for use in the process model dynamics
in the filter.
[75] The SDP and EnKF approaches differ from our

approach in several respects. First, we have made no
assumption about the distributional properties of the
noise terms, measurements, or states other than that the
joint densities can be captured by their first two moments.
Because Gaussianity may not be appropriate for our mea-
surement data [Hollinger and Richardson, 2005], traditional
Gaussian-based ML and EM approaches for hyperparameter
and initial condition estimation, while robust, may not be
entirely appropriate, especially with nonlinear system
dynamics. Instead, we opted for estimating initial condi-
tions and noise variances prior to filtering, while letting the
process model parameter estimates evolve in time contem-
poraneously with the states, yielding a time-varying param-
eter trajectory that is correlated with the state estimates.
This result is appealing for simple process models like ours,
because the time-varying parameters may help to account
for unmodeled system processes. This result is also in
contrast to the other approaches, where the final parameter
estimates are constants. Finally, in our approach gap-
filling occurs coincident to estimation, whereas in the
EnKF gaps were filled prior to estimation, or in the
case of SDP estimation, while the data were sorted
nontemporally.
[76] In light of the new applications of SDP and EnKF

methods, eddy flux scientists now are beginning to have a
number of choices for efficient data-model fusion methods
for estimation of nonlinear systems that would include the
UKF and its close variants. We have already suggested
several more salient ways in which our approach could be
improved, in the following we provide some discussion of
the more subtle components of our model and analysis, with
an eye toward future enhancements.

5.1. Time-Varying Parameters

[77] Several studies have recently explored the idea that
carbon flux model parameters vary with time. We have
already discussed the SDP approach taken by Jarvis et al.
[2004], for example. In addition, Raupach et al. [2005], in
discussing a joint filtering approach with state vector
augmentation, note that allowing parameters to drift through
time is a potential advantage of such techniques. However,
such observations are not limited to filtering approaches.
Wang et al. [2003] demonstrate how model parameters
change seasonally and yearly using process models similar
to ours, when fitted by traditional least squares. Hollinger et
al. [2004] use ML to fit (3) and (4) to monthly 1996 eddy
flux data from Howland. They observed monthly variation

D08S07 GOVE AND HOLLINGER: DUAL UNSCENTED KALMAN FILTER

17 of 21

D08S07



in the parameter estimates with a high degree of correlation
between A and K. These authors suggest that parameter
variability may be due at least in part to the simplicity of the
model, and conjectured that incorporating other factors
might allow at least one of the parameters to stabilize.
[78] Our estimation approach yields time-varying model

parameters (Figure 3), and while this appears to be useful in
settings such as ours, there are still some unresolved
questions. First, if parameter variability is due in part to
overly simplistic models, one might propose using more
complicated models that would include a more complete
range of the state processes captured by the measurements.
Indeed, one can imagine a complex model that almost
completely accounts for ecosystem behavior (and would
thus have at least some time-invariant parameters) that is far
beyond our simple process model. Compared to other
common models of ecosystem C exchange, we ignore
temperature effects on photosynthesis, saturation deficit,
soil water stress, ratio of direct to diffuse PPFD, seasonal
phenological effects such as foliage production, and other
factors. The influences of these other factors are, to some
extent, swept into the four free parameters of the present
model, and when their influence is strong, such as the
impact of the first hard frost in the fall (i.e., several days
prior to the switch), the effect on the model parameters can
be severe. In addition, while more complicated process
models can easily be implemented with the UKF approach,
doing so introduces more states and parameters, increasing
the dimensionality of the estimation problem. In such
systems, correlations between parameters could become
more of a problem as the limited information content in
the flux measurements [Schulz et al., 2001] does not change
commensurate with the increased model dimensionality.
Indeed the extent to which free parameters vary in a
model-data fusion such as this could be diagnostic of the
‘‘completeness’’ of the model.
[79] Second, it is unclear at this time how the extramodel

variation in the measurements is being partitioned between
noise covariances and parameter variability in the dual
approach. In the usual application of the Kalman filter to
state estimation (parameters assumed known or possibly
estimated by embedding the filter in likelihood iteration),
the role of the noise covariance matrices are quite well
understood in relation to their effects on the gains, and thus
the optimal weighting of measurements and model predic-
tions in the update step. For example, in univariate filters,
the ratio of process to measurement noise variances is often
used, e.g., to determine the rate of convergence to steady
state conditions, while in multivariate settings it is the
ratio of the eigenvalues of the noise covariance matrices
[Maybeck, 1979, p. 224]. However, we noted in the sensi-
tivity analysis to our approach that often fairly large
(several-fold) changes could be made to components of
the noise covariance matrices without changing the final
state or variance estimates of INEE significantly. This can
be corroborated by noting that increasing the process noise
variances for the random walk components of the model
tenfold, changed the final estimate of INEE by less than a
gram, while the estimated variance remained virtually
unchanged. This brings up the interesting, and unresolved
question as to whether the ability of time-varying parame-
ters in such systems to absorb extramodel noise in the

observations mediates to some extent the classic roles of
the noise covariance terms.

5.2. Switching Models

[80] The deterministic switch in our model can produce a
fairly abrupt change in some estimated model parameter
trajectories. This can be partially explained by noting that in
the dormant season, NEE is composed mostly of respiration
through R, but on warm days some photosynthesis can
occur in A. While the simple dormant season models in
(7) and (8) are certainly useful, they impart little knowledge
of the process dynamics. At the winter-spring switching
point, two related events happen. First, NEE is partitioned
into R plus photosynthesis components, rather than being
composed almost entirely of R. Second, a switch is made
from models (7) and (8) to the process models for NEE
and R. These two ‘‘shocks’’ to the system dynamics in a
filter that has been in a fairly steady state, awaken it, as it
were, to the growth that is beginning in the ecosystem.
Thus any observed jumps in parameter trajectories are a
manifestation of our models and the sharp switch between
the seasons in spring. This same explanation can be used
in the fall-winter season and applies to the drop in Rp that
happens at the switch point. While Rp has been declining
steadily with the decline in R, we effectively turn off its
relationship to temperature and again force it to be equated
to R and NEE. Simultaneously, E0 is adjusted more
heavily because of its larger variance, accommodating
the adjustment required in Rp.
[81] In general, a hard deterministic switch is undoubt-

edly not the best method to use in the transition between
dormant and growing seasons because in many places such
transitions tend to be gradual. Other possibilities include
precomputing running temperature averages or including
soil temperature as a measurement and state to facilitate
model refinements that would allow for multiple switch
points during the transition period. In addition, the concepts
used in stochastic switching models [Hamilton, 1993],
might also be fruitfully employed.

5.3. Estimation Uncertainty

[82] The standard deviation in the UKF estimation of
annual NEE (2.44 g m�2) is less than 1% of estimated
annual NEE. Compared to previous estimates of uncertainty
in annual NEE [Goulden et al., 1996b; Falge et al., 2001a;
Griffis et al., 2003], this is a low value and warrants
additional discussion. First, when NEE data are missing,
the filter assumes that the model parameters are fixed,
having no new information with which to update them,
only adjusting parameters to new values when measured
data again become available. With locally fixed parameters
and only environmental data available, model uncertainty
for these gaps will thus be low. On the basis of the observed
parameter variability (Figure 3) this is reasonable for short
gaps (a few days) but not over longer periods (weeks). In
light of this, gaps are also more problematic in the begin-
ning and end of the growing season when model parameters
are changing rapidly.
[83] Second, our present results show that, while there is

some change in the variance of the estimates for NEE where
gaps occur, the variance does not increase substantially with
time, even over many consecutive days of missing obser-
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vations. This seems somewhat counterintuitive as one
would expect there to be less certainty as we progress in
time in the absence of measurements. However, it is well
known that the linear Kalman filter covariances (both
prediction and update) and gains, will reach a steady state
in circumstances where the system matrices F and H, as
well as the noise covariances Q and R are constant [Gelb,
1974, p. 142]. Indeed, under such conditions the steady state
may be reached after only a few time steps [e.g., Maybeck,
1979, pp. 223–226]. This phenomenon occurs because the
filter covariances and gains do not depend upon the
measurements directly, even though the conditional means
(state estimates) do. This is actually an appealing situation,
since it allows filter designers to precompute the gain and
filter variances offline, before any measurements are col-
lected; these can then be used for optimizing filter design
[Maybeck, 1979, p. 222]. In our model, H, Q and R are all
constant matrices as in the linear case. In addition, our
system model, f, is only mildly nonlinear. Since the UKF
performs a statistical linearization at the current state, the
mild nonlinearity evidently is discounted and the system
becomes effectively linear.
[84] It can be seen from Figure 5 that the smoothed

standard deviations for NEE are essentially constant at
two levels corresponding to missing and nonmissing data
(with slight diurnal variation). In addition, so are the
corresponding NEE � NEE gains in Figure 6. Mathemat-
ically, the update variance contribution in our model for the
nonmissing time periods is (1 � k11)p11 � k12p21 � k13p31
(where the kij are elements of the gain matrix and the pij are
from the prediction covariance matrix at some fixed time)
and for those with missing data, p11 � k12p21 � k13p31,
since the gain is set to zero for NEE (i.e., k11 = 0). Thus,
when the covariance matrices are in steady state (i.e., the pij
and kij are constant), the variances simply fluctuate between
these two different values depending upon whether NEE
measurements are present or not. In more complicated
models where the system or noise covariance matrices are
allowed to vary in time, this interpretation would not
necessarily hold.
[85] Lastly, flux data are also characterized by several

systematic errors (biases) that are more difficult to quantify
and were excluded from the present analysis. These errors
include incorrectly specified spectral correction models to
account for high- and low-frequency losses by real mea-
surement systems using finite integration intervals, as well
as possible errors in instrument calibration, data acquisi-
tion, and processing. Generally, it is believed that the
largest systematic errors in CO2 flux measurements are
related to problems of insufficient nocturnal turbulence.
The eddy covariance method depends upon scalar turbu-
lent transport and if the nocturnal atmosphere becomes
overly stable, transport between the ecosystem and over-
lying instrumentation can become temporarily uncoupled
with the result that the measured flux is less than the true
flux. Stable nocturnal conditions favor the development of
katabatic flows that may carry CO2 out of the ecosystem
in surface flows that are never perceived by the flux
instrumentation. To screen out artificially low nocturnal
flux measurements, many researchers establish minimum
turbulence criteria and only accept measurements if turbu-
lent mixing exceeds the criteria threshold. Goulden et al.

[1996a, 1996b] pioneered this approach and used a mean
half-hourly friction velocity (u*, the square root of the
momentum flux) of 0.2 m s�1 as their threshold. The exact
u* cutoff is somewhat arbitrary and may depend upon the
site. For the Howland data, Hollinger et al. [2004] used a
u* threshold of 0.25 m s�1 but also calculated NEE with
u* thresholds of 0.2 and 0.3 m s�1. These values led
to annual NEE estimates in 2000 that ranged between
�287 and �251 g C m�2 y�1. In the current analysis, we
reran the filter with these same u* thresholds of 0.2 and
0.3 m s�1. The resulting estimates were �311 and �276 g
C m�2 y�1 with estimated standard deviations of 2.4 and
2.5 grams, respectively. It is interesting to note that the
range in both cases is almost identical.
[86] In addition, the u* data are also noisy measurements;

however, they have been used as true, uncorrected values
without the benefit of filter estimation, as part of the
prefiltering data step. With this in mind, the results of our
analysis can be considered conditional on the u* threshold
chosen. Likewise, we note again that the results are also
conditional on the values of the a priori estimates of
unknown filter components such as the initial conditions
and noise covariances. This considered, it is clear that the
systematic NEE uncertainty is far larger than the random
uncertainty derived from the data-model fusion. Therefore
our resulting estimate of uncertainty should not be taken as
reflecting the true uncertainty in ecosystem C exchange.

5.4. Gap Filling

[87] Falge et al. [2001a] highlight the need for consistent
treatment of flux data, especially with regard to the model-
ing (filling) of gaps in the data record prior to synthesis
efforts. Although several different methodologies were
compared, including mean diurnal variation, look-up tables,
and nonlinear regressions, no method was judged superior.
Worryingly, annual NEE could differ by over 100 g C m�2

(30%), depending upon methodology. For each of these
methods, the results of gap filling also depend upon an
arbitrary time period. This may be a moving weeklong
window for constructing a lookup table or monthly or
seasonal periods for establishing nonlinear physiological
model parameter values. In any case, altering the length, or
beginning and ending dates of the time periods will change
the gap filled values and hence the annual NEE estimate.
Lack of consistency in choices will lead to variation in NEE
calculated at different sites that has no ecological or
environmental basis. Another potential problem is the recent
finding of nonnormality in eddy flux measurement error
[Hollinger and Richardson, 2005; Richardson et al., 2006].
To correctly infer the parameters of models used in the gap
filling process from flux data, the ML method should be
used. If data errors are normally distributed with constant
variance, least squares regression techniques yield ML
parameter estimates; however, since flux data diverge from
this standard, parameter values calculated by least squares
methods are incorrect. These authors argue that flux data
uncertainty is better represented by a double exponential
probability density function and use the convenient ML
estimation properties of this distribution to calculate flux
model parameters [Richardson and Hollinger, 2005]. They
show that filling in eddy flux gaps with models using
parameters calculated in this manner can reduce estimated
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respiration and consequently increases estimated INEE by
40 g C m�2 relative to least squares methods.
[88] We suggest that the UKF described here (or some

similar variant) may be a suitable tool for providing
consistency in filling gaps in eddy flux data time series.
The UKF provides an approximate, close-to-optimal solu-
tion for the missing flux estimation problem (no nonlinear
method can be truly optimal in general, because the
optimal Bayesian solution requires propagating the full
non-Gaussian joint probability density) and the autoregres-
sive nature of the filter means that the prediction models
are continuously updated, eliminating subjective decisions
about time periods or dates that underlie other methods.
The UKF is not limited to assumptions of normality in the
data uncertainty. The filter requires information about the
measurement and model uncertainty, which can be esti-
mated in several ways for flux towers [e.g., Hollinger and
Richardson, 2005] and by Monte Carlo methods for models
[e.g., Richardson and Hollinger, 2005]. As presently for-
mulated, the UKF also requires complete (gap free) time
series of PPFD and T; however, alternative formulations
may not impose this requirement. Once the work of coding
the UKF has been completed, it can quickly run through
data from a variety of years or sites.
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