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Abstract 

Whether the goal is to fill gaps in the flux record, or to extract physiological parameters' from eddy covariance data, 
researchers are frequently interested in fitting simple models of ecosystem physiology to measured data. Presently, there is no 
consensus on the best models to use, or the ideal optimization criteria. We demonstrate that, given our estimates of the 
distribution of the stochastic uncertainty in nighttime flux measurements at the Howland (Maine, USA) AmeriFlux site, it is 
incorrect to fit ecosystem respiration models using ordinary least squares (OLS) optimization. Results indicate that the tlux 
uncertainty follows a double-exponential (Laplace) distribution, and the standard deviation of the uncertainty (a@)) follows a 
strong seasonal pattern, increasing as an exponential function of temperature. These characteristics both violate OLS 
assumptions. We propose that to obtain maximum likelihood estimates of model parameters, fitting should be based on 
minimizing the weighted sum of the absolute deviations: C ]measured - modeledl/a(d). We examine in detail the effects of this 
fitting paradigm on the parameter estimates and model predictions for three simple but commonly used models of ecosystem 
respiration. The exponential Lloyd & Taylor model consistently provides the best fit to the measured data. Using the absolute 
deviation criterion reduces the estimated annud sum of respiration by about 10% (70-145 g C mP2 yP1) compared to OLS; this 
is comparable in magnitude but opposite in sign to the effect of filtering nighttime data using a range of plausible u* thresholds. 
The weighting scheme also influences the annual sum of respiration: specifying 4 6 )  as a function of air temperature consistently 
results in the smallest totals. However, annual sums are, in most cases, comparable (within uncertainty estimates) regardless of 
the model used. Monte Carlo simulations indicate that a 95% confidence interval for the annual sum of respiration is about f 20- 
40 g C mP2 y-l, but varies somewhat depending on model, optimization criterion, and, most importantly, weighting scheme. 
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1. Introduction 

The half-hourly eddy covariance measurements of 
ecosystem fluxes (CG, H20, and energy) made at 
tower sites around the world offer a means by which 
ecosystem function can be studied and integrated 
across both time and space (Baldacchi et al., 1996; 

aldocchi, 2003). By necessity, modeling is an 
essential tool for flux researchers, because data gaps, 
which may range from several hours, because of a rain 
event, to weeks or longer, because of instrument 
palfunction or failure, must be accurately filled so that 
'annual sums (e.g., the net exchange of COz) can be 
estimated correctly (Falge et al., 2001). 

Modeling also enables researchers to partition the 
measured net exchange into component fluxes, such 
as ecosystem respiration and gross photosynthesis 
(Valentini et al., 2000; Baldocchi et al., 2001; Law 
et al., 2002). Alternatively, models can be used to 
extract key physiological parameters, such as the 
temperature sensitivity of respiration or the maximum 
rate of canopy photosynthesis, from the measured 
data (Hollinger et al., 1994, 2004; van Wijk and 
Bouten, 2002; Braswell et al., 2005; Hollinger and 
Richardson, 2005). These parameters provide infor- 
mation about functional changes (phenological, 
seasonal, or year-to-year) in whole-ecosystem phy- 
siology and they offer a means by which ecosystem 
behavior can be characterized for cross-site or cross- 
biome comparisons. In addition, physiological para- 
meters derived from eddy covariance data may be 
useful for scaling exercises, in conjunction with 
remote sensing data, or as inputs in more complex 
ecosystem models (Wang et al., 2004; Xiao et al., 
2004). 

An obvious problem is that there is no standardized 
modeling approach across sites (Falge et al., 2001; 
Morgenstern et al., 21)04), and yet the choice of model, 
or how it is fitted, may have a significant effect on the 
fitted model parameters, and hence the model 
predictions. This makes it hard to know whether an 
apparent difference between two sites is indicative 
of red differences in ecosystem function, or is simply 
an artifact of the different statistical procedures 
employed. 

An additional concern is that most model fitting to 
date has been based on ordinary least squares (OLS) 
optimization. Because eddy covariance data may not 

conform to the least squares assumptions of error term 
variance homogeneity and normality (Hollinger et a]., 
2004; Hollinger and Richardson, 2005), the estimated 
model parameters may not represent those of the 
underlying physiological processes; that is, they are 
not the maximum likelihood parameter estimates. We 
would argue that there is a pressing need for the eddy 
flux community to adopt a consistent modeling 
methodology based on maximum likelihood estima- 
tion (Press et al., 1993). 

Finally, little attention has been paid to important 
issues such as measurement uncertainty OP model and 
parameter uncertainty (Hollinger and Richardson, 
2005). Knowledge of this uncertainty is critical if valid 
statistical comparisons are to be made across sites or 
across time. We also need to know how model 
parameters are related to each other, not only in order 
to determine whether models are over-parameterized, 
but so that confidence intervals for parameter 
distributions can be correctly specified. In data-based 
modeling exercises, a common issue is the equifinality 
of different parameter sets: frequently, the optimal 
parameter set is not uniquely defined. Instead, there 
may be many sets of parameters that all fit the data 
more or less equally well (Franks et al., 1997; Schulz 
et al., 2001; Hollinger and Richardson, 2005). Large 
confidence intervals for parameter estimates and 
highly correlated parameter sets would tend to 
indicate equifinality, and may increase the uncertainty 
in model predictions. 

In this paper, we begin by determining the 
characteristics of the stochastic uncertainty inherent 
in nighttime eddy covariance measurements. We 
propose that based on the apparent distribution of 
the flux measurement error, OLS optimization is 
inappropriate. We show how a different fitting 
paradigm, based on minimizing the weighted sum 
of the absolute deviations between measured and 
modeled data, leads to significantly different estimates 
of model parameters and hence model predictions (in 
particular, the modeled annual sum of respiration). 
Results are presented for three commonly used 
respiration models, with an emphasis on two 
exponential-type models, Qlo and Lloyd & Taylor 
(Lloyd and Taylor, 1994). An empirical, second-order 
Fourier regression model is used to demonstrate that 
these results hold even when a model with a very 
different structure is applied. 
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2. Data and method 

2.1. Site description 

Flux measurements were made at the Howland 
Forest AmeriFlux site located about 35 miles north of 
Bangor, ME, USA (45'15' Id, 68'44' W, 60 m asl) on 
commercial forestland owned by GMO Renewable 
Resources, LLC. Forest stands are dominated by red 
spruce (Picea rubens Sarg.) and eastern hemlock 
(Tsuga canadensis (L.) Carr.) with lesser quantities of 
other conifers and hardwoods. Fernandez et al. (1993) 
and Hollinger et al. (1999, 2004) have previously 
described the climate, soils, and vegetation at How- 
land. 

Data were recorded at two reskarch towers 
separated by <1 km and instrumented with identical 
eddy covariance systems. The first flux tower ("main" 
tower, 45.20407" N, 48.74020" W) was established in 
1995 and the second ("west" tower, 45.20912" N, 
68.74700" W) in 1998. We use the year 2000 data from 
the two towers to determine the flux uncertainty, and 
the year 2200 data from the main tower for model 
fitting. 

2.2. Flux measurements 

Fluxes were measured at a height of 29 m with 
systems consisting of model SAT-21 113K 3-axis sonic 
anemometers (Applied Technologies Inc., Longmont, 
CO, USA) and model LI-6262 fast response C02/H20 
infrared gas analyzers (Li-Cor Inc., Lincoln, NE, 
USA), with data recorded at 5 Hz. The flux measure- 
ment systems and calculations are described in detail 
in Hollinger et al. (1999, 2004). Deficiencies in the 
high and low frequency response of the flux systems 
were corrected by using a spectral model and trans- 
fer furaction to correct for missing low frequency 
contributions and a ratio of filtered to unfiltered heat 
fluxes to account for missing high frequency fluctua- 
tions. Half-hourly flux values were excluded from 
further analysis if the wind speed was below 
0.5 m s-I, sensor variance was excessively high or 
extremely low, rain or snow was falling, for 
incomplete half-hour sample periods, or instrument 
malfunction. For the present analysis, we used only 
nighttime (PPFD 5 5 pmol m-2 s-') data. Further- 
more, data from nocturnal periods were excluded 

when the friction velocity, ux,  was less than a threshold 
of 0.25 m s-l. The sign convention used is that carbon 
flux into the ecosystem is defined as negative. 

2.3. Determination of JEux uncertainty 

We used independent but simultaneous half-hourly 
measurements at the main and west tower as the basis 
for quantifying the random flux uncertainty, 6, as 
described by Hollinger et al. (2004) and Hollinger and 
Richardson (2005). Meteorological conditions at the 
two towers are nearly identical, but the towers are 
separated by sufficient distance (-775 m) that the flux 
source regions over a half-hour time period do not 
generally overlap. The mean difference between 
simultaneous C02 flux measurements from the two 
towers is very close to zero, and so assuming that the 
flux uncertainties at the main and west tower are 
independent and identically distributed, then the 
stochastic uncertainty in the measured flux at one 
tower (expressed as a standard deviation, 46)) can be 
calculated from Eq. (I), where XI and X2 are paired 
simultaneous measurements from the two towers: 

The measurement uncertainty we quantify with 
Eq. (1) includes random measurement errors asso- 
ciated with turbulent transport, errors associated with 
the flux measurement system (i.e., instrumentation), 
and errors associated with the location and activity of 
the sites of flux exchange ('footprint heterogeneity') 
(Moncrieff et al., 1996). We are making the 
assumption that spatial variability in climatic factors 
and flux source region is no greater between the two 
towers than it would be at a single tower, so that the 6 
we characterize with Eq. (1) is valid. At sites such as 
Howland, where the two towers are located in 
reasonably close proximity, and where spatial hetero- 
geneity is low (Hollinger et al., 2004), this is not an 
unreasonable assumption. Daytime estimates of flux 
uncertainty based on turbulence statistics (Lenschow 
et al., 1994) for sensible and latent heat agree with 
estimates derived using the two-tower approach, but 
for C02 the flux uncertainty is over-estimated 
compared to the two-tower approach (Hollinger and 
Richardson, 2005). 
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By separating the data into bins according to day of 
year, wind speed, air temperature, and soil tempera- 
ture, we were able to examine how the distributional 
characteristics of the random flux uncertainty, and 
hence 4 6 ) ,  vary in relation to other factors. During the 
year 2000, we obtained a total of 2652 simultaneous 
nighttime measurements from the two towers. 

2.4. Respiration models 

During the night, there is no photosynthetic uptake, 
and so ecosystem respiration, RE, can be considered 
the source of the entire net carbon flux: 

Two of the models we use, the exponential Qlo 
model (Eq. (3), see Goulden et al., 1996; Black et al., 
1996; Hollinger et al., 1999; Lee et al., 1999; Schrnid 
et al., 2000; Berbigier et al., 2001; Granier et al., 2002; 
Hadley and Schedlbauer, 2002; Griffis et al., 2003) 
and the exponential Lloyd & Taylor model ("L&T 
model", Eq. (4), see Lloyd and Taylor, 1994; Aubinet 
et al., 2001,2002; Falge et al., 2002; Law et al., 2002; 
Carrara et al., 2003; Wang et al., 2004) are constrained 
by their functional form to conform to general ideas 
about the nature of the relationship between tempera- 
ture (here we use TSoil, in "C) and respiration. As a 
third model we also include an empirical second-order 
Fourier regression based on day of year (Eq. (5); 
D, = DOY x 2~1365). Although this model has 
received considerably less attention from the flux 
community, we have long used it for filling nocturnal 
gaps in the Howland flux record (Hollinger et al., 
2004). The Fourier model is appealing because of its 
inherent seasonality and because it requires no 
additional environmental data; it thus provides a 
good contrast to the Qlo and L&T models. In the 
following equations, E denotes the regression residual. 

x sin(2 x D,) + c2 x cos(2 x D,) + E (5) 

In the Qlo and L&T models, R,d is simply a scale 
parameter. In Eq. (3), the Qlo parameter controls the 
temperature sensitivity of respiration, and TA is a 
constant denoting the base temperature at which 
RE = Rref We use Lf= 10 "C. In Eq. (4), Eo is 
essentially the activation energy divided by the gas 
constant, and thus has units of K rather than J mol-l, 
and the parameter To determines the temperature 
minimum (in K) at which predicted respiration 
reaches zero. The model proposed by Enquist et al. 
(2003), based on metabolic scaling, is functionally 
identical to Eq. (4) with To constrained to zero. In 
Eq. (3, the fo parameter equals the mean annual flux, 
while the remaining parameters control the phase and 
amplitude of the seasonal pattern. 

Because of their exponential form, the Qlo and 
L&T models both predict a monotonic increase in 
respiration with increasing temperature. However, 
whereas in the Qlo model the temperature sensitivity 
of respiration (the Qlo parameter) is fixed with regard 
to temperature, and the predicted respiration therefore 
increases at a steady relative rate and without limit as 
the temperature increases, in the L&T model (Eq. (4)) 
the temperature sensitivity of respiration varies with 
temperature, and the maximum predicted respiration 
asymptotically approaches REf as T -+ co. This is 
important when the model is used for extrapolating 
beyond the temperature domain used for parameter- 
ization. 

2.5. Maximum likelihood estimation 

In the maximum likelihood paradigm (Dempster 
et al., 1977), measured data (yi) are the realization of 
the "true" underlying model f(xi), plus or minus some 
random measurement error, Ayi. The objective is to 
determine the model parameters for f(xi) that would be 
most likely to generate the observed data. It is 
important to keep in mind that there is a single set of 
parameters that correctly defines the true model, 
whereas the measured data are just one draw from 
what Press et al. (1993) describe as a "statistical 
universe of data sets." Different realizations of this 
random draw would lead to different maximum 
likelihood estimates of the true model parameters. 
Therefore, the fitted model parameters themselves 
follow some unknown probability distribution around 
the true values of the model parameters. With just one 
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observed realization of the data, we can be quite 
certain that the parameter values we estimate, even 
when maximum likelihood techniques are used, are 
very unlikely to be identical to the true underlying 
model parameters. We discuss below how Monte 
Carlo techniques can be used to determine an 
approximate probability distribution for the fitted 
model parameters. By analogy, we use this distribution 
as a surrogate for the probability distribution of the 
true model parameters (Press et al., 1493). 

Ordinary least squares (OLS) regression coeffi- 
cients are maximum likelihood when the random 
measurement error is normally distributed and 
homoscedastic (i.e., oi =u(Ayi) is constant for all 
observations). If Ayi is normally distributed, but not 
homoscedastic, the heteroscedasticity is easily (as 
long as o;. is known for each observation) taken care of 
by minimizing the q-weighted sum of squares ("least 
squares criterion"), and using the X2 statistic, as given 
in Eq. (6), as the figure of merit, L?, to be minimized: 

However, if Ayi follows some other distribution 
(e.g., Poisson, lognormal, uniform, etc.), then mini- 
mizing the sum of squares is no longer maximum 
likelihood. In the case where Ayi follows a double- 
exponential distribution, the appropriate figure of 
merit minimizes the q-weighted sum of the absolute 
deviations ("absolute deviation criterion"), rather 
than the squared deviations, between observed and 
modeled values, as in Eq. (7) (Press et d., 1993): 

One obvious barrier to implementing maximum 
likelihood estimation is that use of either Eq. (6) or 
Eq. (7) requires knowledge of the distribution of Ayi. 
At a minimum, we need to know oi. Although the 
regression model residuals, zi = yi - y@, can be used 
as a proxy for Ayi, ~i = Ayi only when the regression 
model is in fact the "true" model. Using ~i to estimate 
ai in order to detennine the maximum likelihood 
parameter estimates by either Eq. (6) or (7) is therefore 
an approach that is somewhat circular in its reasoning. 
By contrast, our two-tower estimates of the flux 

uncertainty, 6 ,  give us a wholly independent means by 
which the distributional characteristics of the mea- 
surement error Ayi can be estimated. We use 44) as a 
proxy for o(Ayi). 

2.6. Monte Carlo simulations 

To determine approximate probability distributions 
for the true model parameters, we used the Monte 
Carlo-type procedure given by Press et al. (1993). The 
best-fit parameters for the observed yi are used as a 
substitute for the true model parameters. Using the 
best-fit parameters, an "ideal" data set is generated 
from the model predictions. A synthetic data set is 
then generated by adding random noise with the same 
characteristics as the measurement uncertainty to each 
model prediction in the ideal data set. Model 
parameters are then determined for the synthetic data 
set. If enough synthetic data sets are generated 
(hundreds or thousands), then the probability dis- 
tribution of the initial best-fit parameters can be 
determined. This distribution is then assumed to 
approximate the distribution of the true model 
parameters. 

To determine n-dimensional confidence regions for 
model parameters, we calculated the figure of merit (52 
in Eqs. (6) and (7)) for the original data set using the 
fitted model parameters from each synthetic data set. 
Parameter sets were then sorted by 52; the x% 
confidence region is defined by the range of parameter 
values across the x% of parameter sets with the lowest 
8. An alternative method, the constant 52 contour 
method, involves gridding the parameter space at close 
intervals, and then calculating 52 at each point on the 
grid, using the original data. A confidence region is 
then identified by specifying a cutoff 52 and locating 
the n-dimensional contour with that $2 value. The 
contour defines the boundary of the confidence region. 

2.7. Bootstrap simulations 

When the distribution of the measurement error is 
not known, bootstrap methods offer an alternative to 
the Monte Carlo simulations described above for the 
generation of synthetic data sets and the determination 
of parameter distributions (Press et al., 1993). In the 
bootstrap procedure, a synthetic data set is generated 
by randomly selecting N observations from the 
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original data set, which is itself of size N. Because 
resampling is done with replacement, each synthetic 
data set will be different from the original data set: 
some of the original data points will appear two or 
more times, and some of the original data points will 
not appear at all. As with the Monte Carlo method, 
the distribution of the fitted model parameters for 
each synthetic data set provides an estimate of the 
distribution of the true model parameters. Note, 
however, that although generation of the synthetic data 
sets does not require knowledge of the measurement 
error, this information (in the form of oi) is still 
required if maximum likelihood parameter estimates 
are to be calculated using a q-weighted merit function 
as in Eq. (6) or (7). 

2.8. Statistical analysis 

Statistical analyses were conducted in SAS 9.1 
(SAS Institute, Cary, NC, USA), using weighted non- 
linear regression. Parameters were optimized using 
either the Gauss-Newton or the Marquardt method 
with automatic computation of analytical first- and 
second-order derivatives. Results obtained using these 
algorithms were found to be comparable to those 
determined using a simulated annealing algorithm 
(Metropolis et al., 1953; Hollinger et al., 2004; 
Hollinger and Richardson, 2005). Monte Carlo and 
bootstrap resampling simulations were also conducted 
in SAS using built-in random number functions to 
generate the synthetic data sets. Each simulation was 
run 1000 times. 

3. Results 

3.1. Characteristics of the uncertainty 

For nighttime periods, the estimated random flux 
uncertainty, S" = ( X I  - XZ) /& clearly follows a non- 
normal distribution, with a very tight central peak, 
but also very heavy tails (Fig. 1). The leptokurtic 
nighttime distribution of 6 is similar to that during the 
day (Hollinger and Richardson, 2005), but a(S) is 40% 
lower at night (1.2 pmol mP2 s-') than during the day 
(2.1 pmol mP2 s-l). A double-exponential, or 
Laplace, distribution appears to be a better fit than 
a normal distribution (Fig. 1A). Comparison of the 

---. Normal distribution, o = 1.207 - Exponential distrJbution, $ = 0.672 

(8) Observed cumulative distribution of S 

Fig. 1. The inferred random flux uncertainty, & in nighttime eddy 
covariance C 0 2  measurements follows a distribution that is more 
closely approximated by a double-exponential distribution (with 
B = 0.67) than a normal distribution. Measurement uncertainty was 
determined (Eq. (1) in text) using independent but simultaneous 
measurements (XI, X2) of forest-atmosphere exchange at two flux 
towers separated by <800 m at the Howland AmeriFlux site. The 
histogram in (A) depicts the distribution of the inferred flux uncer- 
tainty, measured as the difference (XI - Xz) divided by JZ for 2652 
simultaneous measurements during the year 2000. The probability 
plot in (B) confirms that the observed distribution of the flux 
uncertainty is approximately double-exponential, because the 
theoretical double-exponential distribution lies closest to the 
diagonal 1 : 1 line. 

observed cumulative distribution of 6 with the 
theoretical, or expected, cumulative probability dis- 
tribution functions of both a normal and a double- 
exponential distribution confirms that the double- 
exponential provides a considerably better fit because 
it lies much closer to the 1:l line pig. 1B). This is 
especially true within the probability range of 0.05- 
0.90. The tendency for both distributions to diverge 
from the 1: 1 line at both low (<0.01) and high (>0.95) 
probabilities is indicative of the fact that the tails of 
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both theoretical distributions are much thinner than 
what is actually observed for 8. 

The double-exponential distribution is character- 
ized by the parameter @. The standard deviation of the 
distribution equals a. The general form for an 
unbiased estimator for @ is: 

Across all nighttime observations, the mean @ is 
0.67. We used the binned S data to evaluate changes in 
( ~ ( 8 )  = &$ in relation to different factors, i.e., to 
determine whether &varies as a function of wind speed, 
season, air temperature or soil temperature. We use the 
notation nwind to denote an estimate of the flux 
uncertainty varying as a function of wind speed (cf. 
ai, which is the uncertainty of the ith flux measurement). 
This analysis indicates that the uncertainty in nocturnal 
measurements follows a seasonal pattern, with crs,,,, 
ranging from a low of about 0.4 pmol m-2 s-' during 
the winter to a peak of roughly 2.8 pmol m-2 s-' in the 
middle of the growing season pig. 2A). This suggests 
that the magnitude of the uncertainty scales with the 
mean flux (Hollinger and Richardson, 2005). Further- 
more, the uncertainty decreases as a power function of 
the mean wind speed, so that above about 2.5 m s-', 
awind is less than 1.0 kmol mb2 s-' (Fig. 2B). The 
uncertainty also increases as an exponential function of 
both air Fig. 2C) and soil (crTsoil, Fig. 2D) 
temperature. At an air temperature of 20 "C the 
uncertainty is twice as large as at 10 OC, and almost 
four times as large as at 0 OC. At a soil temperature of 
15 "C, the uncertainty is twice as large as at 10 OC, and 
more than at eight times larger than at 0 "C. 

Regression model residuals represent a combina- 
tion of the stochastic flux uncertainty, 8, plus model 
error due to systematic biases resulting from a variety 
of factors, including omission of important driving 
variables, mis-specification of the functional form of 
the model, or incorrect parameter estimates. We 
therefore conducted an analysis similar to that above 
on the model residuals ( E ~ )  from a Lloyd & Taylor 
model (Eq. (4)) fit (least squares criterion) to the very 
same nighttime, main tower fluxes (2652 observa- 
tions) used as XI in the analysis of 8. The overall 
distribution of E is more closely approximated by an 
exponential distribution than a normal distribution 

(A) Wind speed (m s-') 

- 
0 
E 
J 2 
0 .- 
2 1 
8 

J F M A M J J A S O N D  

(B) Month 

(c) Air temperature (OC) 

(Dl Soil temperature (OC) 

Fig. 2. Variation in the standard deviation of the nighttime flux 
uncertainty, 4 6 )  = f i  b(8) (filled symbols), and respiration model 
residuals, 4 8 )  = fi ,!I(&) (open symbols), in relation to (A) wind 
speed, (B) season, (C) air temperature, and (D) soil temperature. 
Best-fit regression lines and associated statistics are shown for the 
binned 4 6 )  data. 



198 A.D. Richardson, D.1 Hollinger/AgricultrcraE and Forest Meteorology 131 (2005) 191-208 

Normal distribution, 0 = 1.38 - Exponential distribution, P = 0.82 

"-1s -10 -5 o 5 10 15 
Respiration model residual, E (yrnoi m'2 s") 

Fig. 3. Histogram depicting the distribution of model residuals (E )  

from the Lloyd & Taylor respiration model fit by ordinaq least 
squares. This distribution is closely approximated by a double- 
exponential distribution with = 0.82. 

(Fig. 3). Furthermore, the distribution of E is very 
similar to that of S (cf. Fig. I), except that B(E) is 22% 
larger than /?(ti). The variation of B(E) in relation to 
month, wind speed, and temperature is virtually 
identical to that for B(6). For each of these factors, the 
binned P(E) and B(6) estimates are correlated at 
r 2 0.96. However, for each bin, B(E) is typically 
somewhat larger than B(S) (Fig. 2). The close 
similarity between B(6) and @(E)  suggests that the 
random measurement uncertainty accounts for about 
two-thirds (based on RMS error propagation) of E, 
whereas model error must therefore account for a 
comparatively small proportion of E. However, using 
E as a basis for estimating 6 is not recommended, 
became E depends on the specific model used, and 
incorporates systematic model biases that cannot be 
considered part of the true measurement uncertainty. 

3.2. Model results 

Both the choice of the optimization criterion (least 
squares versus absolute deviation), and the weighting 
scheme (i.e., constant mi versus o;. as a function of wind 
speed, season, air temperature, or soil temperature), 
may influence not only the fitted model parameters but 
also the resulting model predictions. Although the 
non-normal distribution of S and the variation of the 
distribution parameter /3 in relation to other factors 
together argue strongly for the use of Eq. (7) as the 
appropriate figure of merit for model optimization in a 
maximum likelihood paradigm, it is important to 

understand the consequences of this approach to 
model fitting. To investigate these consequences, we 
compared model fit and model predictions using the 
Qlo model (Eq. (3)), the L&T model (Eq. (4)), and the 
Fourier model (Eq. (5)), all fit to the 2002 Howland 
main tower nocturnal data. Regardless of the 
optimization criterion or the weighting scheme used, 
the L&T model consistently offers the best fit (lowest 
a), and the Qlo model the worst fit. The modeled 
annual sum of respiration (day + night) is always 
higher (by e70-145 g C mP2 y-l) when the least 
squares criterion is used compared to when the 
absolute deviation criterion is used (Fig. 4). Further- 
more, for both optimization criteria, and for all three 
models, weighting by c r ~ &  yields the lowest annual 
sums of respiration (Fig. 4). The annual sum of 
respiration varies little among models, except with 
weighting by m ~ ~ ~ i ~ .  where the Qlo model predicts 
~ 1 0 0  g C m-* y-l more respiration than the Fourier 

" 1200 
? 
E 
o 1100 
cn - 
tf" too0 
W - g BOO 
r 
2 800 

(A) LS LS-1 6-2 LS-3 LS4 

AD AD-1 AD-2 ADS AD-4 

(8) Weighting scheme 

Fig. 4. Effects of different optimization criteria and weighting 
schemes on the modeled annual sum (day +night) of ecosystem 
respiration, RE. (A) LS, least squares criterion; (B) AD, absolute 
deviation criterion. Weighting schemes: (1) weighting by c~,; (2) 
weighting by o,,,,,; (3) weighting by C Y ~ ;  (4) weighting by 
E m  bars denote 95% confidence intervals for the modeled sums. 
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model (Fig. 4). The effects of optimization criterion 
and weighting scheme on Qlo and L&T model 
parameter distributions, and uncertainty of model 
predictions, will now be discussed in greater detail. 

3.3. Qlo model 

For the Qlo model (Fig. 5A), the optimal OLS 
(constant q) parameters are Rref = 3.45, Qlo = 2.95. 
Monte Carlo simulation results suggest that the 
parameter estimates are negatively correlated (r = 
-0.60), and that a 95% confidence interval (CI) for the 
parameters is approximately elliptical and spans 3.38- 
3.52 (RIef) and 2.87-3.05 (Qlo). By contrast, all 
weighted least squares (Eq. (6)) estimates of model 
parameters have lower values of Rref, but higher values 
of Qlo. Each weighting scheme leads to a distinctly 
different parameter set, as there is no overlap among any 
of the resulting 95% CIS. When observations are 
weighted by D ~ ; ~ ~ ,  the negative correlation between Rmf 
and Qlo is preserved, but when observations are 
weighted by either o,,,, or the correlation 

between the parameters is positive (r = 0.28, 0.55, 
respectively). Possible reasons for this are discussed 
below. Weighting by a,ind appears to lead to the tightest 
set of parameter estimates in that it produces the 
smallest 95% CI ellipse. 

Using the absolute deviation criterion with constant 
q, the optimal model parameters are Rref = 2.92, 
Qlo = 3.65 (Fig. 5A). Again, the parameter estimates 
are negatively correlated (r= -0.75). The 95% CI 
spans 2.87-2.98 for Rref and 3.54-3.76 for Qlo; the 
parameter estimates are therefore no less variable than 
with least squares optimization. The different weight- 
ing schemes generally result in only minor variation in 
REf (x7%), whereas QI0 varies more substantially 
(=15%). As with the least squares parameter 
estimates, the highest Qlo estimates (~54.35) are 
produced when weighting is by ST& or ( T T ~ ~ ~ I .  

Although the 95% CI for weighting by o,,,ind overlaps 
with the best-fit estimates for the unweighted model, 
the other three 95% CI ellipses are well-separated in 
two-dimensional space, and parameter estimates are 
therefore significantly different at the P < 0.05 level. 

2.8 2.8 3 3.2 3.4 3.6 
Rref parameter 

0 5 10 15 
Soil temperaturn 

Fig. 5. (A) Best-fit parameter sets for the Qto model fit using different optimization criteria and weighting schemes. Dashed lines denote results 
by the least squares criterion, solid lines denote the absolute deviation criterion. 95% confidence ellipses were determined by establishing a cutoff 
figure of merit (L2) value using Monte Cado simulation, and then identifying the corresponding Q contour in gridded parameter space, as 
described in text. Symbols: LS, least squares criterion, constant at; AD, absolute deviation criterion, constant ai; (1) weighting by cwind; (2) 
weighting by o,,,; (3) weighting by cTair; (4) weighting by Results are superimposed over a contour plot showing the parameter pairs 
(dotted lines, "isofluxes") that would yield identical modeled annual sums (day + night) of ecosystem respiration. (B) Model predictions for 
ordinary least squares (LS), least squares weighted by c r ~ . ~ ~  (LS-4). absolute deviation criterion (AD). and absolute deviation criterion weighted 
by UT,.,~~ (AD-4) optimization. (C) Predicted respiration relative to ordinary LS model. 
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Thus, the main effect of switching from least 
squares to the absolute deviation criterion, or using 
one of the four weighting schemes proposed, is that the 
best-fit REf tends to go down, indicating a lower base 
level of respiration, whereas Qlo goes up, reflecting 
a higher temperature sensitivity of respiration. 
The ultimate effect of this is that at cooler soil 
temperatures, the predicted respiration is less than 
predicted by the OLS model, whereas at higher 
temperatures the predicted respiration is equal to or 
greater than predicted by the OLS model (Fig. 5B and 
C). It can be expected, therefore, that annual sums of 
predicted respiration will differ. With only two 
parameters in this model, it is easy to grid the 
parameter space and calculate modeled annual sums 
of respiration across all possible combinations of Rref 
and Qlo. This analysis reveals the contours of constant 
annual flux ("isofluxes") that run diagonally across 
the parameter space. For example, if Rref increases by 
4 . 0 7  units, then a x l . O  unit decrease in Qlo will have 
little or no effect on the annual sum of respiration 

LS. constant ts 
3 2  7 1  
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(Fig. 5A; note that the location of the isoflux contours 
depends on the underlying soil temperature data, and 
will be different for different sites and years). The 
isofluxes can be used to estimate not only the annual 
sum of respiration for each of the different parameter 
pairs, but also to evaluate confidence intervals for the 
annual sum of respiration based on the 95% 
confidence ellipses around each optimum. The annual 
sum of respiration is generally larger under the least 
squares criterion (e.g., 1140 g C mP2 y-l with con- 
stant oi) than the absolute deviation criterion (e-g., 
990 g C mP2 y-l with constant oi). The 95% CIS on 
the annual sums of respiration are typically narrower 
for those parameter sets with a negative correlation 
between Rref and QI0, because the orientation of the 
confidence interval ellipse is parallel to, rather than 
perpendicular to, the isoflux contours. Thus, whereas 
the 95% CI on the annual sum of respiration spans 
980-1020 g C m-2 y-l for the absolute deviation 
criterion with crwind weighting, the corresponding 
interval is 1020-1090 g C rnp2 y-i for the absolute 

AD, constant (f 4r-- 

- 
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Fig. 6. Comparison of Monte Carlo simulation (black '+' symbols) and bootstrap methods (light gray circles) for determining distributions of 
model parameters. Results are superimposed over constant figure of merit (52) contours, denoting 90%, 95% and 99% coniid&e intervals. i2 
cutoffs based on Monte Carlo simulation. Panels are as follows: (A) optimization by ordinary least squares; (B) optimization by absolute 
deviation criterion, constant ui; (C) optimization by absolute deviation criterions, weighting by q,,; @) optimization by absolute deviation 
criterion, weighting by ( T ~ ~ , f i .  
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deviation criterion with L T T ~ ~ ~ ~  weighting. Most of this 
uncertainty can be attributed to uncertainty in model 
predictions; Monte Carlo simulations indicate that 
only about +5 g C mP2 y-l (with 95% confidence) is 
due to the accumulated uncertainty in the measured 
nighttime data. At other sites, where measurement 
uncertainty is larger, or data gaps are more extensive, 
the accumulated uncertainties will increase in 
magnitude. 

Monte Carlo simulations with the Qlo model 
generally result in parameter sets where Rref and QI0 
are highly correlated, but the correlation is not always 
consistent with the shape of the constant B contours, 
or results of the bootstrap simulations (Fig. 6). It is 
therefore important to understand what factors cause 
parameters to be correlated in the first place. The 
apparent correlation between model parameters is due 
in part to the functional form of the model. The Rref 
and QPO parameters are to some degree substitutes for 
each other, because given any parameter pair, a nearly 
identical model can be obtained if Rref is decreased by 

a small amount and Qlois simultaneously increased by 
a small amount. The weighting scheme can also 
influence the correlation between parameters: if the 
weight decreases as TSoil increases, then an acceptable 
model fit can still be obtained even when both Rmf and 
Ql0 are simultaneously increased (or decreased); in 
this way, the parameters may end up being positively 
correlated despite a model structure that would appear 
to lead to a negative correlation. Finally, the 
correlation also depends on the data used to fit the 
model. Here, each of the three different methods used 
to determine 95% confidence regions for the model 
parameters are based on different data sets. Agreement 
between the Monte Carlo and bootstrap methods 
requires that the probability distribution used for the 
generation of the synthetic Monte Carlo data sets be an 
accurate representation of the actual distribution of 
Ayi. If this is not the case, then the synthetic data sets 
will not have been properly generated, and the 
confidence regions obtained by Monte Carlo simula- 
tion are simply incorrect. This is illustrated in Fig. 6A 

(4 R,, parameter {B) R,, parameter (C) E, parameter 

Fig. 7. (A, B and C) Parameter distribution for three-parameter Lloyd & Taylor model, fit by ordinary least squares (light gray symbols) and 
absolute deviation criterion (dark gray symbols). Dashed lines show best-fit parameters that result when parameter Eo = 46.5 (two-parameter 
Lloyd & Taylor model, as described in text). @ and E) Relationship between the annual sum of respiration and the level of confidence 
(determined by figure of merit ranking of Monte Carlo simulation results), for the three-parameter and two-parameter models, fit by ordinary 
least squares (light gray symbols) and absolute deviation criterion (dark gray symbols). Dashed lines denote the 95% confidence inte~als  for the 
annual sum, which are almost identical between the three- and two-parameter models. 
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and B: in both instances, the noise added back in for 
the Monte Carlo simulations had constant variance, 
when in fact the actual ai is known to scale with TSoil 
(Fig. 2). Note that similar problems can occur with the 
l2 contour method, if, for example, the weighting 
scheme used is not consistent with the actual q. On the 
other hand, if the results of all three methods are in 
agreement (Fig. 6C and D), then this would tend to 
suggest that our conception of the underlying random 
measurement error, Ayi, (in terms of size, probability 
disbibution, and relation to other factors) is more or 
less correct. Weighting by oseason or a~,,il is clearly 
more appropriate than assuming a constant ai. 

3.4. L&T model 

We begin by considering the three-parameter L&T 
model (Eq. (4)). For OLS, the best-fit parameters are 
Rref = 24.9, To = 263.9, Eo = 33.6; with the absolute 
deviation criterion (constant oi), the corresponding 
values are 43.9, 259.5, and 58.5, respectively. The 
Monte Carlo 95% CI for each parameter is relatively 

large (Fig. 7A-C; cf. Fig. 5A for the Qlo model): for 
example, for the OLS estimates, the span is 21.3-31.5 
for RIef and 28.542.0 for Eo. Using the absolute 
deviation criterion, the ranges are approximately twice 
as large. This can be attributed to the extremely high 
correlation between all three parameter pairs: r(RIef, 
To) = -0.96, r(Rmf, Eo) = 0.99, and r(To, Eo) = -0.98 
for the OLS estimates. These correlations suggest 
that the model is over parameterized and hence not 
uniquely determined by the available data. This 
equifinality leads to considerable uncertainty in the 
parameter estimates. The degree of over-parameter- 
ization can be quantified by conducting a principal 
components analysis (PCA) on the 1000 Monte Carlo 
triplets, and evaluating the proportion of total variance 
accounted for by each of the three components. The 
first principal component accounts for 98.5% of the 
total variance, whereas the second and third compo- 
nents account for ~ 1 . 5 %  and ~ 0 . 0 5 %  of the total 
variance, respectively. Thus, the three parameters 
define (almost) a line, rather than a cloud of points, in 
three-dimensional space. At least one of the three, if 

Ref parameter Soil temperature 

Fig. 8. (A) Best-fit parameter sets for the two-parameter Lloyd & Taylor model fit using different optimization criteria and weighting schemes. 
Dashed lines denote results by the least squares criterion, solid lines denote the absolute deviation criterion. 95% confidence ellipses were 
detennined by establishing a cutoff figure of merit (D) value using Monte Carlo simulation, and then identifying the corresponding Q contour in 
gridded parameter space, as described in text. Symbols: LS, ordinary least squares (OLS); AD, absolute deviation criterion, constant q; (1) 
weighting by a,*d; (2) weighting by a,.,,; (3) weighting by (4) weighting by a,,,,. Results are superimposed over a contour plot showing 
the parameter pairs (dotted lines, "isofluxes") that would yield identical modeled annual sums (day + night) of respiration. (B) Model 
predictions for least squares (LS), least squares weighted by (LS-4), absolute deviation criterion (AD), and absolute deviation criterion 
weighted by a,,il (AD-4) optimization. (C) Predicted respiration relative to LS model. 
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not two of the three, model parameters is redundant. 
Related to this, Lloyd and Taylor (1994) found that 
with Eo and To fixed at 308.6 and 227.1 K, 
respectively, a good model fit could be obtained by 
allowing only the Rref parameter to vary among data 
sets. 

We therefore elected to restrict one of the three 
model parameters, and fix Eo at 46.5. This value was 
determined by fitting the model by OLS using all 
seven years (1996-2002, Hollinger et al., 2004) of 
Howland data, and taking the optimal Eo from that 
model. Note that if the seven years had been fit by the 
absolute deviation criterion with constant q, the 
resulting Eo would have been 65.0, but otherwise the 
results would be analogous. With Eo restricted, the 
optimal parameter values are shifted from what they 
were in the three parameter model (Fig. 7A-C), and 
the range of parameter estimates spanned by the 95% 
CI is greatly reduced: 34.0-36.1 for Rref and 260.9- 
261.5 for To by OES versus 31.3-33.1 for RRf and 
261.3-261.8 for To by the absolute deviation criterion 
(Fig. 8A). Furthermore, whereas Rref and To are 
negatively correlated in the three-parameter model, 
the correlation is positive in the two-parameter 
model (r = 0.86 for both optimization criteria). 
However, restricting Eo has little or no effect on the 
modeled annual sum of respiration, or the 95% CI for 
the annual sum, which is 1105-1150 g C rnF2 y-l 
(OLS) and 995-1030 g C mP2 y-l (absolute deviation 
criterion) in the three parameter model, and 1110- 
1 150 g C rnP2 y-l (BLS) and 990-1025 g C m-2 
(absolute deviation criterion) for the two-parameter 
version (Fig. 7D and E). 

In the two-parameter L&T model, the best-fit 
OLS model parameters are RrCf = 35.0, = 261.2 
(Fig. 8A). The model predicts an annual sum of 
respiration of 1130 g C m-2 y-l. Weighted least 
squares estimates of best-fit model parameters 
generally have similar values of REf, ranging from 
34.4 (weighting by cSe,,,) to 35.5 (weighting by 
a,&. The range in parameter values for pb is greater, 
spanning 260.9 (weighting by o,,,,,) to 261.8 
(weighting by cTair). Despite the considerable overlap 
among the different 95% confidence ellipses, only 
with weighting by eTsoil does the best-fit parameter 
pair fall within the 95% confidence ellipse for the OLS 
parameter set. Weighting by D~.,,,,, results in the 
largest annual sum of respiration (1 150 g C mP2 y-l), 

whereas weighting by cTak results in the smallest 
annual sum of respiration. 

Using the absolute deviation criterion with constant 
q, the best fit parameters are Rref = 32.45, To = 261.5 
(Fig. 8A). Again, the different weighting schemes 
have little effect on the Rref parameter, which ranges 
from 31.4 for weighting by aTsoil to 32.3 for weighting 
by cwind. This range is smaller than the uncertainty 
limits on the parameter estimates. The To parameter, 
which ranges from 261.2 for weighting by cSe,,, to 
261.7 for weighting by aTab appears to be more 
sensitive to the weighting scheme, at least relative to 
parameter uncertainty. However, the variation in To 
due to weighting by ai is smaller for the absolute 
deviation criterion, compared to when least squares 
optimization is used. The best-fit parameters for 
weighting by c-d and aTsoil both fall within the 
95% confidence ellipses for constant ai. The annual 
sum of respiration is lowest for weighting by (rTair 

(970 g C m-2 y-l) and highest for weighting by 
asearn (1015 g C mP2 y-'). Because the confidence 
ellipses for weighting by a,,,,,, DT- and do not 
run exactly parallel to the isoflux lines (although the 
correlation between parameters is positive in all 
cases), the 95% CI on the annual sum of respiration 
is wider ( ~ 2 5  g C m-2 y-l) for these weighting 
schemes compared to either constant ci or weighting 
by awind (e20 g C m-2 y-l). 

Compared to the OLS model, the lower value of 
REf that results when the model is optimized using the 
absolute deviation criterion leads to consistently lower 
predicted soil respiration across the entire temperature 
range (Fig. 8B and C). The difference is about 10% at 
5 "C and above. The difference is more pronounced 
below 5 "C, and this has to do with the effect of 
changes in To on the curvature of the temperature- 
respiration relationship. For a given Rref, increases 
in To will reduce the relative respiration at low 
temperatures more than at high temperatures. 

4. Discussion 

4.1. Characteristics of the measurement 
uncertainty 

It is widely recognized that our ability to accurately 
quantify nighttime fluxes is at present constrained 
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most by stable atmospheric conditions that enable 
advective transport. Limiting analyses to periods with 
sufficient mixing (u* threshold) reduces the chance of 
underestimating nocturnal COz fluxes (Goulden et al., 
1996). We show here that uncertainty, 6, inherent in 
the flux measurements themselves also affects our 
ability to model nighttime fluxes. The random 
measurement error has a mean standard deviation of 
1.2 ~ m o l  m-2 s-I (Fig. 1) and scales as an exponen- 
tial function of soil temperature pig. 2). It cannot be 
captured by models because of its stochastic nature. 
This ultimately limits the concordance of measured 
and modeled fluxes. 

The C02 flux uncertainty appears to follow a 
double-exponential distribution (see also Hollinger 
and Richardson, 2005). Work in progress indicates 
that Howland is not unique in this regard. Across a 
range of vegetation types (five forested sites, a 
grassland site, and an agricultural site), the flux 
measurement uncertainty (for each of H, LE and COP) 
is shown to follow a distribution that is consistently 
better-approximated by a double-exponential, rather 
than a normal, distribution (Richardson and Hollinger, 
unpublished). Not only does a double-exponential 
distribution have heavier tails than a normal distribu- 
tion, it also has a much more prominent central peak. 
While this means that large errors occur more often 
than they would under a normal distribution, it also 
means that small errors are much more common. The 
non-normal distribution of 6, and the non-constant 
variance of 6, violate two of the assumptions of least 
squares fitting, namely that the error is Gaussian and 
homoscedastic. For this reason, we argue that it is 
necessary to implement an entirely different fitting 
paradigm, based on maximum likelihood estimation 
(van Wijk and Bouten, 2002; Hollinger et al., 2004; 
Hollinger and Richardson, 2005). To obtain the 
maximum likelihood parameter estimates given the 
apparent distribution of '6, it is necessary to minimize 
the weighted sum of absolute deviations between 
observed and modeled values (Eq. (7)). 

4.2. Implications for modeling respiration 

Our results suggest that the choice of model may be 
less important than the choice of weighting scheme. 
The present research focuses on just three simple (but 
commonly-used) models of soil respiration. The Qlo 

and L&T models are both characterized by their 
exponential functional form and response to tempera- 
ture, whereas the Fourier model, with its underlying 
harmonic behavior, captures the inherent seasonal 
variation in respiration. Despite these differences in 
functional form, the impact of selecting a different 
optimization criterion or weighting scheme was more 
or less consistent across all three models. With a more 
complicated model (incorporating, for example, soil 
moisture, multiple soil C pools, etc.), a better fit could 
probably be obtained between measurements and 
model predictions. Although greater model complex- 
ity could also lead to increased equifinality, we see no 
reason to expect that the main results presented here 
would be any different for a more complicated model. 

The L&T model provides a better fit to the 
measured data than either the QI0 or Fourier model, 
but with weighting by as,,,, the modeled annual sums 
of respiration for the three models are consistent with 
one another (see also Falge et al., 2001; Janssens et al., 
2003), given the 95% CI width (zf 30 g C mP2 y-l) 
indicated by Monte Carlo simulation: 1000 g C 
m-2 -1 y by the Fourier model, compared with 
1015 g C m-2 y-l by both the L&T and Qlo models 
(Fig. 4). Weighting by ( T T ~ ~  (and, to a somewhat lesser 
degree, aTsoil) also provides an effective treatment for 
heteroscedasticity, but, regardless of the model used, 
results in annual sums of respiration that are 
~ 5 0  g C m-2 y-l lower than weighting by asea,,,. 
Differences among the weighting schemes appear to 
be subtle, but the ultimate effect on the annual sum of 
respiration clearly is not. At this time, we do not have a 
strong rationale for choosing cr,,,,,, over or 
vice versa. It is possible that the weighting scheme 
needs to be selected on a site-by-site basis. However, 
it is our hope that as the maximum likelihood 
paradigm becomes more widely used by the flux 
community, and the variation in o(6) becomes better 
understood, objective criteria will be developed so 
that researchers can make informed, rather than 
arbitrary, choices. 

We believe that there can be little argument about 
the choice of optimization criterion: least squares 
fitting, although there are many reasons for its appeal, 
is simply the wrong tool given the double-exponential 
distribution of 6 observed at Howland and elsewhere 
(Richardson and Hollinger, unpublished). However, 
results presented here clearly demonstrate that model 
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predictions differ (by up to 145 g C m-2 y-l) depend- 
ing on whether the least squares or absolute deviation 
criterion is selected (Figs. 4,5, and 8). This difference 
is comparable in magnitude, but opposite in sign, to 
the effect of setting different plausible u* thresholds 
for nighttime filtering. For example, at Howland, 
increasing the u* threshold from 0.1 m s-' to 
0.3 m s-' increases the annual estimated nocturnal 
respiration by ~75-100 g C m-2 y-l (Fig. 14 in 
Hollinger et al., 2004; see also Goulden et al., 
1996; Falge et al., 2001). 

4.3. Implications for NEE 

It is worth noting at this point that although our 
results show a substantial decrease in the annual sum 
of respiration when the absolute value criterion is 
used, the effect on NEE can be expected to be 
considerably smaller. This is because the annual sum 
of the net exchange consists of almost equal shares of 
measured and modeled data (e.g., over seven years at 
Howland, 4262% of all measurement periods in each 
year had valid measurements), whereas to estimate the 
annual sum of respiration, roughly 79-86% of data 
points (the missing nighttime data, plus all daytime 
respiration) must be modeled. We found that when the 
standard Howland gapfilling routine (Hollinger et al., 
2004) is implemented using the absolute deviation 
criterion, the mean (1996-2002, f 1 S.D.) total 
(measured + filled) annual nocturnal flux is decreased 
by 41 f 12 g C m-2 y-l relative to OLS gap filling. 
The effect on the total annual net daytime uptake is 
negligible (increase of 3 f 6 g C mP2 y-l), meaning 
that the net effect of using the absolute deviation 
criterion at Howland is to boost the total annual 
net flux by 44 4 9 g C mP2 y-l. In percentage terms 
(26 rt 9%), this is a substantial increase in the 
estimated NEE, and it is somewhat distressing that 
relatively subtle choices in model construction and 
assumptions lead to what must be considered 
significant biases. However, just as better appreciation 
of advective issues has brought about a re-evaluation 
of eddy covariance estimates of nocturnal fluxes, 
our results require a similar re-evaluation of these 
estimates. Changing our estimates, of course, has 
no effect on true ecosystem fluxes, and biometric 
inventories at Howland and other sites should enable 
us to confirm whether or not by using the least squares 

criterion we have been under-estimating net C02 
exchange by an ecologically significant amount. 

Monte Carlo simulations suggest that the accumu- 
lated random uncertainty in the measured (day + 
night) net flux values is about &20 g C m-2 y-l at 
95% confidence. The majority of the measurement 
uncertainty comes from the daytime measurements, 
when 48) is about twice as large as during the night 
and fewer observations are missing (Hollinger and 
Richardson, 2005). The accumulated NEE uncertainty 
due to gap filling is f10-15 g C mP2 y-l, and the 
uncertainty is evenly divided between day and night. 
This leads to a total uncertainty in the measured + 
filled NEE of about f 25 g C m-2 y-l, exclusive of 
any additional systematic bias. 

Other authors have attempted to put confidence 
limits on the annual sum of NEE. Their estimates (-30 
to +80 g C mW2 y-l, Goulden et al., 1996; f20-150 g 
C mP2 y-l, Griffis et al., 2003; f 30 g C mP2 y-', 
Morgenstern et al., 2004; f 40 g C m-2 y-l, Lee et al., 
1999; k50 g C mP2 y-', Baldocchi et al., 2001; 
f 180 g C m-2 y-l, Anthoni et al., 1999) are similarin 
magnitude to those presented here, but the variety of 
methods used (as well as different definitions about 
what is meant by "total uncertainty") makes direct 
comparison difficult. What is clear is that the shifts 
that result from implementing the maximum like- 
lihood paradigm presented here are non-trivial. 

4.4. Absolute deviations criterion and outliers 

A key difference between fitting by the least squares 
criterion and the absolute deviation criterion is that with 
least squares, outliers (which may have no biological 
significance) exert a much stronger influence on the 
figure of merit, precisely because the deviations are 
squared (Hollinger and Richardson, 2005). Doubling 
the size of a deviation quadruples its contribution to the 
figure of merit, QLS. With the absolute deviation 
criterion, the contribution of a deviation to scales 
linearly with the size of the deviation. As a result, 
outliers are not given undue weight. If large deviations 
are considered to be the result of instrument errors or 
glitches, rather than real biological processes, then we 
argue that the absolute deviation criterion is a far more 
appropriate fitting paradigm than least squares optimi- 
zation, insofar as these fluke measurements really 
should not be included in an annual accounting. 
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Related to this, the absolute value criterion is 
analogous to using the median, rather than the mean, 
as an indicator of the center of a distribution. This may 
be a desirable property, since the median is more 
robust to outliers than is the mean. In the classic linear 
regression model, fit by ordinary least squares, the 
regression residual has a mean of zero, i.e., E = 0. 
When the same model is fit by the absolute value 
criterion, median (E) = 0. However, since this does not 
guarantee that B = 0, the absolute deviation criterion 
will lead to model predictions that are offset, on 
average, from those determined by least squares by 
an amount equal to B Note, for example, that the 
measured fluxes used here have a skewed distribution, 
with a median nighttime flux ( e g ,  1.29 ymol m-2 s-' 
across the entire year) that is generally smaller than the 
mean flux (2.55 ymol mP2 s-I). It is precisely for this 
reason that the models optimized with the absolute 
deviation criterion consistently predict lower respira- 
tion than the models optimized by OLS. Depending on 
the model used, and the weighting scheme, the 
difference, when integrated across the entire year, is 
shown here to range between 70 and 145 g C mV2 y-l. 
This difference is distinct from (and potentially 
considerably larger than) any model bias that may 
result from an inappropriate functional form, although 
we argue that this does not represent true bias, because 
implicit in the choice of the absolute deviation 
criterion is acceptance of the belief that the central 
position of a distribution is better described by the 
median than the mean. 

We used Monte Carlo simulations to evaluate 
equifinality in the model parameters. The three- 
parameter L&T model results are a good example of 
why equifinality can be problematic. Despite the fact 
that the 95% CI on the fitted Rref parameter spans 30.2 
to 63.0 using the absolute deviations criterion 
(constant oi), and 21.3-31.5 using OLS, the predicted 
respiration at 10 O C  varies surprisingly little among 
these extreme parameter sets. For absolute deviations, 
the range is 3.6-3.8 ymol m-2 s-'; for OLS, the range 
is 4.2-4.4 pmol m-2 s-'. Furthermore, although the 
best-fit Eo parameters in the present study (58.5 by 
absolute deviations, 33.6 by OLS) are far lower than 
the best-fit Eo of 308.6 reported by Lloyd and Taylor 

(1994), when we constrain the model with this 
value, compensating changes in the other parameters 
(RIcf = 1515, To = 233 by absolute deviations; RrCf = 
1215, To = 230 by OLS) ensure a model fit that is still 
reasonable (unconstrained MSE = 4.16 by OLS, 
constrained MSE = 4.32). For the constrained models, 
predicted respiration rates at 10 O C  (3.2 pmol m-2 s-' 
by absolute deviations, 3.7 ymol mP2 s-' by OLS) are 
somewhat lower than rates predicted by the uncon- 
strained models (3.7 ymol m-2 s-' by absolute 
deviations, 4.3 ymol m-I s-' by OLS), but never- 
theless surprisingly similar in spite of the wildly 
divergent parameter estimates. For this reason, it is 
extremely difficult (and perhaps unwise) to attempt to 
attach physiological significance to individual fitted 
parameters. For example, although it is common in the 
literature to compare fitted Qlo values with those from 
previously published studies, potential correlations 
between Qlo and Rref mean that it is in fact necessary 
to consider the joint distribution of these parameters 
together, rather than just the best-fit value of the Qlo 
parameter in isolation. 

5. Conclusion 

We anticipate that our proposal to use the absolute 
value criterion will be controversial, but we also 
acknowledge that it may not be appropriate in all 
situations. Ultimately, it falls on each individual 
researcher to exercise their own judgment, based on 
their knowledge of the characteristics of the system in 
question. 

We believe that there is a need to place more 
emphasis on determining the uncertainty in flux 
measurements at different time scales, from the 
individual half-hourly measurements to the annual 
sums of modeled or filled data. In a related paper 
(Hollinger and Richardson, 20051, we propose a 
method in which time substitutes for space, and 
estimates of the flux uncertainty are developed without 
recourse to a second tower. This provides a means by 
which the distribution of 8 can be assessed at other 
tower sites. Knowledge of the distribution of 6 is of 
paramount importance in the maximum likelihood 
estimation paradigm, and it also provides the basis 
for conducting Monte Carlo simulations similar to 
those used here. 
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