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Summary Flux data are noisy, and this uncertainty is largely 
due to random measurement error. Knowledge of uncertainty is 
essential for the statistical evaluation of modeled andmeasured 
fluxes, for comparison of parameters derived by fitting models 
to measured fluxes and in formal data-assimilation efforts. We 
used the difference between simultaneous measurements from 
two towers located less than 1 km apart to quantify the distribu- 
tional characteristics of the measurement error in fluxes of car- 
bon dioxide (COz) and sensible and latent heat (H and LE, 
respectively). Flux measurement error more closely follows a 
double exponential than a nornal distribution. The COz flux 
uncertainty is negatively correlated with mean wind speed, 
whereas uncertainty in H and LE is positively correlated with 
net radiation flux. 

Measurements from a single tower made 24 h apart under 
similar environmental conditions can also be used to charac- 
terize flux uncertainty. Uncertainty calculated by this method 
is somewhat higher than that derived from the two-tower ap- 
proach. We demonstrate the use of flux uncertainty in maxi- 
mum likelihood parameter estimates for simple physiological 
models of daytime net carbon exchange. We show that inferred 
model parsmeters are highly correlated, and that hypothesis 
testing is therefore possible only when the joint distribution of 
the model parameters is taken into account. 

Keywords: AmeriFlux, forest COz exchange, Howland, Monte 
Carlo. 

Introduction 

Carbon dioxide (COz) and other flux data now accumulating 
from sites around the world (Baldocchi et al. 2003) are valu- 
able resources for assessing models of ecosystem physiology. 
For such comparisons to be meaningful, however, the uncer- 
tainty in both the model and the flux data used for validation 
must be specified. With knowledge of measurement data and 
model uncertainty, the model may be accepted or rejected with 
some level of confidence. 

Alternatively, sometimes it is desirable to use flux data to 
determine parameter val~les of a specified model. Maxim~~m 
likelihood methods (e.g., Bevington and Robinson 1992, Press 

et al. 1993) can provide unbiased estimates of model parame- 
ters from experimental data, and several authors have applied 
these or related approaches to eddy flux data (e.g., Schulz et al. 
2001, van Wijk and Bouten 2002, Hollinger et al. 2004). A 
problem with this approach for many simple models, includ- 
ing those of surface-atmosphere fluxes, is equifinality in the 
parameter sets (Franks et al. 1997, Sch~~lz  et al. 2001). Equifi- 
nality means that instead of a single set of model parameters 
being clearly optimal, there may be many sets of parameter 
values that all fit the flux data more or less equally well. The 
magnitude of this problem generally increases as model com- 
plexity is increased (Franks et al. 1997). However, with knowl- 
edge of the uncertainty inherent in flux measurements. it is 
possible not only to properly describe the confidence intervals 
of model parameter estimates, but also to obtain more precise 
parameter estimates. 

A broader but related question is that of choosing the correct 
model. Understanding the magnitude and causes of uncer- 
tainty in flux data can help constrain the universe of potential 
models that account for the data. Schulz et al. (2001), for ex- 
ample, found that the information content of several weeks of 
eddy flux data was insufficient to support the calibration of 
many components of a biochemically based model of carbon 
exchange. Jarvis et al. (2004) drew attention to the need for the 
complexity of a flux model to be commensurate with the infor- 
mation content of the calibration data. Iaaking full use of the 
information content of flux data, including the uncertainty, al- 
lows for the assessment and comparison of various physiologi- 
cal models. 

Measurement error 

Since measurement error is a random variable, the size of the 
error depends on chance; ideally, we would know the complete 
probability distribution of the error, or a density function (and 
the associated parameters) that approximates the distribution 
of the error. At a minimum, we need to know the mean and an 
estimate of the dispersion, such as the standard deviation, of 
the measurement error. It may also be useful to know whether 
the measurement error varies in relation to other factors (e.g., 
time of day, day of year, wind speed, net radiation, or magni- 
tude of the measured flux). 
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Uncertainty can be quantified in several ways. and we will 
use the most common, the standard deviation (o) of the under- 
lying error, where i Po encompasses 68.3% of the probability 
density function for a Gaussian distribution. Often error analy- 
ses consider random error separately from systematic error or 
bias (Taylor 1997) because the former uncertainties can be re- 
vealed by statistical analysis whereas systematic errors cannot. 
Systematic errors can often be removed by calibration, where- 
as this is not possible with random error. Flux measurements 
are often affected by systematic errors including lack of en- 
ergy balance closure and incomplete measurement of noctur- 
nal COX exchange. The causes of these systematic errors and 
potential remedies are an active area of research (e.g., Busin- 
ger 1986, Goulden et al. 1996. Moncrieff et al. 1996, Mahrt 
1998, Twine et al. 2000, Massman and Lee 2002, Morgenstem 
et al. 2004). 

Flux measurements are unusual in that the actions of a popu- 
lation of flux absorbers and emitters (leaves, soil, sterns, logs, 
etc.) are integrated and transmitted to the measurement system 
via the stochastic and intermittent process of h~rbulent trans- 
port (eddies). Random measurement errors in flux data thgs re- 
sult from several different sources. These include errors asso- 
ciated with the flux measurement system (gas analyzer, sonic 
anemometer, data acquisition system, flux calculations). er- 
rors associated with t~n-bulent transport, and statistical errors 
relating to :he location and activity of the sites of flux ex- 
change ("footprint heterogeneity") (Monciieff et al. 1996). 

Uncertainty in turbulent transport has been discussed as the 
primary source of flux uncertainty by several authors (e.g.. 
Lenschow et al. 1994, Maim and Lenschow 1994, Finkelstein 
and Sims 2001). Traditionally (Mahrt 1998), the relative ran- 
dom error in flux measurements (RE) has been estimated as 
the variance computed from the individual high-frequency 
data points in a standard (e.g., 30-min) record as: 

2 var (flux) z ,t- 
= (  r5 

where T~ is the integral timescale (frequency peak of cospec- 
truni), and Tis the averaging time. Since both the variance and 
zf must be estimated from the data, Equation 1 provides only 
an estimate of the error. Finkelstein and Sims' (2001) method 
for determining the variance of a covariance includes neces- 
s a y  auto- and cross-covariance terms, but still relies on esti- 
mates of the cospectral shape and T? 

The uncertainty in a measurement can also be characterLzed 
by making multiple measurements of a process and then using 
the variability of these measurements to estimate the standard 
deviation of the uncertainty. In the case of flux data, this in- 
volves examining the variance of multiple (e.g., 30-min) re- 
cords. However, as Mahrt (1998) points out, for this approach 
to work, the process must be stationary, meaning that all of its 
statistical parameters are independent of time. O ~ e r  the course 
of a day or a season, this is generally not the case with flux 
data, which are strongly affected by solar forcing and tempera- 
ture. It is this variation: in fact, that we are often trying to cap- 
ture with a p\ysiologically based model. Binning the data by a 

covariate such as solar radiation can reduce the problem, but 
other confounding factors such as precipitation and tempera- 
ture may resdt in additional variability beyond that due to 
measurement uncertainty alone. Additionally, flux exchange 
may not be stationary because phenological or physiological 
changes occur: meaning that the exchange characteristics of 
the surface itself (for example, CO, uptake per unit incident 
photosynthetically active photon flux density, FWD) vary 
over time (e.g., Hollinger et al. 2004). 

A pair of independent flux measurements made repeatedly 
under identical conditions (ideally, this would mean simulta- 
neously). provides a solution to many of the problems de- 
scribed above. In this case; if the flux process has true value 2: 
we will actually measure the following pair XI, X2: 

Mere the measurement uncertainty (6qJ is a realization of a 
random variable with mean 0 and standard deviation o(6q). To 
characterize the uncertainty in our measurements, we want to 
determine the value of o(6q). Because the expected value of 
(XI - X2) is 0, the variance of (XI - X2) equals the variance of 
(6ql - 6qz), which is given by: 

Since 6qI and 6qz are independent and identically distrib- 
uted; the right hand of Equation 3 simplifies to 2 0  '(6q). Thus: 

Therefore; by repeating the paired measurements XI and Xz, 
we can estimate o(6q) by calculating the standard deviation of 
the difference (XI - X2). 

Here we characterize the random error in surface-atmos- 
phere flux measurements, with a unique two-tower system io- 
cated at the Howland AmeriFiux site in Maine, USA (Hollinger 
et al. 2004). The towers provide simultaneous and independent 
measurements of surface fluxes md meteorological driving 
variables that offer a straightforward ronte to calculating uncer- 
tainty. We compare fne two-tower resalts with trachtional mete- 
orological methods and then demonstrate that flux uncertainty 
can also be adequately characterized by selective binning of 
data and thus does not require paired towers or assumptions 
about cospectral shapes or integral timescales. We also illns- 
trate how the uncertainty estimates can be employed in maxi- 
mum likelihood estimates of model parameters using a simple 
physiologically based model of net @Q2 exchange. 

Maximum likelihood (ML) methods approach parameter 
estimation from a probabilistic basis, considering the proba- 
bility that a data set (+ some Ay on each data point) results 
from a specific set of model parameters (Press et al. 1993). 
This probability is considered the likelihood of the parameters 
given the data. The goal the11 is to find the parameter set that 





high or extremely !ow (Hollinger et al. 1995), rain or snow was 
falling half-hour sample periods were incomplete or there was 
an instrument malfunction. Data from nocturnal periods were 
excluded when the friction velocity ( u x )  was less than a thresh- 
old of 0.25 m s-'. The sign convention used is that carbon flux 
into the ecosystem is defined as negative. 

Statistical Ptting 

To calculate maximum likelihood values, we used the Monte 
Carlo method with simulated annealing (Metropolis et al. 
1953) to minimize the merit function given by tht: chi-square 
statistic, x2. If the measurement errors are normally distrib- 
uted, the logarithm of Eqaation 5 indicates that the appropriate 
x2 is the weighted sum of the squared differences between 
measured ( y , )  and modeled y ( x z )  values. with the square of the 
measurement error uncertainty (0) used as the weighting fac- 
tor (Press et al. 1993): 

If o is identical for all data, this equates to an ordinary least 
squares minimization. Different merit functions deriving from 
different ML functions are necessary if measurement errors 
are not normally distributed. For example, when the measure- 
ment errors follow the double exponential distribution, the 
merit function is (Press et al. 1993): 

where o = &P and P is the mean of the absolute deviations of 
the samples from their mean. 

In the simulated annealing procedure, an iterative random 
walk method is used to determine the optimal set of model 
parameters, as follows. At each step, j, a new set of model pa- 
rameters (pj...py) is generated by randomly perturbing the 
previous set of parameters (pj_l...pji"-l) by a small amount. 
The new set is adopted if ~3 < x;_,, otherwise the previous set 
of parameters is retained. To keep the procedure from becom- 
ing stuck in local minima, the new set of parameters will also 
be adopted when X: >  with probability proportional to: 

where k is an effective temperature. This process is repeated 
many thousands of times, with the magnituae of k gradually 
declining, until a predetermined stopping criterion is met. 

Traditional method ofestinzatingfl~ix uncertain9 

Lenschow el al. (1994) and Mmn and Lenschow (1994) devel- 
oped an estimate for the relative enor in an aircraft flux mea- 
surement based on two joint-normally distributed variables as: 
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where L is the length of the flight leg, r,, is the correlation co- 
efficient between the vertical wind velocity w, and scalar c, 
(we note r,%, = cov(wc)/(o~,o,)) and az. is the relative height of 
the aircraft within the boundary layer. For the surface (tower) 
approximation, k is the sample period (1800 s). for daytime 
condirions ~ f =  z/iT where z is the measurement height and 2 is 
the 30-min mean wind speed, and az= = 0. We did not attempt 
to evaluate Equation 16 at night when we had little information 
about the cospectral shape or integral timescale. Where esti- 
mates of absolute uncertainty are presented, the results of 
Equation 16 were multiplied by the absolute vdue of the mea- 
sured flux. This equation was evaluated with data from the 
main tower. 

Estimating uncertainty in j7~t.x data 

The two towers at Howland are separated by sufficient dis- 
tance that the flux source regions over a half-hour time period 
do not generally overlap, providing independent but simdta- 
neous measures of heat, water vapor and C 0 2  fluxes (H,  
EE and F&). with mean differences between the two tower 
fluxes that are close to zero (Hollinger et a!. 2004). Assuming 
that the eimr from each tower contributes equally to the error 
in the difference, the uncertainty (expressed as a standard devi- 
ation) in the measured flux at one tower can be calculated from 
Equation 4 with XI and X2 representing simuitaneous mea- 
surements from the main and west towers. respectively. Be- 
cause meteorological conditions at the two towers are nea~ly 
identical (Hollinger et al. 2004), the flux uncertainty o(6q) 
can then be analyzed in relation to some block of time o- . mea- 
surement conditions (half-hourly mean PPFD, wind, etc.). 

Paired observations from one tower to estimate uncertainty 

There are few flux sites where two appropriately distanced 
towers simultaneously measure fluxes from patches of similar 
vegetation. We therefore de~~eloped a method that would en- 
able the estimation of o(6q) even when researchers do not 
have the good fortune of a second tower. In this approach we 
trade time for space, and use flux measurements made on two 
successive days at one tower as analogues of the simultaneous 
two-tower paired measurements described above. A measure- 
ment pair was considered valid only if both measurements 
were made under "equivalent" conditions, defined here as at 
the same lime of day (to minimize diurnal effects) and under 
nearly identical environmental conditions (half-hourly PPFD 
values within 75 p o l  m-2 s-'; air temperatures within 3 "C 
and wind speeds with-in 1 an s- I). These req~irernents were fre- 
quently not met so the sample size in one year was less than for 
the two-tower method. Equivalent conditions were considered 
at time lags longer than i day, but as the lag between measure- 
ments increased, so did the risk of nonstationarity. Seven years 
(1996-2002) of data from the main tower were used for these 
analyses. 
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less leptokurtic than the entire data set, although the two-tower 
differences for all fluxes still include a number of extreme val- 
ues (> 40). The probability of values > 40 in a normal distribu- 
tion is -0.000063, meaning we should see such points only 
about once in an entire year. However, just during the summer 
daytime hours of 2000, differences between the towers in H, 
LE and FCo2 exceeded 4 0  on 13, 19 and 15 occasions. 

We find that a double-exponential (Laplace) distribution 
provides a better fit to the flux errors than a normal distribution 
(Figure I), capturing the strong central peak and outliers. The 
mean difference between the observed distributions (histo- 
grams in Figure 1) and values predicted by the double-expo- 
nential distributions across the central bins that include 90% of 
all observations are about half or less than those resulting from 
a normal distribution. For example, with a normal distribution, 
the mean differences between the observed and predicted fre- 
quencies across the bins encompassing 5-95% of the PDF for 
the summer data shown in Figure 1 are 7.5,6.7 and 5.1% for H, 
LE and Fco2, respectively. The corresponding mean differ- 
ences between observed frequencies and those predicted by 
the exponential distrib~~tion are 3.8,3.5 and 0.7% respectively. 

To explore whether and how flux uncertainty varied by envi- 
ronmental conditions, we binned our two-tower and succes- 
sive-days flux differences by half-hourly mean wind speed: 
net radiation, or time of day. Basic parameters describing the 
distribution of these differences (i.e., mean, standard devia- 
tion, skew and kurtosis) were calculated for the various bins 
only when there were at least 10 differenced measurements in 
a given bin. 

Results 

The mean differences between fluxes recorded at the two 
Howland towers were small (Table 1). Over the entire year, for 
example, the mean between-tower differences for H, LE and 
Fco2were about 12, 23 and 5%, respectively, of the mean 
fluxes. 

Frequency analysis indicates that the PDFs of the two-tower 
differences are not Gaussian (Shapiro-Wilk and Kolmogorov- 
Smirnov tests, P < 0.01). Instead, the data are strongly lepto- 
kurtic (Tzble 1, Figure I), with large tails and prominent cen- 
tral peaks. Daytime data (characterized by greater fluxes) are 

Table 1. Statistical properties of inferred flux uncertainties for one tower across the entire calendar year and during the growing season (days 
122-295). Nighttime C 0 2  fluxes were not used if u* < 0.25 in s-l. Abbreviations: SD = standard deviation; H. LE and F,,, = heat, water vapor and 
C02fluxes, respectively; JD = Julian day; R ,  = net radiation (W mM2); and PPFD =photosynthetically active photon flux density (pin01 in- s-I). 

Flux Mean difference n Skewness Kurtosis 

Two tower appvoaclz (2000) 
~ ( W r n - ~ )  -3.1 11,799 

JD 122-295 -4.6 5243 
Rn > 400 -25.0 1113 
R, < 100 0.3 7830 

F~~~ (pnol m2 s-') -0.1 8688 
JD 122-295 -0.2 3659 
PPFD > 1000 -0.7 1228 
Day -0.2 6036 
Night 0.2 2652 

Successive days approach (1996-2002) 
H (W m-') 1.7 22,790 
JD 122-295 1.6 12,443 
R, > 400 5.2 656 
R, .c 100 1.6 18,716 

FCo2 ( p o l  m- S- ') 0.1 8753 
JD 122-295 0.2 4368 
PPFD > 1000 0.2 930 
Day 0.1 4941 
Night 0.0 3812 

TREE PHYSIOLOGY ONLINE at http://heronpublishing.com 
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Figure 1. Flux uncertainties for H, LE and F& (heat, water vapor and 
C 0 2  fluxes, respectively) are characterized by a central peak and long 
tails. The data better fit double exponential distributions than Gaussi- 
an distributions. 

Because the uncertainty appears to follow a double exponen- 
tial distribution. in the analysis that follows we use &p as our 
uncertainty measure because it is the doubie exponential equi- 
valent of o. 

A second important result relevant to modei fitting is that 
none of the flux uncertainties are constant (Table I). Flux un- 
certainty is greater during the growing season than over the en- 
tire year and in the daytime rather than at night. Eddy flux data 
are heteroscedastic, with the error increasing along with the 
absolute magnitude of the flux (Figure 2). For N, flux uncer- 
tainty increases by a relatively constant 0.22 W m-2 per 1-W 
m-' increase of flux from a minimum uncertainty of about 
10 W m-'. For LE, the minimum uncertainty is again around 
10 \V m-'. but the rate of increase at -0.32 W W- '  is greater 
than for H (Figures 2A and 2B). The COz flux uncertainty 

Figure 2. Absolute flux uncertainty increases as fluxes increase, but 
relative uncertainty decreases with increasing flux. The dashed lines 

re sta- show the daytime relative uncertainty estimated from tmrbulen- 
tistics (Lenschow et al. 1994). Abbreviations: H, LE and F,,: = heat, 
water vapor and C 0 2  fluxes, respectively. 

(Figure 2C) appears to behave somewhat diffesently between 
night (flux > 0) and day (flux < 0). In the daytime, Fco2 uncer- 
tainty increases by about 0.1 p o l  m 2  s-' per , p o l  m- ' s- 
increase in uptake (negative values represent photosynthetic 
uptake in Figure 2C). At night, the rate of uncertainty increase 
with increasing exchange (respiration) is abmt  four times 
greater per pnol  s 1  flux increase. Because the increase in 
uncertainty for all of these fluxes with an increase in flux mag- 
nitude is less than unity, the relative uncertainty (= @, 
where F I  is the absolute value of the total flux) of the measured 
fluxes decreases with the absolute value of the flux. The 
"traditional" micrometeorologicd approach (Equation 16) gen- 
erates a~proximately constant relative eamr during daytime 
(dashed lines in Figure 2) and thus also produces heterosce- 
dastic error estimates. The similarity in relative uncertainty val- 
ues generated by the Lenschow et al. (1994) method (evaluated 
during the daytime) and the two towers is striking. 

Since solar radiation is the dominant driver of Pi, LE and 
FCV2 ,we examined the relationship between uncertainty and 
net radiation, R,, separadng orut growing season from non- 
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growing season data. For H, there is a linear increase in uncer- 
tainty (&pH)at the rate of 0.1 15 t 0.010 w m-' (mean * 95% 
confidence limits, P < 0.01: r2  = 0.95) per W m-2 absolute 
value of R,, with a zero intercept of 4.0 -r- 3.7 W m-'. The rela- 
tionship between heat flux uncertainty and R, is not signifi- 
cantly different between the growing season and non-growing 
season (Figure 3A). We use the absolute value of R, in this re- 
lation because sensible heat flux to the surface increases at 
night as R,  becomes more negati~~e and uncertainty is propor- 
tional to flux magnitude. Evaluating total heat flux uncertainty 
independently via Equation 16 yielded the same relationship 
with R,  as that derived from the two towers. 

During the growing season, there is a similar close relation- 
ship between R, and the uncertainty in LE measurements (Fig- 
ure 3B), with-,,increasing as 0.067 * 0.018 W m-' (mean 
+. 95% confidence limits, P < 0.01, r Z  = 0.80) per W m? R,,. 

100 1 0-0 LE growing season I E3 
80 o--.o LE non-growing season ~ , .  

60 - 

40 _ _ - -  

1 =-a Eo2 growing season 
0-0 eo2 non-growing season I 

Figure 3. Flux uncertainty for H and LE is tightly correlated with net 
radiation, whereas FCO2 uncertainty is only weakly correlated with so- 
lar radiation. For H uncertainty. the relationship between R ,  and un- 
certainty is the same during the growing season and non-growing 
season. Dashed lines show daytime uncertainty calculated by the 
Lenschow et al. (1994) method. For H and LE uncertainty there is 
good agreement with the rwo-tower approach. Abbreviations: H, LE 
and Fco2 = heat, water vapor and C 0 2  fluxes, respectively; and R ,  = 
net radiation. 

The zero intercept of this relationship is 21.5 + 7.4 W m-'. 
During the non-growing season at the Howland forest, ston;a- 
tal closure and frozen soils limit LE flux (Hollinger et al. 
1999) and also, apparently, LE uncertainty (Figure 3B). Non- 
growing season LE uncertainty increases as a f~nction of R, at 
only about one third the growing season rate ( $ 2 ~ ~ ~  = 0.018 k 

0.009Rn+8.0&3.1, P<0.01,v'=0.58).Tl~eLenschowetal. 
(1994) model again provided a good approximation of uncer- 
tainty during daytime conditions. 

The growing-season and non-growing season uncertainty in 
Fco, provides an interesting contrast to that of H and LE in that 
&P co, is only weakly related to solar forcing (Figure 3C). Al- 
though the relations between PPFD and FcO2 uncertainty are 
significant, they account for well under half of the obser- 
ved variation in .\hfiCo, (growing season &pcO2 = 0.00045 k 

0.00035PPFD + 2.45 & 0.37, P i  0.05, r 2 =  0.30; non-growing 
season &pco, = 0.00033 * 0.00020PPFD + 0.70 + 0.19, P < 
0.05, r = 0.444). The slopes of the growing-season and non- 
growing-season relationships are not significantly different 
but the growing-season intercept is about three times larger 
than the non-growing-season intercept. Our implementation 
of the Lenschow et al. model (1994) over-estimated uncer- 
tainty compared to the two-tower approach and this difference 
increased with increasing PPFD (Figure 3C). 

For FcO2, uncertainty is also related to wind speed (Z) (Fig- 
ure 4), with uncertainty decreasing as wind speed increases. 
The slope and zero intercepts in the windluncertainty relation- 
ships were significantly different between the growing season 
and non-growing season (growing season &pCo2 = 3.76 t 
0.74 - 0.43 + 0.21G, P < 0.01, r 2  = 0.85, non-growing season 
&pco, =0.86?0.17 -0.056+0.046G,P<0.05: r2=0.66).  
  ow ever, neither the slopes nor intercepts in the wind-uncer- 
tainty relationships were significantly different between grow- 
ing season daytime and nocturnal data (Figure 4B). For day- 
time conditions, uncertainty calculated by Equation 16 simi- 
larly decreases with increasing wind speed (Figure 4B), but 
values are about 1 pmol m-2 s-' larger (925 to 80%) than the 
two-tower estimates. 

Successive days approach 

The successive days approach to estimating &P yielded rela- 
tionships with wind speed (for FCO2) and net radiation (for H 
and LE) that were similar to and consistent with those derived 
using the two-tower approach (Figure 5). However, the succes- 
sive days approach generally resulted in estimates of flux un- 
certainty that were higher than those obtained by the two- 
tower method. Presumably this is because, besides the mea- 
surement uncertainty, there is additional variability in each 
pair of measured fluxes because the measurements were con- 
ducted a full 24 h apart under similar but not identical environ- 
mental conditions. We found that the slopes of the wind-Fco2 
uncertainty relationships calculated by the two-tower and suc- 
cessive days approaches were not significantly different (P = 
0.10) but that the zero intercepts were significantly different (P 
< 0.05). The zero intercept obtained via the successive days 
approach was about 1.4 pmoi m-' s-' (36%) higher than ob- 
tained with data from both towers. For H and LE, we found 
that the successive-days approach overestimated the zero in- 

TREE PHYSIOLOGY ONLINE at http://heronpublishing.com 



HOLLINGER AND RICHARDSON 

6 
5 

,, non-growrng season 
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Figure 4. Carbon dioxide flux (F,,, ) uncertainty decreases as wind +-+ 
speed increases. The relationship is different between growing season ,& N- 

80 
and non-growing season, but within a season, it is similar between 2 'E 60 
night and day. The dashed line shows the daytime uncertainty calcu- (a) 

lated after Lenschow et al. (1994). 40 

tercept in the relationships between uncertainty and Rn relative 1 
1$! 20 

to the two-tower approach (probability H intercepts are equal 0 
= 0.0002 and probability LE intercepts are equal = 0.0514) but 
yielded similar slopes (probability H slopes are equal = 0.185 

Two towers 
ci-o Successive days 

and probability LE slopes are equal = 0.635). 
Support for the idea that nonstationarity contributes ad- 

ditional uncertainty to our FCO2 uncertainty estimates comes 
from an analysis of the uncertainty that results from extending 
the paired data comparison beyond 1 day. For example, using 
daytime (PPFD > 5 p o l  m-5- ' )  mid-growing season (JD 
152-273) C 0 2  fluxes, we found that uncertainty was posi- 
tively correlated (7- = 0.90, P = 0.001) with the length of &e 
time period between successive samples, and increased at a 
rate of about 1 % per day of lag. However, for both H and EE, o 
was uncorrelated with the length of the lag time ( r  = - 0.24, P = 
0.13, and r = 0.21, P = 0.20, respectively). Figure 3B, however, 
suggests that a similar analysis for LE that extended between 
growing and non-growing season would show similar evi- 
dence of nonstationarity. 

The successive days method indicated that the flux uncer- 
tainty follows an approximately exponential distribution (re- 
sults not shown), at least for H and FCoZ. However, the LE 
distribution has a tighter central peak and fatter tails, than even 
an exponential distribution. 

Overall, the statistical properties of the flux deviations were 
similar for the two-tower and successive day approaches (Ta- 
ble 1). The persistent mean difference in N and LE (-25 and 
15 W m-2, respectively. for R,  > 400) for the two-tower ap- 
proach may reflect systematic differences in the tower foot- 
prints (Hollinger et al. 2004); these differences were much 
smaller (5.2 and -2.1) for the successive days method. 

Figure 5. Uncertainties estimated by the successive days approach are 
similar to, but generally higher than, estimates resulting from the 
two-tower method. Abbreviations: H and LE = heat and water vapor 
fluxes, respectively; R n  = net radiation; and 1.1 = wind speed. 

Using uncerrairzty estimates in model parameter estimation 

The preceding analysis of uncertainty provides the informa- 
tion needed to carry out an ML estimation of model parameters 
from flux data; specifically information on the measurement 
uncertainty, o, and the appropriate PDF. Without this informa- 
tion, such analyses lack rigor and may lead to incorrect conclu- 
sions about the most likely parameter values. Our results, how- 
ever, indicate that there are several ways of specifying uncer- 
tainty and that more than one PDF may sometimes be suitable. 
The specific choice of these characteristics and the related is- 
sue of how noise is added back into Monte Carlo simulations 
have a direct impact on both the parameter estimates and their 
uncertainty. 

Maximum likelihood analysis and Monte Carlo simulation 
based on uncertainty data from our two-tower approach indi- 
cate that for the simple "big-leaf" model of Equation 6, there is 
a region of equifinality where there are many parameter sets 
which have an almost equal likelihood, given the observed 
flux data and its uncertainty (Figure 6). The different weight- 
ing (likelihood functions) associated with Gaussian or double 
exponential PDFs generate different likely parameter sets. In 
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900 6 
Figure 6. Parameter estimates 

750 5 for a illichaelis-Menten model 
of leaf photosynthesis (= A,,I/ 

kS (K,, + I) + R) determined from 

600 C C 4  June 2000 carbon dioxide (COz) 
flux data. The black region rep- 
resents the 95% uncertainty lim- 

450 3 its of parameter triplets assum- 
ing Gaussian uncertainties with 
o = 2.7 m o l  m-2 s-l, and the 

both cases. the variation of individual pairs of parameters 
among sets are highly correlated (Table 2). Principal cornpo- 
nents analysis of the model parameters highlights this correla- 
tion: for the exponential error distribution, for example, the 
first two components accounted for 63 and 36% of the total 
variance, respectively, whereas the third component accounted 
for less than 1% of the total variance. The model has three di- 
mensions, b ~ ~ t  the correlation of the parameters essentially re- 
duces this to just two. More complex models likely have even 
greater degrees of redundancy. 

Because the parameters are correlated, one must consider 
the joint distribution of parameters instead of comparing or 
testing a single parameter value. The appropriate criterion is 
the chi-squared statistic (Equations 13 or 14, depending on 
PDF). Critical values for the parameter values can be gener- 
ated by ranking the parameter sets resulting from the Monte 
Carlo simulations by their x2 value, and selecting x2 values 
corresponding to the appropriate percentile. Chi-square values 
can also be used to evaluate the fit of different models to the 
same data. 

Using this criterion, the parameter estimates derived froin 
assuming Gaussian or exponential error distributions are dif- 
ferent; at least: the least squares optiinum is greater than 
the 95-percentile x2 value of the exponential distribution, al- 
though the converse is not true. The uncertainty in the original 
measurements is critical here: larger uncertainty in the mea- 
surements means larger uncertainty in the parameter esti- 
mates, which in turn means a larger 95% x2 value and a decrea- 
sed ability to detect significant differences. 

L . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 gray indicates the corresponding 
-23 -21 -19 -17 -23 -21 -19 -17 95% uncertainty region assum- 

A ,ax ing the double exponential pro- 
A m a x  bability density function with 

The big-leaf model of Equation 6 has useful predictive 
properties but is physiologically incorrect. The Norman model 
(Eq~~ations 7-12) scales leaf-level photosynthesis directly to 

Table 2. Summary of model parameters derived from Monte Carlo 
simulations (n = 4000). June 2000, main tower data only. Abbrevia- 
tions: A,n, = maximum rate of uptake ( p o l  m-2 s ' ); K, = half-sat- 
uration constant ( p o l  photons m-' s- ' ); and R = ecosystemrespira- 
tion ( p o l  m-2 s-l). 

Amax Km R 

J2P = 2.5 p o l  m-2 s-I. The 
cross-hatched areas indicate the 
99% uncertainty regions. The 
first thee panels (A-C) repre- 
sent different 2-D projections of 
the parameter sets and the final 
panel (D) shows a 3-D repre- 
sentation. Abbreviations: A,,, = 
maximum rate of uptake; Km = 
half-saturation constant; I = in- 

22 cident PPFD; and R = ecosys- 
tern respiration. Units for A,, 

900 

750 

xE 600 

450 

300 

Descriptive statistics 
Normal distribution, minimizing least squares (xz = Z(E )) 

Optimum -20.0 524.8 4.3 
Mean + 1 SD -20.1 t 0.6 529 t 68 4.3 + 0.4 

2 3 4 5 6  and R are ,moI COz m-2 s-I, 
Anax and for K, are pmol PPFD m-2 

R s-I. 

- 

- 

1 
- 

- - . , l * s , . r , s . . f s * , . l  

Exponential distribution, minimizing absolute value ( x 2  = X abs(E)) 
Optimum -18.7 491.2 3.7 
Mean c 1 SD -18.8 2 0.4 493 r 50 3.7 +- 0.3 

Pairwise correlations 
Normal distribution 
Amax -0.63 -0.01 
Km -0.63 -0.73 
R d -0.01 -0.73 

Exponential distribution 
Amax -0.56 -0.09 
K m  -0.56 -0.74 
R d -0.09 -0.74 
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the canopy and can be solved with the simulated annealing 
technique to yield leaf-level physiological parameters. Be- 
cause NEE in this model is the product of a physiological ca- 
pacity and LAI, leaf-level physiological parameters are nccon- 
strained by the data (e.g.. high Ale& and low LA1 fit the data as 
do low Alaf and high leaf area index; Figure 74. The model 
can be constrained by specifying the LAH, and at a vdue of 
about 5.5, the most likely leaf-level parameter values inferred 
from flux data are superfkia!ly similar to literature values (cal- 
culated from Alexander et ai. 1995) determined via a photo- 
synthesis cuvette (Table 3). Independent estimates suggest that 
Howland LA1 is in the range of 5-7. 

Comparing the xZ values for the big-leaf and sun-shade 
models indicates only a slight improvement in fit results from 
the more "correct" sun-shade model and that the fit slightly 
improves with increasing LAI. The ~"alues that result from 
using literature values of leaf-level parameters rather than ML 
estimates from flux data indicate a considerably poorer fit to 
the data (Table 3). An estimate of the uncertainty in the cuvette 
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leaf 

Figure 7. Parameter estimates for a Michaelis-Menten model of leaf 
photosynthesis (= Al,,fII(KI,af + I) + Rleai) embedded within the 
sun-shade model of Norman (1982) (all units are pmol m-2 s- I) .  (A) 
The darkness of the points represents the fixed model leaf area index 
(LAI). Leaf photosynthetic parameters that fit the data decrease in 
magnitude as canopy LA1 increases. (B) The same data as above ro- 
tated to the right by -120' and with maximum likelihood estimates of 
leaf level parameters (s~nall diamonds) obtained from cuvette data in 
Alexander et al. (1995) using an uncertainty of ~'28 = 0.1 pmol rn-' 
s-'. The parameter values derived from leaf-level data intersect those 
determined from tower-level NEE and the sun-shade model at a LA1 
of 6 -6.5 (large diamonds). Abbreviations: AICaf = maximum rate of 
leaf photosynthesis (pmol C02 m-Z s- I); Kleaf = half-saturation con- 
stant ( p o l  photons m 2  s - '): I= incident PPFD; and = leaf res- 
piration ( p o l  C02 m-2 s- '). 

Table 3. Maximum likelihood parameter estimates of Michaelis-Men- 
ten model parameters based on big-leaf and sun-shade model formu- 
lations. Abbreviations: LA1 = leaf area index; AICd= maximum rate of 
leaf photosynthesis ( w o l  COz m-2 s- I): KlCaf = half-saturation con- 
stant (pmol photons m-2 s-'); Rl,,f = leaf respiration ( m o l  COz m-" 
S-I): and 99-% = 99th percentile. 

LA1 
- - 

Big-leaf 

4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 

Leaf cuvette 
data 

99-% leaf data 
(LA1 = 6)  

Aleai Kieaf R leal- 

data would be useful here, and although Alexander et al. 
(1995) do not report such, it would probably be small. We as- 
sume for Figure 7B that the measurement uccertainty of the 
cnvette data ) = 0.1 pnol  m-' s- ', and plot the resulting 
Monte Carlo estimates of leaf-level parameter sets derived 
from leaf-level data on the same figure as those derived from 
eddy flux data and the sun-shade model. The x2 values of the 
leaf-level parameter estimates determined from cuvette data 
intersect those determined from flux data in the LAP = 6-6.5 
region, a value consistent with independent estimates of LAH. 

The models are compared to NEE from flux data k 95% un- 
certainty limits, where is based on II in Figure 8. The 
big-leaf and sun-shade models (when they use leaf-level pa- 
rameters determined by ME from the flux data) yield vin-tually 
icientical results (symbols overlap). Not suqrisingly, the sun- 

177 178 1 79 18C 

ay of year 

Figure 8. Comparison of modeled and measured net ecosystem ex- 
change (NEE). Symbols: = the big-leaf model; 3 = sun-shade 
model at a leaf area index (LAI) of 6; and A = the sun-shade model 
(LA1 = 6) when the photosynthetic parameters come from leaf-level 
measurements. The 95% NEE uncertainty limits are indicated by the 
vertical width of the shaded area. 
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shade model using literature-derived leaf parameters fits the 
flux data less well (76% of the modeled values lie within the 
95% uncertainty level of the data whereas 8 1 % of the big-leaf 
and sun-shade model results lie within the 95% band). 

Discussion 

Flux data are characterized by peaked (non-normal) error dis- 
tributions. These distributions apparently result from several 
factors. First; for all fluxes, the data are heteroscedastic, with 
the error increasing along with the absolute magnitude of the 
flux. When this heteroscedasticity is combined with the fre- 
quency of different flux magnitudes (far more instances of low 
than high values), the result is a strongly peaked error distribu- 
tion. For example, LE is zero at night and during the winter 
months; over the course of a year about 213 of all LE values are 
recorded from these time periods. A second factor leading to 
the non-normal error distribution relates to real world prob- 
lems with measurement systems (Press et al. 1993). Occasion- 
ally, "glitches" caused by power fluctuations, insects in the 
path of a sonic anemometer, contanlination, or other factors, 
result in measured values that are far from correct. Flux data 
are characterized by extreme outliers, despite the best efforts 
cE researchers. If it is assumed that the error is normally dis- 
tributed with consiant variance, then the best-fit parameters of 
a model (those with the maximum likelihood of accounting for 
the observed data) are determined by minimizing the sum of 
the squares of the deviations between the model and the data 
points. Beca~rse the deviations are squared, extreme outliers 
that have no biological significance can exert an enormous ef- 
fect on the model parameters. 

The double exponential distribution, in addition to better de- 
scribing real flux data, has the advantage that the maximum 
likeiihood estimator is calculated by minimizing the mean ab- 
solute deviation, considerably reducing the impact of outliers. 
Press et al. (1993) discuss additional error distribntions in 
which weights of the points first increase with deviation and 
then decrease, minimizing the impact of the most deviant 
points in the estimation of parameters. 

For all of the fluxes: uncertainty increases with flux magni- 
tude. This is unlikely to be a property of the measurement sys- 
tem (sonic anemometer, gas analyzer, etc.) and is thus 
apparently a property of the intermittency of turbulent trans- 
port. The length scale of the dominant eddies responsible for 
most t~trbuhent transport over a forest is relatively large 
(Raupach et ai. 1996) and there are few of these in a half-hour 
integration period. This sort of quasi-Poisson behavior (most 
of the flux carried in a few events) would manifest itself in the 
observed heteroscedasticity. 

The excellent agreement between sensible and latent heat 
flux uncertainties calculated by the two-tower and traditional 
(Lenschow et al. 1994) approaches is heartening and suggests 
that the assumptions of cospectral shape and integral timescale 
are reasonable. The close agreement also implies that the ma- 
jority of the total uncertainty, measured by the two-tower ap- 
proach, is accounted for by the turbulent uncertainty, rather 
than rneas~~rement system or footprint uncertainty. Support for 
this conclusion comes from an AmeriFlux calibration visit to 

Howland that found C 0 2  flux measurement system uncer- 
tainty to be only 0.8 pmol m-2 s-' (R. Evans. USDA Forest 
Service, Durham; NH, unpublished data). 

Contsmy to results for H and LE, the Lenschow eta!. (1994) 
approach overestimated FC02 uncertainty, suggesting our inte- 
gral timescale estimate is too large or problems with the 
cospectral shape model. The difference in the behavior of Fco" 
uncertainty from that of H and LE with wind speed may result 
from differences within the forest in the location of the ex- 
change sites. For H and LE, most of the plant-atmosphere ex- 
change occurs at the top of the canopy, and the exchange is 
generally of the same sign from the top of the canopy to the 
forest floor (out-going d~~r ing  the daytime). For daytime C 0 2  
exchange, however, uptake occurs at the top of the canopy 
while the forest floor is a strong source of COz. We speculate 
that intermittent penetration of t~~rbulent eddies through the 
canopy at low wind speeds leads to less efficient mixing of for- 
est floor and canopy air than at higher wind speeds and thus 
greater variability (higher uncertainty) of C 0 2  fluxes recorded 
at low wind speed. Another way to express this idea is that 
there may be different cospectral shapes for top-of-canopy and 
below-canopy exchange. Evaluation of C02 flux uncertainty 
over other canopy types (short crops or grassland) would ad- 
dress this hypothesis. 

One important additional consequence of our analysis is 
that the uncertainty of data recorded by an open-path C02 ana- 
lyzer is likely to be larger than that using a closed-path system. 
This is because calculation of Fco2 with the former requires in- 
formation on Nand LE. Thus the uncertainties inherent in the 
measurements of H and LE will contribute to the final uncer- 
tainty of FCO2. 

We evaluated big-leaf and sun-shade canopy models using 
the ML and Monte Carlo techniques as an example of the ap- 
plication of uncertainty data. These examples illustrate several 
important points including equifinality of parameter sets, im- 
pact of PDF, lack of independence of model parameters and 
the non-constraint of a model by flux data. Although a detailed 
analysis of the models was not the goal here, we observe that 
whereas incorporating a simple canopy model only trivially 
reduced the mean absolute error, it introduced a framework 
that allowed scaling from leaf-level data. Leaf-level data could 
then provide a constraint on the LA1 of the canopy model; bot- 
tom-up (leaf-level) and top-down (eddy flux) parameters only 
intersected over a narrow range of LA1 values that were, in 
fact, consistent with independent LA1 measurements at the 
site. 

The NEE calculated via the models was frequently (about 
20% of the time) outside of the 95% confidence bands of the 
flux data (e.g., Figure 8). This strongly suggests that fusther 
improvements of the models are possible. Given that these 
models are insensitive to temperature or vapor pressure deficit, 
there are obvious starting points for improvement. 

Flux data are not trnth-instead they represent "correct" 
values plus or minus some amount of measurement error, 
which we here call uncertainty. Traditional approaches appear 
to work well in characterizing mcertainty in N and LE. Uncer- 
tainty in flux data can also be estimated by comparing results 
from two towers measuring similar vegetation in slightly dif- 
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ferent places at the same time or by comparing results from the 
same tower under similar conditions at different times. Both 
analyses indicate that the uncertainty in Howland flux data, 
and by analogy, probably all flux sites, is better characterized 
by a double-exponential distribution than by a normal distribu- 
tion. This has the consequence h a t  parameter values of mod- 
els of surface-atmosphere exchange determined from the data 
should not use ordinary least squares minimization but instead 
should seek to minimize the sum of the absolute deviations be- 
tween model outputs and data. Before this conclusion is 
widely adopted, however, it should be examined critically at 
other sites because minimizing based on the absolute deviation 
may result in a different bias than OLS, and bias is critical to 
annual sums of flux data (AD. Richardson and I3.Y. Holiinger; 
unpublished results). 

A second result is that the uncertainty in flux data is not a 
constant. The uncertainty for all fluxes increases with increas- 
ing magnitude of the flux. More usefully, for N and LE during 
the growing season, uncertainty increases roughly as 0.1R, 
and 0.08R, above a base uncertainty (R, = 0)  of -10 W m-'. 
There is no seasonality in the uncertainty of N at the evergreen 
Howland forest, indicating that uncertainty for this flux is not 
modulated by biology, but is instead controlled purely by 
physical factors. The uncertainty of LE, however, responds to 
R ,  differently in the growing and non-growing season, sug- 
gesting a biological cause. We would expect that uncertainty in 
N and LE in a deciduous forest to behave differently depend- 
ing upon presence or absence of the canopy. 

For C 0 2  flt~x, we found that flux uncertainty correlated with 
wind velocity, decreasing roughly by half as mean wind speed 
increases from -1-4 m s- '. We hypothesize that intermittency 
of atmospheric mixing in the two-level structure of a forest, es- 
pecially in the daytime when the canopy is a sink and the soil is 
a source for @02, adds to the uncertainty of forest-atmosphere 
C 0 2  fluxes. Enhanced mixing at higher wind speeds would re- 
duce this uncertainty. A test of this idea would be to determine 
whether C 0 2  flux uncertainty remains a function of wind 
speed in a structurally more simple system such as a grassland, 
crop, or deciduous forest after leaf fall. A consequence of the 
relationship between C02 flux uncertainty and wind speed is 
that models of flux exchange may be better constrained at 
windy sites and structurally simple sites than at less windy or 
structurally complex sites. 

Uncertainty estimated by the successive days approach is 
generally greater than that estimated by two towers. One rea- 
son for this result may be that nocturnal events such as rainfall 
or frost change the state of the ecosystem between measure- 
ments. The successive days estimates of flux measurement un- 
certainty should be adjusted to counter this additional 
uncertainty that is i ~ o t  part of the real (instantaneous) flux mea- 
surement uncertainty. We therefore recommend decreasing 
successive days estimates of N by a constant 20 W m-' and for 
Fco2 and LE, reducing o calculated using successive days to 
about 7 5 4 0 %  of the estimated value. 

Uncertainty information is a critical part of parameter esti- 
mation with the Maximt~m Likelihood technique and neces- 
sary for estimating parameter confidence regions. Flux uncer- 
tainty information is also necessary for evaluating independ- 

ently fomuiated models agains.t flux data, when using more 
sophisticated forecasting techniques such as the Malman filter 
(Jarvis et al. 2004). and in other data-model fusion approaches. 
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