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Abstract 
We predict current distribution and abundance for tree species present in eastern North America, 

and subsequently estimate potential suitable habitat for those species under a changed climate with 
2 x COz. We used a series of statistical models (i.e., Regression Tree Analysis (RTA), Multivariate 
Adaptive Regression Splines (MARS), Bagging Trees (BT) and Random Forests (RF)) via our 
model, DISTRIB, for this purpose. These techniques were evaluated on several tree species, and 
advantages and disadvantages of each method were noted. R F  provides the best prediction maps of 
potential suitable habitat. Overall, a combination of RTA, BT, and RF may yield the best 
information and most interpretable maps of suitable habitat. Using these tools, we provide statistics 
on potential changes in suitable habitat for 135 tree species of eastern North America. 

A suitable habitat does not guarantee the presence of a species, as many barriers for the species still 
exist before it will be able to colonize that new suitable habitat. Dispersal ability, abundance of the 
colonizing species, and the nature of fragmented landscapes also influence migration and are 
modeled with OUT cellular automata model, SHIFT. For each cell outside a species' current 
boundary, SHIFT creates an estimate of the probability that each unoccupied cell will become 
colonized over 100 years. By evaluating the probability of colonization within the potential "new" 
suitable habitat, we can estimate the proportion of new habitat that might be colonized within a 
century. This proportion is low (< 15%) for five example species, suggesting that there is a serious 
lag between the potential movement of suitable habitat and the potential for the species to migrate 
into the new habitat. However, humans could accidentally or purposefully alter the migration rates 
of species by physically moving the propagules. 

Key words: Climate change, Eastern United States, Migration, Predictive vegetation mapping, 
Tree species distribution. 

1. Introduction 

Evidence continues to mount on the impacts that 
climate change is already having on more and more 
species over several parts of the world (e.g., Fitter 
and Fitter, 2002; Cotton, 2003). Many more possi- 
ble impacts are being projected via models (Matsui 
et al., 2004), conceptual models of species functions 
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and habits (Ohsawa et al., 1998), and field studies 
(Tanaka et al., 1998). Though much uncertainty re- 
mains in these predictions and observations, con- 
vergence of paleoecological evidence (e.g., Davis and 
Zabinski, 1992; DeHayes et al., 2000) and modeling 
(Kirilenko et al., 2000) indicates that tree species 
will eventually undergo radical changes in distribu- 
tion. I t  is also clear that these changes in distribution 
will occur unevenly among species so that the vari- 
ous species that combine to form a community will 
come together in different combinations under cli- 
mate change (Webb and Bartlein, 1992). 

Our group has been involved for some time in 
statistically modeling the potential change in habitat 
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for common tree species in eastern United States. 
We initially built DISTRIB around regression tree 
analysis, a procedure of recursive partitioning, to 
predict the potential future habitat for 80 tree species 
(Iverson and Prasad, 1998; Iverson ef al., 1999a; 
Prasad and Iverson, 2000). This model was run at 
the scale of the county and used 33 climatic, edaphic, 
and land-use variables. In a current update of this 
work, we use 20 X 20 km cells rather than counties, 
have an updated predictor and response variable set, 
and have extended the number of species modeled 
from 80 to 135 tree species found in the eastern 
United States. We also use the new tools, Bagging 
Trees (BT) and Random Forest (RF), to improve 
predictive capability in the statistical models (Prasad 
et aL, in press; Iverson et al., 2004a). 

We also have used a cellular automata model, 
SHIFT, to simulate migration of selected tree species 
over a 100 year period (Schwartz, 1993; Iverson 
et al., 1999b, 2004b; Schwartz et al., 2001). The out- 
put of SHIFT yields a colonization probability of the 
species over that period of time. The intersection of 
DISTRIB, which maps the suitability of the habitat, 
and SHIFT, which maps the probability of migration 
over 100 years, yields a map of feasible locations for 
new colonization under various scenarios of climate 
change (Iverson et al., 2004~). 

In this paper, we summarize this total process to 
facilitate a step-by-step procedure definition. We 
also summarize the areal estimates of DISTRIB 
output for 135 species using Random Forest and 
provide some results of SHIFT and the DISTRIB- 
SHIFT combined for five representative species. 

2. Materials and Methods 

Here we provide a step-by-step procedure for con- 
ducting the research imbedded within DISTRIB and 
SHIFT. Table 1 presents the steps, with further 
explanation described here or referred to in earlier 
papers. 
2.1 DISTRIB 

The primary data source for this effort was the 
USDA Forest Service's Forest Inventory and Analy- 
sis (FIA) plot which were numbered over 100,000 
for the study area and which included data on nearly 
3 million trees (Mileset al., 2001). From these plots, 
importance values for 135 tree species were calculat- 
ed based equally on the relative number of stems and 
the relative basal area in each plot (Iverson and 

Prasad, 1998). The plot data were averaged to yield 
1V estimates for each 20 X 20 km cell for each spe- 
cies. Species were included if they were native and 
had at least 50 cells of occupancy based on the FIA 
data, so that several quite rare species are included. 
Other data, including 3 land use, 1 fragmentation, 5 
climate, 5 elevation, 9 soil classes, and 12 soil proper- 
ty variables, were acquired from various agencies 
and data clearinghouses to provide the 35 predictor 
variables listed in Table 2. For future climate, we 
used two general circulation model outputs: the Ca- 
nadian Climate Centre (CCC) model (Boer et al., 
2000) and the Hadley Climate Centre model (Mitchell 
et al., 1995). 

Four statistical processes were performed in this 
effort. Regression Tree Analysis (RTA) constructs a 
set of decision rules (a regression tree) on the predic- 
tor variables by recursively partitioning the data into 
successively smaller groups with binary splits based 
on single predictor variables (Breiman et al., 1984; 
Therneau and Atkinson, 1997). This was the prima- 
ry tool used in our earlier work (Iverson and Prasad, 
1998; Iverson et a/., 1999a; Prasad and Iverson, 
1999). It has advantages over general linear models 
in uncovering hidden structures in data, in enabling 
the mapping of influential predictors, for allowing 
inclusion of related predictor variables, and for 
allowing interactions and non-linearities among var- 
iables. However, among other disadvantages, it may 
suffer from an unstable output (i.e., a small change in 
data can produce a quite different tree). 

Multivariate Adaptive Regression Splines (MARS) 
is similar but handles continuous variables better in 
that the discontinuous branching at tree nodes in 
RTA is replaced by continuous smooth functions 
in MARS (Freidman, 1991; Prasad and Iverson, 
2000). However, these functions are sometimes 
excessively guided by the local nature of the data, 
rendering it a poor method for predictive modeling. 

Bagging Trees (BT) uses the RTA technique but 
creates multiple training sets by resampling with 
replacement (bootstrap resampling with 63% of the 
data selected in each sample) 50 times. These multi- 
ple, perturbed trees then are averaged to form a 
single predictive model (Breiman, 1996). 

Random Forest (RF) is a new data-mining tech- 
nique designed to produce very accurate predictions 
that do not overfit the data (Breiman, 2001). RF  is 
very similar to BT in that bootstrap samples are 
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Tzble 1. Steps of DiSTRiB, SHIFT, and the two 
combined. 

DISTRIB (For >I00 species with at least 100 cells of 
occurrence in the eastern US.) 
Model preparation 
la.  Create 20 X 20 km grid of eastern United States (east of 

100th meridian) 
2a. Calculate importance value (IV) by plot from FIA data 

(based on number of stems and basal area) 
2b. Summarize importance value by 20 X 20 km cell 
3a. Prepare predictor variables from source data (see Table 

2) 
3b. Calculate weighted averages for each predictor variable 

by cell 
Model runs 
4a. Run Regression Tree Analysis (RTA) to estimate IV 

from predictors 
4b. Run Multivariate Adaptive Regression Splines 

(MARS) to estimate current IV distribution 
4c. Run Bagging Trees (BT) to evaluate stability of 50 

individual runs of regression tree analysis using a 
random 2/3 subset sample 

4d. Run Random Forest (RF) to create current estimates 
of IV from 1,000 perturbated trees (random 2/3 sample 
and random 15 predictor variables) 

4e. Run Random Forest using future scenarios of climate 
to estimate future IV (suitable habitat) 

Outputs 
5a. Map outputs of RF for current and potential future 

suitable habitats 
5b. Compare actual (Forest Inventory and Analysis data) 

maps to predicted current maps 
i. Correlation 
ii. Kappa 
iii. Fuzzy Kappa (Hagen, 2003) 

5c. Evaluate relative importance of variables using report 
outputs from RF 

5d. Assess stability of model by calculating variability 
among multiple trees derived from Bagging Trees 

5e. Assess variable relationships, scale of influence, and 
geographic location of predictors with RTA tree dia- 
grams and maps 

SHIFT (for small subset of species that do not reach the 
Canada border) 
Model preparation 
6a. Digitize/edit Little (1971, 1977) boundaries of tree 

distribution 
6b. Smooth IV (derived in #2 above) via inverse distance 

weighting to 1 km resolution for gap filling and match- 
ing with Little's atlas boundaries 

6c. Create mapped estimate of forest habitat density per 1 
km cell 

6d. Create 80% random forest map for model calibration 
6e. Research species generation times 
Model runs 
7a. Run trials with 80% random forest map to calibrate 

migration rate to 50 km/century 

7b. Run SHIFT for 100-year migration, using parameters 
uncovered from trial runs 

Outputs 
8a. Map estimated probability of colonixatior? after 100 

years 
8b. Calculate areas of potentially colonized forest, by sev- 

eral probability levels 

DISTRIB-SHIFT (for the subset of species) 
Processing 
9a. Intersect DISTRIB maps with SHIFT maps 
Outputs 
l0a. Calculate percentage of new suitable habitat 

(DISTRIB) potentially inhabited following 100 years 
of simulated migration (SHIFT), at 2, 20, and 50% 
probability of colonization 

drawn to construct multiple trees; however in RF, 
each tree is also grown with a randomized subset of 
predictor variables (in our case 15 out of the 36 
variables were selected for each perturbed tree). In 
RF,  a very large number of trees (500-2,000) are 
grown (hence a 'forest' of trees) and averaged to 
yield powerful predictions closer to the true error of 
the estimated population rather than just the traiini~g 
error. 

The outputs of the R F  can then be compared and 
evaluated using a set of map comparison tools. We 
used the Pearson's correlation, the Kappa statistic, 
and the fuzzy Kappa (Hagen, 2003) to compare 
actual FIA to modeled current prediction. These 
tools are described fully in Prasad et al. (in press). 
R F  also provides output on the relative importance 
of each variable in the model. In addition, the 
stability of the model can be evaluated with the BT 
output by noting the variability of the deviance 
across 50 trees. With a stable model, the deviance 
explained would not vary much across trees, while an 
unstable model would yield trees explaining varying 
degrees of deviance. Finally, the relationship among 
variables, the geographic location of predictors, and 
the scale of influence can be assessed with RTA 
outputs. 
2.2 SHIFT 

SHIFT is a model to assess colonization probabil- 
ity during 100 years of warming climate; details on 
the model are given in Iverson et al. (1999b, 2004~) .  
Following DISTRIB, further data preparation is 
needed prior to running SHIFT, including a smooth- 
ing of the IV values within a boundary established by 
a digitized (Prasad and Iverson, 2003) representa- 
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Table 2. Variables used to predict current and 
future tree species habitat. 

Climate 
AVGT 
J ANT 
JULT 
MAYSEPT 

PPT 

Elevation 
ELV - CV 
ELV - MAX 
ELV - MEAN 
ELV - MIN 
ELV- RANGE 

Soil class 
ALFISOL 
ARIDISOL 
ENTISOL 
HISTOSOL 
INCEPTSOL 
MOLLISOL 
SPODOSOL 
ULTISOL 
VERTISOL 

Soil property 
ED 
CLAY 
KFFACT 

OM 
ORD 

PERM 
PH 
ROCKDEP 
ROCKFRAG 

SLOPE 
TAWC 

Mean annual temperature ("C) 
Mean January temperature ("C) 
Mean July temperature ("C) 
Mean May-September temperature 

("C) 
Annual precipitation (mm) 

Elevation coefficient of variation 
Maximum elevation (m) 
Average elevation (m) 
Minimum elevation (m) 
Range of elevation (m) 

Alfisol (%) 
Aridisol (%) 
Entisol (%) 
Histosol (%) 
Inceptisol (%) 
Mollisol (%) 
Spodosol (%) 
Ultisol (%) 
Vertisol (%) 

Soil bulk density (g/cm3) 
Percent clay ( < 0.002 mm size) 
Soil erodibility factor, rock fragments 
free (susceptibility of soil erosion to 
water movement) 

Percent soil passing sieve No. 10 
(coarse) 

Percent soil passing sieve No. 200 

(fine) 
Organic matter content (% by weight) 
Potential soil productivity 

(m3 of timbedha) 
Soil permeability rate (cm/h) 
Soil pH 
Depth to bedrock (cm) 
Percent weight of rock fragments 

8-25 cm 
Soil slope (%) of a soil component 
Total available water capacity 

(cm, to 152 cm) 

Land use and fragmentation 
AGRICULT Cropland (%) 
FOREST Forest land (%) 
FRAG Fragmentation Index 

(Riitters et al., 2002) 
NONFOREST Non-forest land (%) 

tion of Little's (1971, 1977) range boundaries. A 
forest density map was used which depicted the 
percent forest within each 1 km2 (from Zhu and 
Evans, 1994). Additionally, a test bed of 80% 
randomly placed forest was created for calibrating 
migration rates to 50 km/century (a relatively high 
Holocene rate of migration and one that has not been 
shown in paleoecological studies to vary widely 
among species; hence the same rate was used for all 
species). Finally, research was needed to determine 
the approximate time to reproductive maturity, and 
thus the number of generations per 100 years, which 
ranged from 3 for Quercus falcata var. falcata to 6 
for Pinus taeda. 

Next were the SHIFT model runs, using first the 
80% random forest map to calibrate the migration 
rate to 50km/century. Then, the obtained parame- 
ters were used to run SHIFT for a 100-year migra- 
tion, using 50 replicates which each correspond to a 
2% probability of colonization. The output result 
was a 1 km cell map which indicated the probability 
of colonization after 100 years of migration under a 
climate change equivalent to IOOkm per century. 
These outputs could then be used to calculate areas 
of potentially colonized forest, calculated at the 2, 
20, and 50% probability of colonization but reported 
only at 20% in this paper. 

3. Results and Discussion 

3.1 Climate change in eastern United States 
The climate of the eastern United States is ex- 

pected to change considerably according to several 
climate scenarios (National Assessment Synthesis 
Team, 2001). As shown in Table 3, the CCC scenar- 
io is a much warmer and drier scenario as compared 
to the Hadley scenario. For example, average Janu- 
ary temperatures are expected to be over 6°C 
warmer by 2100 in the CCC scenario, but only about 
1°C warmer in the Hadley scenario. 

Table 3. Area-weighted averages for several 
climate variables for the eastern United States. 

Variable Current Hadley CCC 

Jan. temp, "C -1.7 -0.8 4.9 
July temp, OC 23.5 27.0 28.5 
Ave. temp, "C 11.6 14.3 17.2 
May-Sept. temp, "C 20.6 23.3 26.0 
PPT, mm 1,043 1,285 1,083 
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Tabie 4. Correiation and Kappa scores for RTA, BT, and R F  among four tree species. 

Correlation Kappa Fuzzy Kappa - 
RTA BT RF RTA BT RF 

~~- 
RTA BT RF 

Picea rubens 0.864 0.945 0.953 0.576 0.586 0.589 0.660 0.659 0.660 
Pinus banksiana 0.734 0.896 0.919 0.430 0.447 0.477 0.497 0.517 0.539 
Fraxinus amevicana 0.693 0.907 0.923 0.357 0.417 0.441 0.375 0.443 0.455 
Quercus montana 0.795 0.940 0.947 0.506 0.513 0.532 0.567 0.579 0.590 

3.2 Evaluation of statistical tools 
Table 4 shows the correlation and Kappa statistics 

for four species using RTA, BT, and RF: in each 
case R F  has the superior result, although BT is very 
close. An evaluation of all four statistical procedures 
used to predict potential suitable habitat via the 
DISTRIB model shows some advantages and disad- 
vantages of each method: RTA is the easiest to 
interpret but, with MARS, is also less accurate. 
MARS does fine on current vegetation modeling but 
fails on future predictions (Prasad et al., in press). 
BT and R F  both utilize multiple regression trees 
which increase accuracy, though interpretation is 
more difficult. BT and R F  were clearly superior in 
reproducing actual importance value distributions, 
and also in producing more appropriate representa- 
tions of future suitable habitat following climate 
change. We favor R F  over BT because it creates a 
smooth output in a logical gradient fashion. A 
combination of RTA, BT, and R F  may yield the best 
and most interpretable maps of suitable habitat. The 
superior prediction capability of R F  is best used to 
map future scenarios, while RTA and to some extent 
BT can be used for their interpretive abilities. If the 
individual trees (among BT) are similar, a single 
RTA tree can be used to map what predictors are 
driving the distribution of the species spatially; a 
very unique aspect of RTA that offers additional 
insights into the species distribution (Iverson and 
Prasad, 1998; Iverson et al., 1999a). 
3.3 DISTRIB-estimates of suitable habitat 

R F  outputs yielded estimates of area coverage for 
each of 135 species, as modeled for the current time, 
and for year 2100 according to the Hadley and CCC 
global circulation model scenarios (Table 5). Ac- 
cording to this assessment using the Hadley scenario, 
34 species are inclined to have a reduced habitat (by 
at least lo%), and 87 species will have an increased 
habitat in the eastern United States by year 2100 
(Table 6). For the CCC scenario, 52 species would 
have decreased habitat and 66 species would have 

increased habitat. Note, however, that 73 of the 135 
species bound Canada, and as such a full assessment 
of the potential change in suitable habitat is not 
possible, as only the habitat contained within the 
United States was analyzed. Work with Canadian 
colleagues to better assess the potential habitat 
changes within Canada is ongoing. Our data show 
that, of the decreasing species, most bound Canada 
(Table 6). On the other hand, most of the increasing 
species are more southern in nature that do not yet 
reach the Canadian boundary. In both cases, it is 
simply the northward shifting of habitat that is re- 
sponsible for these patterns. 
3.4 DISTRIB/SHIFT-estimates of migration into 

suitable habitat 
The SHIFT model was used with five representa- 

tive species (that did not have suitable habitat 
bounding Canada and which had a range of impor- 
tance values, e.g., very low in Diospyros virginiana to 
very high in Pinus taeda) to estimate migration 
under climate change forcing (equivalent to migra- 
tion rates during the Holocene of about 50km/ 
century). The SHIFT model considers the frag- 
mented nature of the habitat, the abundance of the 
dispersing species, and the time it takes the tree 
species to become mature within the 100-year period. 

Following the DISTRIB estimates of future suita- 
ble habitat, it is next appropriate to evaluate the 
proportion of suitable habitat that may become col- 
onized during the next 100 years; this result is possi- 
ble by intersecting output maps from both DISTRIB 
and SHIFT (Table 7). 

It is clear from Table 7 that only a small propor- 
tion of the new suitable habitat is likely to be col- 
onized in the next 100 years. Only about 5% or less 
of the new habitat, for any of the five test species, has 
at least a 20% probabi!ity of being colonized during 
that period. Therefore, there is a serious lag between 
the potential movement of suitable habitat and the 
potential for the species to migrate into the new 
habitat. However, humans could either accidentally 
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Table 5. Current (modeled) and potential future 
habitat area resulting from two scenarios of 
climate change in the eastern United States. An 
asterisk indicates the species bounds Canada so 
that a full range assessment was not possible. 

Hadley 
Species Current 

(km2 X 1,000) 

Abies balsamea* 
Chamaecyparis thyoides 
Juniperus virginiana* 
Larix laricina* 
Picea glauca* 
Picea mariana* 
Picea rubens* 
Pinus banksiana* 
Pinus clausa 
Pinus echinata 
Pinus elliottii 
Pinus glabra 
Pinus palustris 
Pinus pungens 
Pinus resinosa* 
Pinus rigida* 
Pinus serotina 
Pinus strobus* 
Pinus taeda 
Pinus virginiana 
Taxodium distichum 
Taxodium distichum 

(var. nutans) 
Thuja occidentalis* 
Tsuga canadensis* 
Acer barbatum 
Acer negundo* 
Acer nigrum* 
Acer pensylvanicum * 
Acer rubrum* 
Acer saccharinum* 
Acer saccharum* 
Acer spicatum * 
Aesculus glabra 
Aesculus octandra 
Amelanchier sp." 
Asimina triloba* 
Betula alleghaniensis* 
Betula lenta* 
Betula nigra 
Betula papyrijera* 
Betula populifolia* 
Bumelia lanuginosa 
Carpinus caroliniana* 
Carya aquatica 
Caiya cordijormis* 
Carya glabra* 
Carya illinoensis 
Carya laciniosa * 
Carya ovata* 
Carya texana 

CCC 

165 
7 

2,842 
148 

14 
11 

139 
76 

543 
1,958 
1,382 

12 
1,133 

23 
227 

99 
203 
610 

2,162 
654 
427 

1,186 

182 
378 

11 
1,182 

5 
99 

2,560 
850 
943 

1 
32 
9 

171 
35 

173 
344 

65 
56 
48 

3 
1,476 

108 
685 
768 
446 

8 
896 

1.504 

Species Current Hadley CCC 
(km2 X 1,000) 

Carya tomentosa* 
Castanea dentata* 
Catalpa speciosa 
Celtis laevigata 
Celtis occidentalis* 
Cercis canadensis 
Cornus Jorida * 
Diospyros virginiana 
Fagus graudifolia* 
Fraxinus americana* 
Fraxinus nigra * 
Fraxinus pennsylvanica* 
Fraxinus quadrangulata* 
Gleditsia aquatica 
Gleditsia triacanthos* 
Gordonia lasianthus 
Gymnocladus dioicus 
Halesia carolina 
Ilex opaca 
Juglans cinerea* 
Juglans nigra * 
Liquidambar styracc3ua 
Liriodendron tulipifera* 
Maclura pomifera 
Magnolia acuminata* 
Magnolia grandz)7ora 
Magnolia virginiana 
Magnolia macrophylla 
Morus rubra* 
Nyssa aquatica 
Nyssa ogeche 
Nyssa sylvatica* 
Nyssa bifora 
Ostiya virginiana * 
Oxydendrum arboreum 
Persea borbonia 
Platanus occidentalis* 
Populus balsamzyera* 
Populus deltoides* 
Populus grandidentata* 
Populus tremuloides* 
Prunus pensylvanica* 
Prunus serotina* 
Prunus virginiana* 
Prunus americana* 
Quercus alba* 
Quercus bicolor* 
Quercus coccinea 
Quercus durandii 
Quercus ellipsoidalis* 
Quercus falcata 

(var. falcata) 
Quercus falcata 

(var. pagodaefolia) 
Quercus ilicifolia 
Quercus imbricaria 
Quercus laevis 
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Species 

Quercus laurifolia 
Quercus lyrata 
Quercus macrocarpa* 
Quercus marilandica 
Quercus michauxii 
Quercus muehlenbergii* 
Quercus nigra 
Quercus nuttallii 
Quercus palustris* 
Quercus phellos 
Quercus prinus* 
Quercus rubra* 
Quercus shumardii 
Quercus stellata 
Quercus vebtina* 
Quercus virginiana 
Quercus incana 
Robinia psuedoacacia 
Salix amygdaloides* 
Salix nigra* 
Sassafras albidum * 
Sorbus americana* 
Tilia americana" 
Tilia heterophylla 
Ulmus alata 
Ulmus americana* 
Ulmus crassifolia 
Ulmus rubra* 
Ulmus thomasii* 
Planera aquatica 

Hadley 
Current 

(km2 X 1,000) 
CCC 

Table 6. Comparison of future areal estimates for 
trees that are increasing, decreasing, or staying 
the same that are bound and not bound by 
Canada for two different climate scenarios. A 
tree species is increasing or decreasing if areal 
estimates are 10 % higher or lower than present 
estimates. 

Hadley CCC 

All species 
Decreasing 34 52 
Increasing 87 66 
Same 14 17 

Species bounding Canada 
Decreasing 30 38 
Increasing 34 22 
Same 9 13 

or purposely move propagules into the new suitable 
habitat for certain species to  mitigate some of these 
time lags. 

4. Conclusions 

We have demonstrated a methodology aimed at 
estimating the potential changes in tree suitable hab- 
itat following two scenarios of climate change in the 
current century. Conditions for tree growth are 
changing, and will continue to change as the planet's 
climate changes over the next 100 years. These 
changes can follow one of several different paths, 
depending on which scenario is used in the analysis. 
The two widely used general climate scenarios 
reported here, Hadley and Canadian Climate Center, 
have widely diverging climate paths, but both result 
in substantial changes in suitable habitat for most 
species. Overall, more species will have increasing 
habitat than decreasing habitat, especially with the 
Hadley scenario, under this analysis. 

Changes in suitability for growing trees are only 
half the issue, however. Also critical is whether the 
species will be able to migrate into the new suitzble 
habitat. With SHIFT, we also estimate, for five 
species, the potential for the new suitable habitat to 
be colonized within that 100 year period. Our anal- 
ysis shows a very large migration lag in that only a 
small fraction of the new suitable habitat will likely 
be colonized. If these analyses prove to be true, the 
result would be a decrease in  fit between species and 
environment so that the species in question would be 
more susceptible to various stress conditions and 
perhaps relegated to refugia where conditions are 
still satisfactory for the species. 

The overall results are not unlike what others have 
obtained using other techniques, such as simulation 

(e.g., GAP) models or other forms of envelope 
models: tree compositions will change. How this 
change proceeds to create new forest communities 
under climate change depends in part on the oppos- 
ing forces of the general longevity of trees relative to 
their mostly slow dispersal capabilities. 

Species not bounding Canada 
Decreasing 4 14 
Increasing 53 44 
Same 5 4 
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Table 7. Area of potential new habitat for Hadley and CCC (under DISTRIB), and the 
potentially colonized area (and percentage) of new habitat, at the 20% probability level 
(under SHIFT, intersected with DISTRIB). 

Potential new habitat Potential colonized (20%) Percentage (%) 
Species 

Had CCC Had CCC Had CCC 

Quercus fafcata var. falcata 603 1,339 24.9 26.4 4 .1  2 .0  
Oxydendrum arborezim 543 542 11.9 13.0 2 .2  2 .4  
Liquidambar styraciflua 196 687 10.0 15.4 5 .1  2.2 
Diospyros virginiana 304 792 3 .9  6 .5  1 .3  0 .8  
Pinus taeda 218 822 7 .O 11.9 3 .2  1.5 
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