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Abstract: Coarse woody debris (CWD) plays an important role in many terrestrial and aquatic ecosystem processes. In 
recent years, a number of new methods have been proposed to sample CWD. Of these methods, perpendicular distance 
sampling (PDS) is one of the most efficient methods for estimating CWD volume in terms of both estimator variance and 
field effort. This study extends the results for PDS to the estimation of the surface area of CWD. The PDS estimator is 
also compared to two line intersect sampling (LIS) estimators, where one of the LIS estimators requires the measurement 
of surface area on each log and the other estimates surface area using a single measurement of log circumference at the 
point of intersection between the log and the line. The first estimator approximates the true surface area by asmming 
either a conic or parabolic stem form and requires measurements of the end diameters of each log, which is more 
time consuming than a single meashement. The performance of the three estimators was compared using a computer 
simulation. The results of the simulation indicate that, given the same number of pieces of CWD sampled at each point, 
equal variances can be achieved with PDS using sample sizes that range from about 10% to in excess of 100% the size 
of a comparable LIS estimator. When the LIS estimators were compared, the estimator that required the measurement of 
surface area was only about 3%-6% more efficient than the alternative estimator, but the bias associated with assuming a 
conic or parabolic stem form ranged from roughly 5% to 15%. We conclude that PDS will generally outperform either of 
the LIS estimators. Another important conclusion is that the LIS estimator based on a measured surface area is likely to 
have a higher mean squared error than an LIS estimator that employs a single measurement of circumference. Thus, LIS 
sampling strategies that require the least amount of field work will often have the smallest mean square error. 

RBsumB : Les dBbris ligneux grossiers (DLG) jouent un rble important dam plusieurs processus Bcosyst6miques terrestres 
et aquatiques. Plusieurs nouvelles mkthodes ont rkcemment kt6 propos&s pour 6charitillonner les DLG. Parmi ces 
mkthodes, l'6chantillonnage ?i distance perpendiculaire (EDP) est l'une des mkthodes les plus efficaces pour estimer le 
volume des DLG, tant du point de w e  de la variance de l'estimateur que de I'effort requis sur le terrain. Cet article 
klargit la portke des r&ultats de l'EDP pour estimer la superficie des DLG. L'estimateur de l'EDP est aussi compark B 
deux estimateurs d'kchantillonnage par ligne d'intersection (ELI), oii un des estimateurs de I'ELI requiert la mesure de la 
superficie de chaque bille et I'autre kvalue la superficie 1 partir d'une seule mesure de la circonfkrence da la bille au point 
d'intersection de la ligne avec la bille. Le premier estimateur fournit une approximation de la vraie superficie en assumant 
que la forme de la tige est soit conique, soit parabolique, et nkcessite la mesure du diamktre aux exwkmitks de chaque 
bille, ce qui prend plus de temps qu'une seule mesure. La performance des trois estimateurs a kt6 cornpar& 1 I'aide d'une 
simulation par ordinateur. Si le meme nombre de tronGons de DLG est 6chantillonnC B chaque point, les rksultats de la 
simulation indiquent que I'EDP permet d'obtenh des variances kgales avec une taille d'kchantillon$ qui varie tie 10 % 1 
plus de 100 % de la taille d'un estimateur comparable de I'ELI. hrsqu'on compare les estimateurs de I'ELI, I'estimateur 
qui requiert la mesure de la superficie est seulement 3 % ?i 6 % plus efficace que l'autre estimateur mais le biais associk 
au fait d'assumer que la tige a une forme conique ou parabolique varie en gros de 5'1% B 15 %. Les auteurs cancluent 
que I'EDP donnera gknkralement de meilleurs rksultats que l'un ou l'autre des estimateurs de l'ELl. ;tmk autre conclusion 

4 importante est le fait que I'estimateur de l'EL1 qui requiert la mesure de la superficie risque d'avoit un $cart-type plus 
grand qu'un estimateur de SELI qui utFise une seule mesure de circonfkrence. Par cBnskquent, les stratkgies d'inventaire 
par ELI qui exigent le moins de travail sur le terrain auront souvent le plus faible &art-type. 
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Introduction 

The past decade has seen substantial interest in the role of 
woody debris (CWD) in virtually every ecosystem process (Spies 
et al. 1988). Given the broad range of interest in CWD, many 
different attributes must be estimated for each application. For 
example, CWD volume must be estimated to assess carbon bud- 
gets. Another important attribute for CWD is surface area. In 
fact, many different types of surface area are of interest. Exam- 
ples of studies related to different types of surface area are 

Rubino and McCarthy (2003) identified the aboveground 
surface area of CWD as a key habitat component for 
macrofungal and myxomycete communities. 

Pyron et al. (1999) studied the role of CWD surface area 
in relation to freshwater shrimp habitat. 

Maschhoff and Dooley (2001) discusseil properties of 
manufactured CWD. They note that a high degree of sur- 
face roughness and a high surface area to volume ratio 
are key design parameters. 

Ralph et al. (1994), Beechie and Sibley (1997), and Bail- 
lie and Davies (2002) studied the relationship between 
channel morphology and CWD. 

07Hanlon-Manners and Kotanen (2003) studied the im- 
portance of nurse logs in protecting seeds from pathogenic 
soil fungi. While there is no standard definition of what 
constitutes a nurse log, only the upper portion of a piece 
of C%D can realistically serve as a nurse log (Fig. 1). 

Estimation techniques for CWD fall into two categories, de- 
pending on the application. The first category comprises tech- 
niques for estimating an attribute, such as surface area or vol- 
ume, for individual logs. For example, we might wish to de- 
termide the ,surface area of an individual log to evaluate the 
area of microhabitat it provides for someh organism. The second 
category comprises sampling techniques for estimating the to- 
tal or mean of an attribute over an area. For example, a survey 
could be performed to Assess the total amount of carbon stored 
in CWD in a single staqd or over the entire western hemisphere. 

Numerous techniques have been proposed for estimating the 
surface areaof a standing bole or a piece of CWD. Many studies 
assume that a stem is adequately modeled by a geometric solid, 
with the form of this solid being based on either a circular cone 
(e.g., Swank and Schreuder 1974; Rubino and McCarthy 2003) 
or a cylindrical or paraboloidal stem shape (Lescaffette 1951; 
Husch et al. 1982, p. 818). The concern witb these methods is 
the difficulty in acquiring the necessary measurements and the 
potential for these estimates to be biased when the sterns differ 
significantly from the assumed shape. An alteyative approach 
to the direct measuremknt of each stem is to estimate surface 
area using vacious Monte Carlo integration techniques. Exam- 
ples of this approach include the use of randomized branch 
sampling, importance sampling (Gregoire et al. 1993, 1995; 
Gregoire and Valentine 1996; Lynch 2002), and ciitical height 
sampling (Lynch 1986). 

Of the various sampling techniques for CWD, line intersect 
sampling (LIS) is certainly the most flexible in its ability to as- 
sess many attributes associated with CWD. One of its primary 
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advantages is that many attributes can be estimated without ac- 
tually measuring the specific attribute (e.g., the volume of CWD 
can be estimated with only a measurement of cross-sectional 
area on individual pieces). One drawback of LIS is that a sub- 
stantial field effort is usually required to achieve estimates with 
high precision. For example, Pickford and Hazard (1978) rec- 
ommend total line lengths of at least 1 km. Siweys with lines of 
this length are often impractical, particularly in aquatic surveys. 

Estimating the surface area of a log or tree bole poses some 
unique challenges not found in the estimation of other attributes 
such as the estimation of volume, biomass, length, and number 
of logs. The first consideration is that the surface of a bole is 
often covered by bark, which can be heavily furrowed. These 
concavities in the surface are very difficult to measure, so this 
component of the surface area is usually ignored h most forestry 
and ecological app1ications;'as will be the case in this study. 

An additional concern, which makes the estimation of sur- 
face area unique, is that it is not physically possible to take 
the necessary measurements. The easiest way to illustrate this 
concern is to contrast the calculation of surface area with the 
calculation of the volume of a tree bole. To illustrate, assume 
a straight and circular tree bole of length H, with its diameter 
adequately explained by the taper function d(h). The volume 
of the bole is calculated by integrating the cross-sectional area 
(nr2 = ~ d ( h ) ~ / 4 )  along all points 0 5 h 5 H. Thus, 

where V denotes the total volume of the bole. Following this 
same reasoning, it would seem logical that the surface area of 
the bole could be derived by integrating the circumference of 
the bole, given by 2nd (h)/2, along the length. Thus, intuitively, 
the formula for surface area would be given by 

where S denotes the surface area. However, this is incorrect be- 
cause rather than integrating the circumference along the length 
of the bole, the appropriate formula integrates the arc length of 
d(h) (Swokowski 1979, p. 643). Thus, the correct formulation 
of the integral is 

where dl(h) is the rate of change in the taper of the log with 
respect to length (or height for standing trees). Equations 2 and 
3 differ by the term ,/-, which will be: referred to 
as the "differential". This term is greater than or equal to one 
at all points along the bole. Thus, ignoring this term causes 
an estimator of surface area to be biased downward (i.e., an 
underestimate of the true surface area). This bias will exist in 
almost every estimation technique because it would be nearly 
impossible to measure the arc length in the field with any degree 
of accuracy. This problem has been discussed by Lynch (1986, 
2002), who approximated the error associated with ignoring Jm using a cone frustrum and a rate of taper for the 
diameter of 0.39 cm (1 in.) every 2.4 m (8 ft). Given this rate of 
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Fig. 1. Example of a nurse log, Note that only the upper portion of the log is such that it could "catch" a seed. The amount of suitable 
surface area will be at least partially determined by the number and depth of the furrows, which is determined by the roughness of the 
bark. 

taper, the differential term is ,/- = 1.0000136, so 
the bias incurred is most likely small in applications where the 
differential term contains the rate of change in diameter with 
respect to height (i.e., the rate of taper for a log is "slow"). 
However, the bias can be substantial in any application that 
involves the rate of change in height with respect to diameter 
(hl(d)) because a small change in diameter can occur over a 
great 1ength:~n application where the bias would be substantial 
is the estimation of surface area of standing trees using critical 
height sampling and employing the method of cylindrical shells 
(Lynch 1986). 

Williams and Gove (2003) proposed a new method for as- 
sessing CWD volume, referred to as perpendicular distance 
sampling (PDS). Theoretical and simulation results show that 
the PDS estimator of volume is design-unbiased and, given an 
equal dampling effort, it is likely to have the smallest variance 
of all the'current sampling strategies that satisfy the condition 
of being design-unbiased. Field testing of PDS in the northeast- 
em and central United States suggest that the sampling effort 
for estimating CWD volume can be anywhere from two to six 
times lkss than competing methods (M.J. Ducey, unpublished 
data). 

Williams and Gove (2003) allude to the possibility of estimat- 
ing CWD surface area with PDS, but fail to provide sufficient 
detail. Thus, the goals of this study are 

(1) Develop estimators of CWD surface area using PDS. 

(2) Quantify the magnitude of the bias associated with ig- 
noring the term J1-k df(h)2/4 in an estimator of surface 
area. 

(3) Compare the performance of PDS to sampling strategies 
based on line intersect sampling. 

Data description 
The differential term given in eq. 3 poses a number of unique 

problems. One problem is that data sets that describe the true 
surface area for pieces of CWD cannot realistically be collected 
because measuring the instantaneous change in taper (d' (h)) at 
all points of a log would be impossible. Another problem is that 
the form and taper of a piece of CWD is likely to be much less 
consistent than that of a standing tree. This would be due to 
breakage of the stem and the change in form due to decay and 
the resultant loss of structure. For these reasons, it is assumed 
that the potential bias associated with the differential term is 
probably much larger for CWD than for standing trees. To ad- 
dress these problems, a modified version of the methodology 
used in Williams and Gove (2003) was used to create an artifi- 
cial data set that contained pieces of CWD with a known rate 
of taper at all points on the piece. This was accomplished by 
starting with a taper equation for standing trees and modifying 
it to produce a new log taper equation that differed for every 
log. The size and form of each log was loosely based on real 
data. 

The original data comprised N = 183 ponderosa pine (Pi- 
nus ponderosa Dougl. ex Laws.) trees. For each tree, diameter 
outside bark d and length h measurements were taken every 
1.22 m (4 ft) on felled trees collected at various timber sale 
sites on the Black Hills National Forest, USA. A total of 2010 
diameter and height measurements were taken, with most trees 
having between 3 and 10 sections. Diameter at breast height D 
(i.e., 1.37 m (4.5 ft) above the ground) and total height H from 
a 0.305-m (I-ft) stump to the tip were also recorded for each 
tree. 

For this study, the diameter and rate of change in taper were 
neededat every point on the stem as well as the true surface area. 
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Individual taper functions could not be fit to each tree because 
many of the smaller trees had only three to five,measurements. 
To address this problem, a single taper function was first fitted 
to the data. To create a unique taper equation for each of the 
183 logs, an individual taper function for each log was created 
using the following method. From the original taper function, 
a set of 30 (d, h) values that represented the profile of an "av- 
erage" tree was derived by using the mean D and H values 
from the data set. The next step was to create a.new unique ta- 
per equation for each log. This was done by perturbing each d 
value with a random multiplicative error, where the errors were 
E - Uniform(0.6, 1.4). A new taper equation was fitted to each 
log. The model used was 

where H' = 1 - h/H and d - N(0, a2e). The taper functions 
for each log in the data sets are displayed in Fig. 2a, where the 
taper of logs is far greater than would be observed on standing 
trees. The large amount of taper was used to show that the 
differential term can be ignored with little impact on bias. 
CWD is defined as logs whose minimum diameter is greater 

than some lower limit. There is no standard definition for this 
lower limit, but it is often near 7.5 cm (m3 in.), corresponding 
to the boundary between 100- and 1000-h fuels in fire behavior 
models (~othermel1972). The trees in the original data set dif- 
fered from CWD because each tree tapered to a point. To create a 
log taper equation that more closely mimics CWD, the length of 
each tree was truncated by a random percentage. This percent- 
age was derived by setting Hmnc = E H ,  where E - Beta(3,2). 
The final form of each log is displayed in Fig. 2b. Each taper 
function was used to calculate the true and approximate surface 
area of each tree using eqs. 2 and 3. 

One of the goals of the study is to illustrate the effects of 
using a simple approximation to the true surface area. To meet 
this goal, the surface area was approximated by both a truncated 
right circular cone and a paraboloid, as suggested by Rubino and 
McCarthy (2003) and Husch et al. (1982, p. 88), respectively. 
When the form of the log follows a cone, the radius is described 
by d(h)/2 = Bch, with the surface area given by 

where PC = Db,,/2H and base is the diameter of the log at 
the base. When the form of the log follows a paraboloid, the 
radius is described by [d(h)/212 = Bph, where Bp = baSe/2H 
for each tree. Thus, 

Summary siatistics for the populations are given in Table 1. 
For this data set, the surface area approximation based on the 
parabolic stem form is much closer to the true surface area than 
the approximation based on the assumed cone. 

Once the set of logs was constructed, the next step was to 
arrange them as pieces of downed CWD within a forest stand 

Table 1. Summary statistics for the 
ponderosa pine data set. 

Attribute Min. Mean Max. 

Note: All units are in metres. See text 
for variable definitions. 

from which a sample could be drawn. A series of populations 
was created, with each population being a square with total 
area 1.44 ha. Each log was given a random orientation 4 be- 
tween 0 and 2x and then randomly located in accordance with 
a Uniform distribution. A buffer strip was then added along the 
boundary of the population to avoid the design bias associated 
with boundary overlap (Ducey et al. 2004). This creates some 
large-scale clustering in the distribution of logs at the center of 
the population. Whether this distribution of locations accurately 
depicts real log populations is unknown. Additional testing sug- 
gests that the difference in the performance of the estimators 
decreases as the population becomes more clustered. To illus- 
trate, if all logs are placed into a single cluster (i.e., a slash pile), 
then the estimates derived at each sample point are either zero 
(i.e., the sample point missed the slash pile) or very close to 
the population total (i.e., the point falls in the slash pile and the 
majority of logs will be tallied). 

One trait of downed CWD that could influence the perfor- 
mance of the estimators is the orientation of the logs. In steep 
terrain and areas with high winds, the orientation of the logs 
is unlikely to be random. To address this issue, the distribu- 
tion of the 4 angle was varied. The first data set, referred to 
as RAND, was created using a completely random orientation, 
with the distribution of 4 being &~ -- Uniform(0, ~ 1 2 ) .  The 
second data set was generated so that the orientation of the 
logs would have a consistent north-south pattern in their ori- 
entation. The 'angle of orientation for the north-south data set 
was calculated using 4 = (1 - b) * & + b * 49,/20, where 
49,/10 - Uniform(9n/20/10, n/2) and b - Bernoulli(0.6). 
Using this distribution, roughly 80% of the logs me oriented 
within 8x110 radians (36O) of the y-axis, which is considered 
the direction of north-south orientation. This data set will be 
referred'to as NorS. Figures 3a and 3b shows the distribution 
of the size and orientation of logs in the NorS and RAND data 
sets, respectively. 

Adapting PDS to estimate surface area 
While the mathematical expression for calculating surface 

area is somewhat complicated, the adaptation of PDS to estimat- 
ing this attribute is straightforward. Historically, many sampling 
methods in forestry and natural resources were viewed as an ex- 
tension of finite population sampling theory. However, over the 
last 10-15 years areal sampling strategies such as fixed-area 
and variable-radius plot (VRP) sampling, critical height, LIS, 
and PDS have been increasingly viewed as applications of infi- 
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Fig. 2. Part (a) illustrates the difference in taper for each log in the data set, where each log is scaled by relative diameter (d/DBH) and 
relative height diameter ( h / H ) .  Part (b) shows the actual length, diameter, and taper for each log. The logs were created by truncating 

Fig. 3. Log orientations for the (a) NorS (norti-south) and (b)  RAND (random orientation) data sets. Note that the boundaries of the 
stand have been extended to create the buffer used to correct for sampling along the edge of the stand. 

the top of each log in (h). 
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nite population sampling or Monte Carlo integration techniques 
I (e.g., Eriksson 1995; Valentine et al. 2001; Williams 2001). The 

infinite population approach will be used in the following exam- 

@) 

ple to demonstrate how PDS could be used to estimate surface 
area. 

Assume that a straight log is completely covered by bark and 
lies on a flat plane, denoted by A, with known area I A I (Fig. 4). 
Let S be the surface area of the bark. Next, assume that the bark 

I I I 
I I I 

0.0 0.2 0.4 0.6 0.8 1 .O 0 5 I 0  15 20 
relative height me log length (m) 

can be split along the central axis of the log, "peeled" away from 
the log, and laid flat on A. Thus, the area of the piece of bark that 
covers a portion of A is equal to S (Fig. 4). If sampling locations 
(points) are distributed uniformly over A, then the probability 
that a point falls on the peeled section of bark is n = 2, which 
is the inclusion probability for the log based on its surface area. 
Thus, the peeled bark forms a log-centered plot (Husch et al. 
1982, pp. 224-227) or "inclusion zone" about the central axis 
of the log, whose area is equal to the surface area of the log. 

This example can be extended to N logs, each with sur- 
face area Si [i = 1,2, . . . , N), and inclusion probability ni = 

-50 0 50 
x-axis (rn) 

Si / 1 A I. The estimator considered here is 

r=l . i=l 

where Si is the surface area for tree i, 7ti is its probability of 
inclusion, and n(x, y) is the number of pieces of CWD tallied 
at the point with coordinates (x, y). The estimator 2 is design- 
unbiased (Appendix A) when the possibility of pieces of bark 
extending beyond the boundary of A is ignored. Note that no 
measurements are required on the log because the inclusion 
probability is a function of the true surface area. 

Some of the obvious problems with this example are that the 
bark does not lay flat on the ground and few if any logs would be 
selected in any sample because only a small portion of A would 
be covered by the peeled pieces of bark (i.e., the probability of 
the point falling on one of the pieces of peeled bark is too small 
to be of practical value). The solution to the first problem is to 
realize that a simple distance rule can be applied to determine 

O 2005 NRC Canada 



Can. J. For: Res. Vol. 35, 2005 

whether a point would fall in the area that would be covered 
by the peeled bark. Specifically, the algorithm for determining 
when a point falls within the inclusion zone is 

(1) Measure the perpendicular distance, denoted by IdL I, 
fr6m the sample location (x, y) to the central axis of the 
log. 

(2) Select the log if Id1 I 5 cckc/2, where Ccirc is the circum- 
ference of the log at the point of measurement. 

The solution to the problem of too few logs being selected is 
to realize that the size of the inclusion zone can always be in- 
creased by a multiplicative factor, as in VRP sampling. This 
is illustrated in Fig. 4, where a series of inclusion zones are 
drawn about a log. The boundaries above and below the log 
are generated by multiplying the circumference of the log by a 
multiplicative factor KPDS at every point along the log, where 
KPDs is a constant similar to the basal area factor in VRP sam- 
pling (see Husch et a1 1982, p. 228). For example, if KPDS = 2 
then the distance from the central axis of the log to the bound- 
ary of inclusion zone is two times the circumference of the log. 
Note that for the peeled bark example given previously, the log 
is selected when the perpendicular distance is cc,/2, whereas 
in this case the limiting distance is K P D S C ~ ~ .  This formulation 
of the problem is used to maintain consistency in the deriva- 
tion of PDS for the estimation of both s ~ a c e  area and volume. 
Also note that the same units of measure are used for the cir- 
cumference and distance from the log. If the circumference is 

measured in centimetres, the limiting distance can be expressed 
in metres by dividing K p ~ s  by 100. 

When PDS is used in the estimation of CWD volume, each 
inclusion zone has area 2Kp~s  V ,  where V is the true volume of 
the log and ~KPDS is a constant multiplier (Williams and Gove 
2003). Intuitively, when adapting PDS to the assessment of 
surface area, the area of each inclusion zone would be 2KPDs S. 
Once again, the differential term poses a problem. The source 
of the problem is illustrated in Fig. 4, where it should be noted 
that the slope of the line (i.e., df(h)) defining the inclusion zone 
increases with increasing K p ~ s  values. This is a source of bias 
because the differential in the surface area integral is such that 
the inclusion zone for each log has area 

because 

Thus, the area of the inclusion zone is such that a1 design bias 
will exist for all KPDs # 1. The difference between these two 
areas, and the potential bias associated with PDS, expressed as 
a percentage, is given by 

Also note that KpDs is not the same when estimating surface 
area and volume because KpDs is expressed in inverse metres 
when estimating volume, and it is unitless when estimating 
surface area. 

The estimator 

is proposed for estimating CWD surface area. Note the actual 
surface area is never measured and that just as in VRP sampling, 
logs where 11111 I is obviously less than KpDsccirc can be selected 
into the sample with no actual measurements. Thus, the advan- 
tage for PDS is that only the small proportion of borderline logs 
needs to be measured to determine their circumference. Border- 
line logs can then be carefully measured to accurately determine 
whether their circumference is large enough to warrant inclu- 
sion in the sample. If the circumference is measured with a 
linear tape, concave areas can be accounted for by pressing the 

tape into these areas to achieve a nearly exact measurement of 
the circumference. While this seems like a complex set of mea- 
surements, a series of these measurements would be required 
on every sampled log to estimate the true surface area using a 
technique such as importance sampling. 

Line intersect sampling to assess surface 
area 

Many options exist when implementing LIS. On~e option for 
LIS is determining whether logs are selected when the line only 
partially intersects the log. In this study, the central axis of the 
log is described by a line, and the log is selected into the sample 
whenever the line crosses this axis. The log was viewed as a line 
because it simplified the implementation of the simulation study 
(see de Vries 1986, pp. 242-250 for examples of viewing the 
log as a needle). Additional considerations include whether in- 
ference about the population is made using eithkr the design- or 
model-based approach. However, with the exception of Kaiser 
(1983), Williams and Gove (2003), and the collected works as- 
sociated with Gregoire (Gregoire 1998; Valentine et al. 2001; 
Gregoire and Valentine 2003), authors have generally failed to 
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Fig. 4. A log is centered along the x-axis. The solid lines depict 
the inclusion zone that would be formed by the peeled bark, 
and the broken lines show the boundaries of three different 
perpendicular distance sampling (PDS) inclusion zones. Note that 
the slope of the lines defining the boundaries of the log-centered 
plots increases with increasing KpDs values, particularly near the 
tip of the log. 

* 1 '.. . PDS inclusion zones for KpDs=4,6,8 

I I I I 

0 5 10 15 
log length (m) 

explicitly state whether the design- or model-based approach 
to inference was employed. One of the interesting historical 
aspects of LIS is that it appears to be one of the few applica- 
tions in forest inventory where the model-based approach to 
inference is used almost exclusively (Canfield 1941; Warren 
and Olsen 1964; de Vries 1986; Bell et al. 1999; Stahl et al. 
2001; Waddell 2002). For this reason, the version of LIS used 
in this study employs the model-based approach to inference 
and closely mimics the work of de Vries (1986). 

At least three different estimators have been derived for the 
estimation of CWD surface area under the model-based ap- 
proach (Brown 1971; de Vries 1986). Two different estimators 
will be studied here. For this study, a randomly chosen point 
(x, y) within A is visited and a line of length L and fixed ori- 
entation is centered about the point. All logs whose central axis 
is crossed by the lime are selected into the sample. The first 
estimator is 

where Si is the measured surface area for tree i ,  is its 
probability of inclusion under the assumed model, n(x,  y) is the 
number of pieces of CWD tallied at the point with coordinates 
(x, y), and then value in the numerator is theusual n x 3.1416. 

DeVries (1986) provides a detailed derivation for the proba- 
bility of a needle intersecting a randomly placed line of length 
L. In order to derive the probability that the line intersects a 
log; the following assumptions are made ' 

(1) The length of the line L is "long7' in comparison to the 
length of the needles. 

\ 

(2) The pieces of CWD are randomly oriented. 

(3) The pieces of CWD are randomly located within A. 

(4) A is sufficiently large so that edge effect can be ignored. 

The notation n(rn) will be used to denote the probability of 
intersection of log i and the line, where the superscript (m) 
denotes the fact that inference is with respect to the model. 

Unbiasedness of &~sl requires that the surface area of each 
log be measured without error, which as noted by de Vries 
(1986, p. 258), "...generally will be prohibitive from an eco- 
nomical point of view". The second estimator replaces the mea- 
surement of S with a measurement of the circumference at the 
point of intersection. Following de Vries' (1986, pp. 258-260) 
approach to volume estimation, the estimator is 

where di (x', y') is the diameter of the log at the point ( x ' ,  y') 
where the log and line intersect. Note that as with PDS, this 
estimator also ignores the differential term, which will result in 
some bias. 

Magnitude of the bias associated with 
ignoring the differential 

The differential term causes two possible sources of bias. 
The first is the bias associated with measuring the log, and the 
other is the bias in the area of the PDS inclusion zone, whose 
magnitude is given in eq. 6. 

Figure 5 illustrates the size of the differential term at every 
point on the bole for each piece of CWD in the data set. While 
this maximum value would indicate the possibility of a substan- 
tial bias, the integral "averages" the differential across the entire 
length of the log. To assess the magnitude of the bias associated 
with ignoringthe differential term, the surface area was calcu- 
lated using eqs. 2 and 3. The largest bias was 0.004 m2, which 
is incotisequential in comparison to the average surface area of 
8.2 m2. 

The magnitude of the bias associated with the area of the 
PDS inclusion zone was also assessed. This assessment quan- 
tified the mean bias of all 183 pieces of CWD for f iDs  values 
ranging from KPDs = 1,2, . . . 12, where the diameter, length, 
and perpendicular distance are all expressed in metres. These 
results are given in Fig. 6. While the bias increases quadrati- 
cally with increasing K p ~ s  values, the bias only exceeds 1% 
when K p ~ s  = 12. TO put this in perspective, if a circular piece 
of CWD had a diameter of 30 cm (x12 in.), then it would be 
sampled any time the point fell within Id11 = 5.6 m (18.5 ft) 
of the log. Thus, K p ~ s  values in this range are probably about 
as large as would be used in most field applicatibns. 

Thus, we conclude that the bias associated with the missing 
differential is of little consequence in comparison with the po- 
tential biases associated with the various assumptions for areal 
sampling (e.g., Schreuder et al. 1993, p. 1 19) and the measure- 
ment of tree boles (Matkrn 1956, 1990). 
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Fig. 5. Each line in the figure is the magnitude of the differential 
term ( d m )  for each log in the data set. The magnitude 
tends to be the latgest near the tip of each log. 
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log length (m) , 

Fig. 6. Average percent bias, calculated from eq. 6, as a function 
of KPDS In this graph, the KpDs value is calculated assuming the 
circumference of each log is measured in' metres. 
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Simulation study 

As mentioned by Sarndal et al. (1992, p. 234), "We judge 
estimators by their design-based qualities, such as design ex- 
pectation and design variance, under repeated sampling with 
a given sampling design from the fixed finite population". So 

regardless of an estimator's properties with respect to a model, 
the true test is the performance of the estimator with respect to 
the design. The simulation study assessed the design bias and 
variance of the three estimators. The bias and variance for each 
estimator was derived from a sample of locations from a very 
fine grid covering A. The grid spacing used was 0.2 m (7.8 in.). 

The method of edge correction implemented in this study was 
to set the area of the population A to be such that the inclusion 
zone for every log fell completely within A (Ducey et al. 2004 
and references therein). This method is known to increase the 
variance of the estimators over the alternative edge-correction 
methods, such as the reflection method proposed for LIS (Gre- 
goire and Monkevich 1994) or the w&-through methods pro- 
posed by Ducey et al. (2004). 

In the field, pieces of CWD would be selected using very 
different measurement techniques, and the amount of time re- 
quired to draw a sample will vary depending on factors such as 
size of the logs, terrain, height and density of the understory, and 
the instrumentation used. Thus, a direct cornparism is not pos- 
sible. Because these factors cannot be realistically mimicked 
in a,simulation study, the method of "standardizing" the three 
techniques was to equalize the expected number of pieces of 
CWD sampled at each point. This was done by setting the ex- 
pected number of logs to be tallied ateach point ( E [ n ( x ,  y)]) 
to be 2. 

An important assumption for this study is that all measure- 
ments of length, diameter, and cross-sectional area and surface 
area are made without error. Thus, given the assum$tion that no 
measurement error exists in any variable, the estimator &DS 

will still exhibit a small design bias. Even though the two LIS 
estimators are model-unbiased and all of the assumptions are 
satisfied for the RAND data set, some design bias is expected 
in ~ L I S I  and 2 ~ 1 s ~  (see Gregoire 1998, example 2 and refer- 
ences therein). We expect that the two LIS estimators will be 
more susceptible to problems with measurement errors because 
measurements are required on every log. 

I 

The standard error of the estimators is given by ,/v[Z.], 
where * denotes the sampling skategy (LIS1, US21 PDS) used. 
To facilitate the comparison between the two LIS estimators 
and PDS, the relative efficiency 

was used to express how many times larger the standard error of 
the other methods was when compared to PDS. Of additional 
interest is the difference in the efficiency between 2~1~1 and 
iL1s2, which will indicate how much of a reduction in the vari- 

, 

ance can be achieve by measuring the surface area ( 2 ~ 1 ~ 1 )  over 
a sampling strategy where only the circumference is measured 
at the point of intersection between the log and the line. This 
metric is given by 

The advantage of using RE to compare estimators is that the 
number of points required to achieve equal variance with each 
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Fig. 7. The inclusion zones for an inventory estimating the 
number of logs, surface area, and volume, where a fixed-area plot 
is centered about the large end of each log and PDS inclusions 
zones for surface area and volume are centered about the long 
axis of each log. 

FAP for numb8r of logs 

PDS for wiume 

I I I I I 
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of the techniques, denoted by mEV, is 

To illustrate the bias associated with estimating the surface 
area of each piece of CWD using a simple approximation, the 
simulation was also run where the Si for each log was approx- 
imated using the truncated cone and paraboloid. The bias was 
expressed as a percentage using 

where * ,= cone, para. The bias of the cone and parabolic ap- 
proximations are not relevant for either the LIS2 or PDS esti- 
mators because Si does not appear in the estimators. 

Results 
Results for the RAND data set 

The results for the simulation study are given in Table 2. 
As expected, the PDS estimator consistently has the smallest 
variance. Using RE, results show that roughly 10% and 12% 
more lines would need to be sampled in order for ~ L I S I  and 
2~1~2, respectively, to achieve the same efficiency as that of 
i P ~ ~ .  Also of interest is how similar the two LIS methods are 
in terms of variance, with needing less than a 3% larger 
sample to adhieve a variance equal to that of iLIsl. Therefore, 
the utility of iLIsl is questionable given the substantial savings 
in field effort realized by 2~1~2. 

Table 2. Simulation results for estimating 
the surface area of CWD, where LIS 
denotes line intercept sampling and IPDS 
denotes perpendicular distance sattipling. 
- -- 

Data set LISl LIS2 PDS 

RAND 
B(cone) 121.2 na na 
B(para) 99.2 na na 
B(design) 105.3 106.0 99.6 
RE(PDS) 1.10 1.12 na 
RE(LIs) 1.03 na na 

NorS 
Btcone) 159.2 na na 
B(para) 130.6 na na 
B(design) 137.9 140.1 99.6 
RE(PDS) 2.06 2.18 na 
R m I S )  1.06 na na 

Note: Two types of bias (B) are given. 
The first is the design bias of the estimators. 
The second is the bias in 2L1sl due to 
approximating the surface area using a cone 
(S(cmie)) or paraboloid (S(psa)). RAND, 
random orientation; No&, north-souih ' . 

orientation; RE, relative efficiency;' na, not 
applicable. 

The design bias, expressed as a percentage for .&st and 
kLIS2, was 105.3% and 106.0%, respectively. Thus, it is rea- 
sonable to expect biases in excess of 5% in either of these es- 
timators even when all of the assumptions for these estimators 
are satisfied. As expected, the bias in iPDs is less than 1%. The 
bias of iLIS1, when the surface area, is calculated using either 
a cone or parabola, ranged from 99.2% to 121.3%. Thus, in 
general it s&ms reasonable to conclude that approjrimating the 
surface area induces a bias in an estimator of CWD surface area 
by as much as 15%. 

Results for the NorS data set 
The results for the NorS data set are given in the lower portion 

of Table 2. As expected, the PDS estimator consistently had the 
smallest variance, with the increase in efficiency being much 
larger than for the RAND data. Using RE shows that more than 
twice as many lines would need to be sampled for 2~1~1  and 
iLIS2 to achieve the same efficiency as that of ipDs. Once again 
it can be seen that the gain in efficiency of roughly 6% for 
in comparison with 2~1~2, is trivial in comparison to additional 
fieldwork necessary to assess the surface area of each sampled 
piece of CWD. 

The LIS estimators are known to be biased when the orien- 
tation of the logs is not random (Bell et al. 1996), with the es- 
timators overestimating the true surface by roughly 40%. The 
use of the cone approximation further increased the bias to 
roughly 60%, and the parabolic approximation reduced the bias 
to around 31%, though a bias of 30% would probably be con- 
sidered unacceptable in any application. Whether the parabolic 
approximation would consistently be superior to the cone ap- 
proximation cannot be determined. 
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Fig. 8. An example contrasting a line intersect sample (LIS) of CWD using either (a) four lines systematically arranged over the area or 
(b) sampling with a single multisegmented LIS plot. 
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Discussion 

There are a number of issues related to the assessment of 
CWD surface area using either PDS or LIS that were not covered 
in the simulation study. A number of issues related to a field 
implementation of PDS are also discussed. These are broken 
down into separate subsections. 

Limitations and extensions of PDS 
While the simplicity and performance of PDS is encourag- 

ing, these results do not suggest that PDS should be used in 
every application. For example, in field situations where the 
understory contains many logs that are completely obscured, 
LIS may be a better alternative. However, personal experience 
indicates that even in deep grass that obscures small logs, PDS 
is easy to implement because a sweep of the area with your foot 
around the point is usually sufficient to "feel" small logs, and 
very large logs are relatively easy to locate. 

The other drawback of PDS is that it cannot be used to as- 
sess the number of pieces of CWD, because this would require 
the measurement of volume or surface area to calculate the in- 
clusion probability. A solution to this problem is to assess the 
number of pieces of CWD using a circular fixed-area plot, with 
the easiest solution being to include logs whenever the large end 
of the log falls within the plot. Thus, the volume, surface area, 
and number of pieces of CWD can be estimated while only tak- 
ing measurements to determine whether any of the "borderline" 
logs should bk included in the sample. An example is given in 
Fig. 7, where the inclusion zones for two logs is illustrated. 

Further results for LIS 
One of the most interesting results is that the efficiency of 

&lS2 is nearly equal to that of 2L~s1. In view of these results, the 
utility of 2 ~ 1 ~ ~  is questionable given both the substantial sav- 
ings in field effort realized by . 2 ~ ~ ~ ~  and the potential for a re- 
duction i~ bias associated with a$proximating the surface area. 

A common solution to the problem of orientation bias has 
been to use multiple lines oriented in an L-, X-, Y-, or fan- 
shaped arrangement. This approach has been shown to reduce 

x-axis (mj 

the bias of the LIS estimators studied here, but at a cost that is 
rarely mentioned. This solution presents two main problems. 

To illustrate the first problem, consider Fig. 8a, where a sam- 
ple of four lines with different orientations are systematically 
placed within a small forest stand. In Fig. 8b, the four lines have 
been moved to form a single X-shaped plot. The point of the two 
figures is that a multisegmented LIS plot is nothing more than 
an open-cluster plot (de Vries 1986, p. 167), whose individual 
plots are placed sufficiently close as to be touching. Placing 
the individual subplots (lines) this closely is known to reduce 
the efficiency of a sampling strategy based on an open-cluster 
plot because it reduces, rather than increases, the within-cluster 
variability. Thus, a reduction in bias with this approach will 
almost certainly increase the variance. A more appealing so- 
lution to the problem of orientation bias is to install a single 
long transect at each point where the orientation is random. 
The other alternative is to rely on the design-based approach to 
inference and employ the LIS estimators presented by Kaiser 
(1983). These sampling strategies will sometimes require the 
measurement of the angle of orientation between the log and 
the line, but their property of being design-unbiased eliminates 
any concern regarding orientation bias. 

The second problem relates to the frequent use of LIS in 
multiresource inventories, that employ fixed-area plot sampling 
for standing trees, where the center points folr each sampling 
method are colocated at the same point. A concern raised by 
field personnel is that it is very difficult to take all the neces- 
sary measurements on the plot without inflicting at least some 
inadvertent damage to the CWD due to trampling (A. Moreno, 
USDA Forest Service, personal communication, 2004). Mul- 
tisegmented LIS plots increase this concern because the ma- 
jority of the sampling effort is focused in the area where the 
most tramplink is likely to occur (i.e., the center of the plot). 
An LIS sampling method that employs a single line does not 
focus as much of the sampling effort near the center of the plot. 
While it is Itrue that this concern can be reduced by perform- 
ing the CWD sampling before the sampling of standing trees, 
this solution does not wo k for an inventory where the plot is r revisited to assess resource khange, because at least part of the 
change could be attributed to mechanical damage, father than 
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actual decay of the CWD. A more appealing solution would be 
to extend the line beyond a fixed-area plot boundary so that a 
test for significant differences between the on-plot and off-plot 
estimates of CWD could be constructed, but this renders the 
LIS cluster less compact. 

Implementation guidelines and instrumentation for PDS 
When logs are assumed to be circular, inclusion of a log under 

PDS is determined by a distance rule based on the diameter 
of the log (i.e., include the log when d l  I K p ~ s x d ( ~ ,  y)). 
Note that the same type of distance rule is applied when VRP 
sampling is used to select standing trees. Thus, an angle gauge 
or prism, rotated by 90°, can be used to quickly assess whether 
candidate logs should be included in the sample or whether 
additional measurements are required for borderline logs. The 
concept of using an angle gauge in a CWD inventory is not new. 
For example, Bebber and Thomas (2003) proposed diameter 
relascope sampling as an angle gauge based method for the 
assessment of CWD and found that laser dendrometers and 
prisms work well in situations where logs are not completely 
obscured by the understory. 

For VRP .sampling, the angle chosen for a prism or angle 
gauge is selected so that each tree in the sample represents a 
convenient and constant amount of basal area per unit area (i.e., 
square metres per hectare or square feet per acre), where this 
constant is the basal area factor F. For example, if the metric 
basal area factor is F = 4, then each tree counted at a point 
represents 4 m2/ha of basal area. The basal area factor, F, can 
be related to the KPDs value through the equations 

and 

for metric and English basal area factors, respectively. 
The KpDs value can also be chosen to yield a convenient 

surface area factor, denoted SAF. For example, if each tallied 
log is to represent 10 m2/ha, then the appropriate KPDS can be 
determined by solving 

to give KpDs = 500. This value of KPDs assumes that the 
circumference of the log is measured in metres. A conversion 
from metres, to centimetres can be accomplished by dividing 
K p ~ s  by 100 to yield K p ~ s  = 5. 

Conclusions 
The differential term adds much complexity to the estimation 

of CWD'surface area. In fact, with the exception of the special 
case of PDS kith the K P ~ s  = 1, there are nosampling strategies 
that can realistically claim to be unbiased for estimating surface 
area. ,However, in the case of estimating CWD surface area, 
the bias associated with ignoring the differential term is trivial 
compared to other sources of bias (i.e., measurement error). 

The efficiency and simplicity of PDS makes it an attractive 
method for assessing many different surface area attributes. 
However, the results of this study raise some concerns with 
its application. One concern is that studies that relate CWD to 
other ecological processes often estimate surface area based on 
conic or paraboloid approximations. The results of these stud- 
ies are then used to determine management guidelines. How- 
ever, if 2 P ~ S  or 2LISZ are employed in a survey that monitors 
compliance with these guidelines, it is quite possible that bias 
in the approximations could erroneously indicate whether the 
management guidelines are achieved. For this reason, it is im- 
portant to match the data collection methods for both special 
studies and any subsequent monitoring surveys so that biases 
in either approach are roughly equivalent.~Thus, if PDS is to be 
employed in a monitoring survey, we suggest that an estima- 
tion technique with similar bias properties, such as importance 
sampling, be employed in any study whose outcoriles might be 
used to set management guideline$. 
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Appendix A. 

A number of different approaches can be used to prove that 
the surface area PDS estimator, with K p ~ s  = 1, is design- 
unbiased (Eriksson 1995). Williams and Gove (2003) use an 
infinite population approach, and a finite population sampling 
approach will be given here. 

The expectation of iPDs is derived by defining the indicator 
variable 

, if i in the sample 
, otherwise. 

Then 

because E [&I = xi. 
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