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In recent years alternative modeling techniques have been used to account for spatial autocorrelations among data observations. 
They include linear mixed model (LMM), generalized additive model (GAM), multi-layer perceptron (MLP).neural network, 
radial basis function (RBF) neural network, and geographically weighted regression (GWR). Previous studies show these models 
are robust to the violation of model assumptions and flexible to nonlinear relationships among variables. However, many of them 
are non-spatiai in nature. In this study, we utilize a local spatial analysis method (i.e., local Moran coefficient) to investigate 
spatial distribution and heterogeneity in model residuals from those modeling techniques with ordinary least-squares (OLS) as 
the benchmark. The regression model used in this study has tree crown area as the response variable, and tree diameter and the 
coordinates of tree locations as the predictor variables. The results indicate that LMM, GAM, MLP and RBF may improve model 
fitting to the data and provide better predictions for the response variable, but they generate spatial patterns for model residuals 
similarto OLS. The OLS, LMM, GAM, MLP and RBF models yield more residual clusters of similar values, indicating that trees 
in some sub-areas are either all underestimated or all overestimated for the response variable. In contrast, GWR estimates model 
coefficients at each location in the study area, and produces more accurate predictions for the response variable. Furthermore, 
the residuals of the GWR model have more desirable spatial distributions than the ones derived from the OLS, LMM, GAM, 
MLP and RBF models. 
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1. Introduction 

Ordinary least-squares (OLS) has been a widely ap- 
plied technique to estimate model parameters in  forest 
and ecological modeling practices. However, one of 
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the OLS assumptions, independence of observations, 
is often violated due to temporal orland spatial auto- 
correlations in data, which leads to a biased estima- 
tion of the standard errors of model parameters and, 
consequently, misleading significance tests (Anselin 
and Griffith, 1988; Fox et al., 2001). Temporal au- 
tocorrelation has received early attention since the 
1960s. A number of statistical methods have been ap- 
plied to overcome the problem (e.g., Gregoire et al., 
1995). In contrast, the violation of the OLS assump- 
tion due to spatial dependency has not drawn much 
attention in forest and ecological studies until recent 
years. Modern modeling techniques have increasingly 
become popular to deal with spatial autocorrelation and 
heterogeneity for predicting forest composition and at- 
tributes, species distributions, biodiversity, forest type 
and class, insect attack, etc. These techniques include 
generalized linear model (GLM), linear mixed model 
(LMM), generalized additive model (CAM), classifi- 
cation and regression tree (CART), multivariate adap- 
tive regression splines (MARS), artificial neural net- 
works (ANN), and geographically weighted regression 
(GWR) (e.g., Austin and Meyers, 1996; Preisler et al., 
1997; Lehmann, 1998; Moisen and Edwards, 1999; 
Moisen et al., 1999; Guisan and Zimmermann, 2000; 
Frescino et al., 2001; Gullison and Bourque, 2001; 
Tappeiner et al., 2001; Austin, 2002; Zaniewski et al., 
2002; Guisan et al,, 2002; Moisen and Frescino, 2002; 
Lehmann et al., 2003; Foody, 2003; Zhang et al., 2004; 
Zhang and Shi, 2004). 

These modem modeling techniques have desirable 
features: they are robust when applied to correlated 
data, have less restrictions in assumptions, and are flex- 
ible in modeling non-linearity and non-constant vari- 
ance structures (Guisan et al., 2002; Moisen and Fres- 
cino, 2002). However, many of them are non-spatial in 
nature (Laffan, 1999). Although the improvement of 
model fitting and estimating parameter standard errors 
is evident in the previous studies, little attention has 
been paid to the spatial heterogeneity of model perfor- 
mance. Many studies assessed the models in terms of 
overall model performance, accuracy, and errors (e.g., 
Moisen and Frescino, 2002; Robertson et al., 2003). 
Since global assesgment summarizes the model errors 
from many locations, information is not available on 
where some parts of the study area are better predicted 
than others. A few studies used maps to locally evalu- 
ate the model residuals (Rathert et al., 1999; Anderson 

et al., 2003). Visualization, however, does not enable 
us to identify significant clusters of positive or neg- 
ative model residuals at multiple scales. Others sug- 
gested the use of local indicator of spatial association 
(LISA) to assess the spatial heterogeneity of model 
residuals (Laffan, 1999; Tiefelsdorf, 2000; Overmars 
et al., 2003). When data are collected across a large 
spatial region, it is anticipated that there will be one or 
more sub-areas where the sizes and shapes of variables 
or relationships between variables are different from 
"normal" situations. Unless prior information is avail- 
able, one may not be able to detect the number, loca- 
tions, sizes, and shapes of such anomalies by global as- 
sessment. LISA is designed to reveal such peculiarities 
(Boots, 2002; Dale and Fortin, 2002), and has been used 
to successfully identify clusters in biological datasets, 
and to identify "hot spots" (positive autocorrelation, or 
similarity) and "cold spots" (negative autocorrelation, 
or dissimilarity) of Wee growth and competition (Sokal 
et al., 1998a,b; Shi and Zhang, 2003). 

The objectives of this study were (1) to apply six 
modeling techniques (i.e., OLS, LMM, CAM, MLP, 
RBF, and GWR) to model the relationships between 
tree crown area and diameter, (2) to evaluate the perfor- 
mance of above six models using overall model resid- 
uals, and residuals across tree size classes, and (3) to 
spatially assess the performance of the six models in 
terms of spatial distributions and clustering of posi- 
tivelnegative model errors using the maps of model 
residuals and local Moran coefficients. 

2. Theoretical background 

We briefly review the theory for the six modeling 
techniques used in this study. 

2.1. Ordinary least squares (OLS) 

Suppose we have a set of n observations (k - 1, 2, 
. . ., n) on p (g = 1, 2, . . ., p) independent or predictor 
variables X, and a dependent or response variable Y. The 
relationship between Y and X can be regressed using 
OLS as follows: 



1 

L Zhang et al. /Ecological Modelling 186 (2005) 154-177 

where Y is a vector of the observed response variable, 
Xis a known model matrix including a column of 1 (for 
intercept) and p independent variables, j3 is a vector of 
unknown fixed-effects parameters, and E is a random 
error term whose distribution is N (0, ?*I), with I de- 
noting an identity matrix. The OLS estimate of j3 is 
obtained by the least-squares method as 

where'superscript T denotes the kanspose of a matrix. 
The relationship represented by Eq. (1) is assumed'to 
be universal or constant across the geographic area. 

2.2. Linear mixed model (LMM) 

A linear mixed model can be expressed as 

where Y, X, and j3 are as defined in Eq. (I), Z is a 
known design matrix, y is a vector of unknown random- 
effects parameters, and E is a vector of unobserved ran- 
dom errors. It is assumed: (1) E(y) = O  and Var(y) = G, 
(2), E(E) = 0 and Var(~) = R, (3) Cov(y, E) = 0, and (4) 
both y and E are normally distributed. The variance 
of Y is V= Z G Z ~  + R, and can be estimated by set- 
ting up the random-effects design matrix Z and by 
specifying covariance structures for G and R (Littell 
et pl., 1996). However, OLS is no longer considered 
as the best approach to estimating LMM. Likelihood- 
based methods (e.g., maximum likelihood (ML) and 
restricted/residual maximum likelihood  RE^)) are 
usually used to solve for j3 and y, under the assump- 
tion that y and E are normally distributed. Numerical 
algorithms such as Newton-Raphson algorithm can be 
used to obtain 

,!I = ( x T @ - ~ x ) - ~ x T ~ - ~ x  (4) 

LMM can be used to model spatial correlation among 
obse~ations in data through R = V&(E) such that 

where do is the distance between locations i and j. Dif- 
ferent function~fid~) are available including spherical, 
exponential, Gaussian, power, etc. The likelihood ra- 
tio test can be used to test whether it is necessary to 
model the covariance structure of the data (Liaell et al., 
1996). Furthermore, the empirical best linear unbiased 

predictions (EBLUP) should be used to take spatial au- 
tocorrelations into account for predicting the response 
variable (Schabenberger and Pierce, 2002, p. 683). 

2.3. Generalized additive model (GAM) 

GAM is a nonparametric extension of GLM (Hastie 
and Tibshirani, 1990; Guisan et al., 2002). While GLM 
emphasizes estimation and inference for the parameters 
of the model, GAM focuses on exploring data nonpara- 
metrically. The strength of CAM is its ability to deal 
with highly non-linear and non-monotonic relation- 
ships between the response variable and the set of ex- 
planatory variables. Thus, GAM is sometimes referred 
to as data-driven rather than model-driven (Guisan 
et a]., 2002). In general, GAM can be expressed as: 

where So is the intercept, and Sg(Xg) is a nonparametric 
smoothing function for the gth independent variable X. 
The only underlying assumption is that the smoothing 
functions in GAM are additive. This additive restric- 
tion allows us to interpret a GAM model in a similar 
way as a traditional linear regression model. GAM can 
be commonly fitted by numerical algorithms such as so 
called backfitting, in which the nonpararnetric smooth- 
ing functions Sg(Xg) are sought for minimizing 

A wide range of nonparametric functions is available 
for GAM. The combinations of these functions are 
also possible. Several smoothers are commonly used: 
(1) cubic spline smoothing, (2) B-spline smoothing, 
(3) polynomial cubic spline smoothing, (4) locally 
weighted scatter plot smoothing (LOESS), (5) mul- 
tivariate LOESS, and (6) bivariate thin-plate spline 
smoothing (Venables and Ripley, 1997; SAS Institute, 
Inc. 2002). 

2.4. Multi-layer perceptron (MLP) neural network 

MLP is the most popular neural network model, 
which commonly consists of three successive layers: 
input layer (X), hidden layer (H), and output layer 
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(Y). The three layers consist of simple computational 
units called nodes. The nodes from one layer are con- 
nected or linked to all nodes in the adjacent layer(s). 
But there are no lateral connections within any layer, 
nor are feedback connections possible in a MLP net- 
work. Therefore, MLP is also known as a multi-layer 
feed-forward neural network. Each connection has a 
set of weights (i.e., coefficients) that represents the 
strength of the connection. In the input layer, the num- 
ber of nodes corresponds to the number of input fea- 
tures (i.e., predictor variables, X). The number of nodes 
in the output layer corresponds to the number of tar- 
get variables (i.e., response variable, Y). The layer be- 
tween the input and output is called the hidden layer 
(H), which has no direct connections outside the neu- 
ral network. In practice, there is very rarely an advan- 
tage in using more than one hidden layer (Lippmann, 
1987; Rumelhart et al., 1987). The input features and 
output variables are known observations in the data. 
When they are presented to the input nodes and out- 
put nodes, respectively, so called activation functions 
are used to link the net input to the hidden nodes, as 
well as the hidden nodes to the output nodes. To ac- 
complish the optimization of the weights in the acti- 
vation functions, an error back-propagation algorithm 
is commonly used to minimize the objective function 
defined, as 

This is the sum of squared difference between the pre- 
dicted output (f) and the observed output (Y) aver- 
aged over all input and output observations (Warner 
and Misra, 1996). By updating the weights (i.e., coeffi- 
cients) of the activation functions, the neural network is 
said to be learning. Theconnection weights are adjusted 
using the error back-propagation algorithm based on 
the generalized delta rple (Rumelhart et al., 1987) such 
that the weights between two layers are computed iter- 
atively as: 

where AO(t + 1) is the change of the weights between 
the input layer and the hidden layer at the (t+ 1)th iter- 
ation, AO(t) is the change of the weights between the 

input layer and the hidden layer at the tth iteration, ~1 

is the model error term for the hidden layer, A6(t + 1) 
is the change of the weights between the hidden layer 
and the output layer at the (t+ 1)th iteration, A@(?) is 
the change of the weights between the hidden layer 
and the output layer at the tth iteration, 82 is the model 
error term for the output layer, 7 is the learning rate 
(analogous to the step-size in a gradient-descent-based 
optimization), and oc is the momentum parameter. The 
above procedure is repeated for all the training sam- 
ples until the network errors are less than a predefined 
threshold or stabilized. Training and learning are fun- 
damental to many neural networks (analogous to pa- 
rameter estimation procedures in statistics) (Rumelhart 
et al., 1987; Warner and Misra, 1996). The activa- 
tion functions used in MLP include logistic, Gaus- 
sian, linear, hyperbolic tangent, and threshold. A com- 
monly used activation function is the logistic function 
that introduces nonlinearity into the network (Lek and 
Guegan, 1999). 

2.5. Radial basis function (RBF) neural 
network 

RBF is also a general-purpose neural network 
model. It is a supervised, feed-forward neural network 
with one hidden layer of artificial neurons (Shin and 
Goel, 2000). The hidden nodes in the RBF networks 
contain the "Radial Basis Function", a statistical trans- 
formation based on a Gaussian kernel (Fischer, 1997). 
In a RBF network, the net input to the hidden layer is 
not a linear combination of the inputs as specified by 
the weights. Instead the entire input vector is passed 
directly without changes to the hidden nodes. The hid- 

' 

den nodes have a "basis function" which has the pa- 
rameters "center" and "width". The center of the basis 
function is a vector of weights (8) of the same size. 
There is normally a different center for each hiidden 
node. In the computation of net input, d is measured 
in terms of the Euclidean distance (radial distance) 
between the input vector (X) and the weight vectors 
CB): 

where h is the bandwidth associated with the hidden 
nodes called the smoothing parameter. The fraction of 
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Fig. 1. Location map of tree diameters. The size of the circle is proportional to tree DBH. 

overlap between each hidden node and its neighboring 2000). The output layer computes the predicted output 
nodes is decided by the bandwidth. The output from (P) as a linear combination of the hidden output val- 
the hidden nodes is computed by an activation func- ues. Since the basis function responds only to a small 
tion such as Gaussian, thin-plate spline, linear, mul- region of the input space where it is centered, the hid- 
tiquadratic or inverse multiquadratic (Shin and Goel, den nodes in RBF are also called localized receptive 

0 10 20 30 40 50 60 70 80 90 

DBH (em) 

Fig. 2. Scatterplot of tree crown area vs. diameter. 
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field or locally tuned processing units, which are sim- function by a k-means-based clustering algorithm, and 
ilar to the "kernel" in kernel regression (Sarle, 1994). (2) the weights for the outputs are found by minimizing 
Therefore, the RBF networks are localized, while the the objective function similar to Eq. (8) with an error 
MLP networks are global (Murnion, 1999). RBF is back-propagation algorithm sirnilar,to Eqs. (9) and ( I  0) 
commonly trained in a two-stage procedure: (1) the (Fischer, 1997; Shin and Goel, 2000; Mitra and Basak, 
input data is used to determine the centers of the basis 2001). 

obiective = 109.8375 

distance 

obiective =-6.0642 

0 5 10 15 20 

(b) distance 

Fig. 3. (a) Variogram of tree DBH (lag = 0.5 m, range =4.0 m). (b) Variogram of OLS model residual (lag = 0.5 m, range= 4.0 m). (c)  Variogram 
of LMM model residual (lag = 0.5 m, range = 4.4 m). (d) Variogram of GAM model residual (lag = 0.5 m, range = 4.9 m). (e) Variogram of MLP 
model residual (lag =0.5 m, range = 4.5 m). (f) Variogram of RBF model residual (lag = 0.5 m, range = 5.4 m). (g) Variogram of GWR model 
residual (lag =0.5 m, range = ? m). 
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Fig. 3.  (Continued) 

2.6. ~ e o ~ r a ~ h i c a l l ~  weighted regression (GWR) where {Bo(ui, v i ) , B ~ ( u i ,  vi), . . . , B p ( ~ i 9  vi)}are@+ 1) 
continuous functions of the location (u i ,  v i )  in the study 

Suppose that one has a set of location coordinates area. Again, E is the random error term with a distri- 
(ui, vi) for each observation i. The underlying model bution N(0, cr2r). The aim of GWR is to obtain the 
for GWR is estimates of these functions for each independent vari- 

able X and each geographic location i. This can be 
P achieved by using data near the location i. The esti- 

Y = Bo(ui, ~ i )  + C Pg(uir v i )Xg  + 8 (12) mation procedure of GWR is as follows: (1) draw a 
g= 1 circle of a given radius around one particular location i 
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Fig. 3.  (Continued) 

(the center), (2) compute a weight (wij)  for each neigh- where the weight matrix Wi is 
boring observation j according to the distance (dV) be- 
tween the location j and the center i, and (3) estiniate wil 0 . . . 
&e model coefficients using weighted least-squares re- 
gression such that Wi = 

. . 
win I 
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objective = 1.0763 
I 4 , 
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distance 

Fig. 3. (Continued ). 

If Wi = I (identity matrix), that is, if each observation in 
the data has a weight of unity, the GWR model is equiv- 
alent t'o the OLS model. A Gaussian distance-decay- 
based kernel function is commonly used to compute 
the weight rhatrix as follows: 

where h is referred to as the bandwidth. This kernel 
function assumes that the bandwidth at each center i 
is a constant across the study area (i.e., a fixed ker- 
nel). If the locations i and j coincide (i.e., dq=O), 
then w i j  equals one; otherwise as the distance dii in- 
creases the wi, decreases according to a Gaussian 
curve.. However, the weights are nonzero for all data 
points, no mauer how far they are from the cen- 
ter i (Fotheringham et al., 2002). Note that Eq. (13) 
is not a single equation but an array of equations, 
with each pi corresponding to a row of the matrix 
whose elements are pij. It is also possible to com- 
pute the standard error for each coefficient estimate. 
Once each of the wij has been calculated, the co- 
efficient matrix /3 can be computed row by row by 
repeated application of Eq. (13). Therefore, one ob- 
tains a set of estimates of spatially varying parame- 
ters without specifying a function form for the spatial 
variation (Brunsdon et al., 1998; Fotheringham et al., 
2002). 

3. Data and methods 

3.1. Data 

The data used in this study were the stem map data of 
a softwood stand located near Sault Ste. Marie, Ontario, 
Canada (Ek, 1969). It was a mature, second growth, 
and uneven-aged stand with 6811 trees. Major tree 
species included balsam fir (Abice balsamea (L.) Mill.) 
(53% in number of trees), black spruce (Picea nzariana 
(Mill.) BSP.) (40%), and white spruce (Picea glauca 
(Moench) Voss) (3.7%). Minor species were Tamarack 
(Larix laricina (Du Roi) K. Koch), white pine (Pinus 
strobus L.), balsam poplar (PopuIus balsamij?ra L.), 
white birch (Betula papyrifera Marsh.), etc. Tree lo- 
cation coordinates, diameters at breast height l(DBH), 
heights, and crown area (CROWN) for trees > 8.9 cm 
(3.5 in.) were available in the data. Due to insufficient 
computer memory for handling all trees for estimating 
the spatial variance matrix in LMM, the whole (data set 
was reduced to 5979 trees by deleting trees between 
0 and 5 m on the X-axis. The location map of the tree 
DBH is shown in Fig. 1, and the descriptive statistics 
of tree DBH and CROWN are listed in Table 1. 

3.2. Regression model 

We chose a linearregressionmodel to fit therelation- 
ship between tree CROWN and DBH (Fig. 2), in which 
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Table 1 
Descriptive statistics of tree variables for the example plot (n =5797 
trees) 

Variable Mean Std Minimum Maximum 

Diameter,(cm) 15.89 6.77 8.89 84.07 
Crown area (m2) 4.76 5.94 0.00 110.74 

CROWN was the response or dependent variable, and 
the predictor or independent variables included the co- 
ordinates (ui, vi) of tree locations, tree DBH and DBH~.  
We would like to point out that we did not intend to de- 
velop a predictive model for tree crown area. Rather, 
we attempt to investigate the spatial heterogeneity of 
the model residuals for fitting a simple relationship be- 
tween tree crown area and DBH by the six modeling 
techniques. Therefore, no other tree attributes or stand 
variables were considered as the predictor variables in 
the model. 

3.3. Model fitting and evaluation 

In this study, OLS and LMM were fitted using Sta- 
tistical Analysis System (SAS) 9.0 (SAS Institute, Inc. 
2002). GAM was fitted using S-Plus 6.2 (Insightful, 
Inc. 2003) due to extremely long computing time re- 
quired by SAS. MLP and RBF were fitted using a pub- 
lic domain package, LNKnet, which is developed at 
MIT Lincoln Laboratory (Kukoloch and Lippmann, 
1999, the software and the manual can be downloaded 
at http:Nwww.ll.mit.edUnST/). The GWR model was 
fitted using a computer software program, GWR 2.0. 
Detailed information on the GWR software is available 
at the web site http:Nwww.ncl.ac.uklgeography/GWR 
(Fotheringham et al., 2002). 

For the LMM model, different spatial covariance 
structures were tried to account for the spatial autocor- 
relations among trees, including Gaussian, exponential, 

Table 2 
Model fitting statistics for the six modeling techniques 

Model R~ SSE Tesf P-value 

OLS 0.76 50228 
LMM 0.96 9325 X 2  =2584 <:0.0001 
G AM 0.78 45558 F=24.59 cO.0001 
MLP 0.79 44746 
RBF 0.79 44969 
GWR 0.94 11746 F=4.69 <0.0001 

a Note: Hypothesis test for testing the improvement of model fitting 
over OLS. 

and spherical functions (Littell et al., 1996). The expo- 
nential covariance structure was selected according to 
the model fitting statistics such as Akaike's Informa- 
tion Criterion (AIC). The EBLUP predictions from the 
LMM model were used to compute the model residuals 
(Schabenberger and Pierce, 2002, p. 683). The GAM 
model was implemented with a multivariate LOESS 
function for the tree location coordinates ( t l i ,  vi), and 
a LOESS function for both DBH and D B H ~ ,  respec- 
tively (Insightful, Inc. 2003). The parameters of MLP 
were set at 24 nodes in one hidden layer, sigmoid acti- 
vation function, the learning rate r]  = 0.4, and a momen- 
tum coefficient a = 0.7. The settings for REF were 50 
centers with Gaussian activation function. The GWR 
model was fitted using the GWR 2.0 software with the 
Gaussian kernel function. The bandwidth in Eq. (15) 
was determined as h =4  m according to the variograms 
of tree DBH (Fig. 3(a)) and the OLS model residuals 
(Fig. 3(b)). This bandwidth was also used for com- 
puting local Moran coefficient for the model residuals 
from the six modeling methods. 

The model residuals were defined as the difference 
between the observed and predicted CROWN, and the 
absolute model residuals were calculated by taking the 
absolute values of the mode1 residuals. To examine the 
model residuals across tree sizes, all trees in the stand 

Table 3 . 
Characteristics of the model residuals from the six modeling techniques 

Model Mean Std Skewness Kurtosis Minimum 25% Q Median 75% Q Maximum -- 
OLS 0.000 2.90 0.72 16.05 -30.08 - 1.49 -0.37 1.48 38.04 
LMM 0.000 1.25 0.72 16.05 -12.96 -0.64 -0.16 0.64 16.39 
G AM 0.001 2.76 0.43 17.95 -35.67 - 1.33 -0.27 1.34 32.08 
MLP 0.008 2.74 0.61 13.72 -31.20 -1.26 -0.14 1.26 31.85 
REF 0.025 2.74 0.72 18.57 -34.03 - 1.26 -0.13 1.19 35.96 
GWR 0.034 1.40 0.58 8.10 -11.32 -0.74 -0.03 0.75 16.44 
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were grouped into diameter classes. Average model and 
absolute residuals were calculated for each diameter 
class. 

The spatial distributions of the model residuals from 
the six modeling techniques were investigated using 
the global and local Moran coefficients (Anselin, 1995; 
Tiefelsdorf, 20003 Boots, 2002). The global Moran co- 
efficient (MC) is defined by 

where ei and ej denote the model errors at locations i 
and j, respectively, 1 is the mean of ei over the n lo- 
cations, and cg(h) is the spatial weight measure within 
a given distance or bandwidth h (i.e., h =4m in this 
study): If location j is a neighbor of the subject loca- 
tion i, then cii(h) = l ; otherwise cg(h) = 0. The expected 
mean of the MC is - ll(n - 1). The Moran coefficient is 
positive when the observed values of locadions within 
the distance (h) tend to be similar, negative when they 
tend to be disbimilar, and approximately zero when the 
observed values are arranged randomly and indepen- 
dently over space. The expected value and variance 
of the MC for sample size n can be calculated using 
two sampling assumptions: normality or randomization 
(Cliff and Ord, 1981; Lee and Wong, 2001). A normal 

test for the null hypothesis of no spatial autocorrela- 
tion between observed values over the n locations can 
be conducted based on the standardized MC. 

Anselin (1995) showed that the global Moran co- 
efficient could be decomposed into local values. The 
local form of the Moran coefficient is given by: 

n 

MCi = (ei - E )  ci,(h)(ej - 2) (17) 
j= 1 

The first component (ei - 2) is the difference between 
the model residual ei at the reference location i and the 
mean, while the second component cij(h)(ej - 2) is 
the sum of differences between the neighboring model 
residuals ej and the mean. A positive local MCi indi- 
cates a cluster of data values around i, similar to, that at 
i, that deviate strongly (either positively or negatively) 
from 1. A negative local MCi describes the same sit- 
uation except that the sign of the model error at i is 
opposite to that of its neighbors. If either ei or the val- 
ues of ej in the neighborhood of i are close to 2, the lo- 
cal MCi will indicate no spatial autocorrelation (Boots, 
2002). When the local MCi is standardized by division 
by the variance (x (ej - .Z12/n), at pseudo-significant 
level of MCi can be obtained by a conditional >an- 
dornization or permutation approach (Lee and Wong, 
2001). 

I I I I 

GAM GWR LMM MLP OLS REF 
Model 

Fig. 4. Box plot of the model residuals from the six modeling techniques. 
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Fig. 5. Matrix plot for the relationships of the model residuals between the six modeling techniques. 

4. Results and discussion 

4.1. Model Jitting 

The OLS model fitted the tree data reasonably well, 
if the violation of the independence assumption was 
ignored. The OLS model had R~ =0.76, and the er- 
ror sum of squares (SSE) = 50,228. All model coeffi- 
cients were statistically significant (P < 0.05), but these 
tests may be biased due to the tpatial autocorrelations 
between observations. To account for the spatial au- 
tocorrelations among the trees, LMM was fitted to the 
data. The exponential covariance structure was selected 
since it had the smallest Akaike's AIC compared with 
other alternative covariance structures. LMM signif- 
icantly improved model fitting since its SSE (9325) 
was much smaller than that of OLS. The null model 
likelihood ratio test was also statistically significant 

(P < 0.0001), indicating that the exponential covariance 
structure was preferred to the diagonal one of the OLS 
model (Table 2). 

Table 2 also indicated that the GAM model fit the 
data better than did the OLS model. The GAM model 

Table 4 
Global Moran coefficient (MC) of the model residuals from the six 
modeling techniques 

Model Global MC Z-value' Z-valueh 

OLS 0.087 10.30 10.31 
LMM 0.087 10.30 10.31 
GAM 0.087 10.35 10.37 
MLP 0.111 13.11 13.13 
RBF 0.096 1 1.40 1 1.43 
GWR -0.151 -17.82 -17.83 

a Standard normal test based on the normality assumption. 
Standard normal test based on the randomization assumption. 
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Fig. 6. Model residuals across tree diameter classes. 

SSE (45,558) was smaller than the OLS model's SSE SSE as the GAM model that were better than those of 
(50,228). The F-test (F= 24.59) for testing the im- the OLS model (Table 2). Since there were no degrees 
provement of GAM over OLS was highly significant of freedom available in the output of LNKnet software 
(Pc0.0001) (Hastie and Tibshirani, 1990; Venables . for the SSEs of MLP and RBF, no statistical test was 
and Ripley, 1997). In addition, the three LOESS func- performed for the improvement of the two neural net- 
tions were statistically significant (Pc0.0001). The work models over OLS. However, the SSEs of MLP 
MLP and RBF models produced similar model R~ and andRBF were even smaller than that of GAM (Table 2). 

Model Absolute Residuals 
18 I 

U) g 12 
0 .- 
g lo-. 
P m 

- - --7 . 
c10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-60 60-70 >70 

DBH Class (cm) 

Fig. 7. Absolute model residuals across tree diameter classes. 
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Table 5 
Local Moran coefficient (MC,) of the model residuals from the six modeling techniques 

Model Mean Std Skewness Kurtosis Minimum 25%Q Median 75%Q Maximum 

OLS 0.406 4.22 1.36 157.00 -94.72 -0.38 0.04 0.67 80.42 
LMM 0.406 4.22 1.36 157.00 -94.72 -0.38 0.04 0.67 80.42 
G AM 0.409 4.13 1.45 159.08 -92.88 -0.32 0.03 0.64 83.11 
MLP 0.518 4.39 -0.36 177.37 -118.27 -0.25 0.05 0.69 64.02 
RBF 0.450 4.23 0.61 184.66 - 1 10.94 -0.26 0.05 0.65 84.09 
GWR -0.706 3.97 -26.99 1043.86 -167.49 -0.79 -0.09 0.12 12.30 

Table 6 
Z-value of the local Moran coefficient of the model residuals from the six modeling techniques 

Model Mean Std Skewness Kurtosis Minimum 25% Q Median 75% Q Maximum 

OLS 0.188 2.00 2.42 149.41 -40.31 -0.18 0.02 0.32 40.28 
LMM 0.188 2.00 2.42 149.41 -40.31 -0.18 0.02 0.32 40.28 
GAM 0.189 2.02 3.27 170.00 -43.74 -0.16 0.02 0.32 39.95 
MLP 0.235 2.12 1.61 163.55 -48.37 -0.13 0.02 0.33 42.23 
RBF 0.206 2.06 3.12 174.83 -45.39 -0.13 0.02 0.32 43.30 
GWR -0.340 1.77 -23.09 811.12 -74.99 -0.38 -0.04 0.06 6.15 

We suspected that the MLP and RBF also improved the test was used for testing the improvement of the GWR 
data fitting significantly over the OLS model. model over the OLS model (Fotheringham eta]., 2002). 

The GWR model fit the data much better than the The results indicated that the GWR model improved 
OLS model. The average model R~ was 0.94, and the model fitting significantly (F=4.69 and P<0.0001) 
error sum of squares was 11,746 (Table 2). A F-test over the OLS model (Table 2). This implies the rela- 

OLS Residual Outliers 

Fig. 8. (a) Plot of OLS model residual outliers. The size of the symbols (black dot and circle) is proportional to the model residuals. The black 
dots represent positive residuals, and the circles represent negative residuals. Plot of (b) LMM, (c) GAM, (d) MLP, (e) RBF and (f) GWR model 
residual outliers. 
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LMM Residual Outliers 

GAM Residual Outliers 

Fig. 8. (Continued) 

tionship between CROWN and DBH was not constant 
across the stand under study and the model parameters 
should vary from sub-area to sub-area within the stand. 

4.2. dbnventional analysis of model residuals 

First we assessed the six models by examining over- 
all model residuals, residual distributions, and residuals 
across tree size classes. Table 3 and Fig. 4 show that the 
model residuals from OLS, CAM, MLP, and RBF had 

similar average, standard deviation, skewness, kurtosis, 
and quartiles. The above four models produced posi- 
tive skewness and large positive kurtosis for the residual 
frequency distributions. On the other hand, the LMM 
model yielded a smaller range for the model residuals, 
although its residual frequency distribution had similar 
skewness and kurtosis to those of the last four models. 
In contrast, the GWR model produced positive skew- 
ness, much smaller kurtosis (about two times smaller), 
and smaller range for the model residuals than the OLS 
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MLP Residual Outliers 

REF Residual Outliers 

Fig. 8. (Continued) 

model (Table 3). Fig. 5 illustrates that the residuals from 
OLS, LMM, GAM, MLP, and R3F have strong linear 
relationships with each other, while the model residuals 
from GWR are different from the other five models. 

Fig. 6 shows the average model residuals across the 
diameter classes for the six models. It appears that the 
six models produce similar model residuals for trees 
up to 30cm in diameter. However, the OLS model 
produces larger negative residuals for large-sized trees 
(4.0-60 cm in diameter) and larger positive residuals for 

trees > 70 cm in diameter. The LMM, GAM, MLP, and 
RBF models generate similar residual patterns across 
tree diameter classes. Fig. 7 illustrates the average 
model absolute residuals across the diameter classes 
for the six models. It is clear that the GWR model con- 
sistently yields much smaller absolute residuals across 
the diameter classes, especially for large-sized trees. 
The LMM model is the second best model in terms of 
the average model absolute residuals across the diam- 
eter classes. 
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Fig. 8. (Continued). 
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R B F  : - 0 '  

Fig. 9. Matrix plot for the relationships of the local Moran coefficients between the six modeling techniques. 
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LMM 

GAM 

MLP . 

Fig. 10. Matrix plot for the relationships of the 2-values of the local Moran coefficients between the six modeling techniques. 

Table 7 
Comparison of the significant 2-values for the local Moran coefficient 

Model #of significant 121 = 1.96, n =5979 (%) Among the significant 2-values 

25-1.96(%) Z 2 1.96 (%) 

OLS 
LMM 
GAM 
MLP 
REF 
GWR 

# of significant 121 = 3.30, n =5979 (%) Z -3.30 (%) Z2 3.30 (%) 

OLS 153 (2.6) 42 (27.5) 11 1 (72.5) 
LMM 153 (2.6) 42 (27.5) 11 1 (72.5) 
G AM 159 (2.7) 45 (28.3) 114 (71.7) 
MLP 177 (3.0) 49 (27.7) 128 (72.3) 
RBF 168 (2.8) 50 (29.8) 1 18 (70.2) 
GWR 121 (2.0) 117 (96.7) 4 (3.3) 

Number in parenthesis is the percentage. 
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4.3. Spatial assessment of model residuals tive (Z-values > 1-96)? which indicated that, across the 
stand, the above five models produced model residu- 

The global MC was computed for the model resid- als in clusters of similar values (i.e., either positive or 
uals from the six models. Table 4 showed that the negative values). On the other hand, the global MC 
global'MC for the residuals of the OLS, LMM, GAM, for the GWR model residual was a significant nega- 
MLP and RBF models were all significantly posi- tive value (Z-value < -1.96). It means that the model 

200 .t 
OLS Local Z > 3.3 

Fig. 11. (a) Plot of Z-value outliers of the local Moran coefficient for the OLS model. The size of the symbols (black dot and circle) is proportional 
to the Z~value. The black dots represent positive local Z-value, and the circles represent negative local Z-value. (b) Plot of Z-value outliers of the 
local Moran coefficient for the LMM model. (c) Plot of Z-value outliers of the local M o m  coefficient for the GAM model. (d) Plot of 2-value 
outliers of the local Moran coefficient for the MLP model. (e) Plot of Z-value outlien of the local M o m  coefficient for the RBF model. ( f )  Plot 
of 2-value outliers of the local Moran coefficient for the GWR model. 
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Fig. 1 1 .  (Continued) 

residuals from the GWR model were, on average, 
in clusters of dissimilar values (i.e., a positive resid- 
ual was surrounding by negative residuals, and vice 
versa). 

Variograms were also used to investigate the spatial 
variability of model residuals among distance classes. 
The range of the variogram indicates that there is no 
spatial autocorrelation between model residuals be- 
yond this distance (Isaaks and Srivastava, 1989; Kohl 
andtGertner, 1997). Fig. 3(b) shows that the OLS model 

residuals have a range of 4 m, the same as that of tree 
DBH (Fig. 3(a)). The ranges of the variograms are 4.4 rn 
for LMM (Fig. J(c)), 4.9 m for GAM (Fig. 3(d)), 4.5 m 
for MLP (Fig. 3(e)), and 5.4 m for RBF (Fig. 3(E)), re- 
spectively. 

It is difficult to show every model residual in a 
map dbe to a large number of trees involved in the 
study. We chose to show the outliers of model residu- 
als, i.e. the residuals larger than two times standard de- 
viation of the residuals in magnitude. It is clear that the 
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REF Local Z > 3.3 

GWR Local Z > 3.3 

Fig. 1 1. (Continued). 

spatial distributions of the residual outliers from GAM 
(Fig. 8(c)), MLP (Fig. 8(d)), and RBF (Fig. 8(e)) are 
almost identical to those of OLS (Fig. 8(a)). Although 
the magnitude of the residual outliers from LMM is 
much smaller than those from OLS, they have a simi- 
lar spatial pattern to the above four models in terms of 
size, sign and clustering (Fig. 8(b)). On the other hand, 
Fig. 8(f) illustrates that the residual outliers from the 
GWR model are much smaller in magnitude and have, 

in general, a different spatial pattern across the stand 
from the other five models. 

4.4. ' Comparison of six models 

Local indicator of spatial association has been 
proved to be a useful tool to identify "hot spots" (pos- 
itive autocorrelation, or similarity) and "cold spots" 
(negative autocorrelation, or dissimilarity) of values 
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(Anselin, 1995; Boots, 2002; Shi and Zhang, 2003). 
Therefore, the local Moran coefficient (MCi) was com- 
puted for each model residual from each of the six mod- 
els with the bandwidth of 4.0 m, and 2-value was also 
computed for each corresponding local MCi. Table 5 
indicated that the local MCi for the model residuals 
from the OLS, LMM, CAM, MLP and RBF mod- 
els had similar averages, standard deviations, ranges 
and percentiles. Evidently, the above five modeis pro- 
duced larger and more frequent positive local MCi val- 
ues with strong linear relationships among the models 
(Fig. 9). In contrast, the GWR model produced more 
negative local MCi, or more "cold spots" of dissimi- 
lar model residuals (Table 5 and Fig. 9). The Z-values 
of the local MCi had similar patterns as the local MCi 
values for the six modeling techniques (Table 6 and 
Fig. 10). 

Due to the problems of multiple comparisons for 
the local MCi for the entire data set, it is necessary 
to adjust the significance levels for testing the signif- 
icance of the local MCi for each location. One possi- 
bility is to apply the Bonferroni adjustment in which 
the significance level for each individual location is 
d n  where n is the sample size. However, this adjusted 
local significance level is too conservative for a large 
sample size (i.e., n =5979 in this study), and may not 
be appropriate for testing local LISA (Anselin, 1995; 
Boots, 2002). Therefore, the local Z-values for the lo- 
cal MCi were evaluated for the significance levels of 
0.05 (Zui2 = 1.96), and 0.001 (Z,!z = 3.30). Table 7 indi- 
cated that the six models produced similar percentage 
of significant local 2-values out of the 5979 locations 
for the two significance levels. Among the significant 
Z-values, there were about 70% positive Z-values and 
30% negative Z-values for the OLS, LMM, GAM, MLP 
and RBF models,'indicating these five models tended 
to generate more clusters of either positive or nega- 
tive model residuals in some sub-areas of the stand. 
Trees in those sub-areas were either all underestimated 
(positive residuals) or all overestimated (negative resid- 
uals) for the response variables. On the other hand, 
the majority (about 95%) of the local 2-values there 
were negative 2-values among the significant Z-values 
for the GWR model (Table 7). If there are clusters of 
the model residuals existing, a large error tends to be 
surrounded by smaller neighboring errors and a small 
error tends to be surrounded by larger neighboring 
errors. 

Fig. 11 illustrates the spatial distributions of the lo- 
cal 2-values largerthan IZaI2 I = 3.30 for the six models. 
It is obvious that the OLS, LMM, GAM, MLB and RBF 
produced similar spatial patterns of 2-values in terms 
of size, sign and clustering (Fig. I l(a)-(e)). On the 
other hand, Fig. I 1 ( f )  indicates that the local 2-values 
from the GWR model are much smaller in magnitude 
(except a few spots) and have, in general, a differ- 
ent spatial pattern across the stand from the other five 
models. 

5. Conclusion 

In recent years there has been an increasing interest 
in applying modem modeling techniques to account 
for spatial autocorrelations among data observations. 
Although these techniques do have desirable features 
such as less restrictive model assumptions, many of 
them are non-spatial in nature. For example, both RBF 
and GWR use a Gaussian "kernel" function to process 
the data. The Gaussian functions in GWR are located in 
two-dimensional geographical space, whereas the RBF 
Gaussian functions are located in multi-dimensional 
space of predictor variables (Murnion, 1999). The 
LOESS functions used in GAM or other kernel regres- 
sion methods process the data in a manner similar to 
RBF. Therefore, many modem modeling techniques 
do not provide truly spatial erfor measures (Laffan, 
1999). However, current practice in the assessment 
of model performance focuses on model fitting and 
overall model accuracy and errors (e.g., Moiseu and 
Frescino, 2002). Little attention has been paid to the 
spatial heterogeneity of model errors. 

In this study, we utilize local Moran coefficients 
to investigate spatial distribution and heterogeneity in 
model residuals from six modeling techniques, with 
ordinary least-squares (OLS) as the benchmark. The 
results indicate (1) modem modeling techniques such 
as LMM, GAM, MLP and RBF may improve model 
fitting to the data and provide better prediction for 
the response variable than the OLS model, but they 
produce similar spatial patterns for the model resid- 
uals as the OLS model does, (2) OLS, LMM, GAM, 
MLP and RBF models yield more residual clusters of 
similar values, indicating that trees in some sub-areas 
were either all underestimated or all overestimated for 
the response variable, and (3) GWR, a local modeling 
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method, produces more accurate predictions for the re- 
sponse variable, as well as more desirable spatial dis- 
tribution for the model residuals than the ones derived 
from other five modeling techniques. 
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