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Summary 

Critical point relascope sampling is developed and shown to be design-unbiased for the estimation 
of log volume when used with point relascope sampling for downed coarse woody debris. The 
method is closely related to critical height sampling for standing trees when trees are first sampled 
with a wedge prism. Three alternative protocols for determining the critical sampling points on a log 
are presented and simulations are employed to suggest the most efficient protocol to use in practice. 

Introduction 

Point relascope sampling (PRS) was introduced 
by Gove et al. (1999) as a method to sample 
downed coarse woody debris (CWD) in forest 
inventories using a wide-angle gauge, with angle 
0" < Y s 90". The aw~eal  of such a method is that 
it is unbiased, and ;s closely linked to horizontal 
point sampling (HPS) with a prism or small-angle 
gauge for standing-tree inventories (Grosenbaugh, 
195 8). A transect-based alternative to PRS, known 
as transect relascope sampling, was introduced 
first by Stghl (1998), and is analogous to horizon- 
tal line sampling for standing trees using a 
prism along a transect. These methods have been 
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developed to the point where most auxiliary 
problems that might be encountered in the field, 
such as slope correction (StHhl et al., 2002), 
boundary overlap (Gove et al., 1999; Ducey et 
al., 2004) and branchiness (Gove et al., 2002), 
have been addressed. However, volume estima- 
tion under these methods normally entails using 
some type of model for log taper and applying a 
formula such as Smalian's (Husch et al., 2003, 
p. 122) to approximate the volume of individual 
logs. The use of Smalian's formula (or similar 
cubic content models), which assumes that the 
log is a frustum of a parabola, introduces a bias 
of unknown magnitude and sign into the estima- 
tion of volume. 
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Various methods are available for unbiased esti- 
mation of log volume. Probablv the most well- - 
known options are the variants of importance 
sampling. Importance sampling is a subsampling 
technique that chooses to sample points along the 
log, based on a simple taper model proxy function 
(Furnival et al., 1986). Subsampling points are 
chosen in accord with the proxy taper function 
such that measurements are concentrated in the 
parts of the log with larger cross-sectional area. 
When CWD is branched, importance sampling in 
combination with randomized branch sampling 
might be employed (Valentine et al., 1984). For 
standing trees, critical height sampling (CHS) 
(Kitamura, 1962) provides unbiased estimates of 
volume under HPS inventories. Recently, a new 
method, perpendicular distance sampling (PDS), 
has been introduced for the unbiased estimation of 
downed CWD volume by Williams and Gove 
(2003). PDS is simple and quick, and can be used 
in concert with other methods such as fixed-area 
plot sampling, for example, to arrive at estimates 
for other quantities such as number of pieces, since 
PDS does not provide estimates of these quantities 
directly. In addition, Williams et al. (2005a, b) pro- 
vide an extension to PDS for unbiased estimation 
of log surface area, methods for handling branched 
or curved logs and procedures for slope correction. 
Finally, StHhl et al. (2005) have developed critical 
length sampling as another method for estimating 
volume of downed loas. Their method is also c, 

design-unbiased and utilizes a wedge prism to 
determine the critical lengths of logs. 

In PRS, downed pieces of CWD (hereafter sim- 
ply 'logs') are selected with the angle gauge with 
probability proportional to the log length squared. 
As mentioned above, PRS is analogous to HPS in 
this and many other ways, since HPS selects trees 
with probability proportional to diameter squared. 
This distinction makes sense because in the former 
the angle gauge is used to view log length for 
inclusion. while in the latter it is used to view tree 
diameter. Similarly, if one desires to estimate some 
total quantity Y for the tract such as the number 
of individuals, the corresponding estimators are 

" Y P = A L ~ ~  and P = A F ~ ~  
,=I  c i=1 ~ d ;  

for PRS and HPS, respectively, where K is a con- 
version factor, and the other quantities will be 

defined later - the important point here is the 
similaritv in the form of the estimators. Since 
CHS produces unbiased estimates of tree volume 
under HPS, it is natural to wonder, because of the 
relationship between the two methods, whether 
some analogue is also possible under PRS. The 
purpose of this paper is to introduce a new design- 
unbiased method for volume estimation of 
downed logs in a PRS inventory, critical point 
relascope sampling (CPRS), that does indeed pro- 
vide such an analogue. The remainder of this paper 
begins with a brief review of CHS to motivate the 
development of CPRS and provides a proof of 
design unbiasedness with three protocols, then 
finally provides some guidance on the best proto- 
col to be used based on simulation experiments. 

Critical height sampling 

CHS was introduced by Kitamura (1962) as a 
method for unbiased estimation of standing-tree 
volume. Proof of unbiasedness for CHS as well as 
other enhancements and applications appear in 
Iles (1979a), McTague and Bailey (1985), Lynch 
(1986), Van Deusen and Merrschaert (1986) and 
Van Deusen (1987). In review, CHS works in 
concert with HPS by conditioning on the selec- 
tion of a tree with the angle gauge or prism on a 
sample point. Given that the sample tree has been 
selected, the critical height can then be found, in 
theory, by sighting at that point on the stem 
where the gauge angle is exactly coincident to the 
tree diameter - i.e. in the borderline condition. 
This is often done in practice with a relascope. 

Figure 1 is useful to illustrate the general idea 
behind CHS. This figure shows a hypothetical 
(branchless) tree stem, along with an expanded 
tree stem surface that has been generated as a fac- 
tor times the diameter at any given point on the 
stem, where the expansion factor is related to the 
gauge angle used. The sample point is at the verti- 
cal line. The point where this vertical line inter- * 
sects the expanded tree stem surface determines 
the critical point on the stem where the diameter 
is borderline, determining both the critical height 
and associated critical diameter. If the sample 
point were rotated around the tree at this point 
while maintaining tangency of the projected 
gauge angle, it would produce a circular region 
(assuming a circular tree cross-section at this 
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Both Lynch (1986) and Van Deusen and 
Merrschaert (1986) have used this PDF and the 
shell integral to prove the unbiasedness for CHS 
for any tree taper function. Interested readers are 
referred to these papers for the details and the 
references therein. The final critical height estima- 
tor for volume on an individual sample point is 

where hi is the critical height on the zth tree, n is 
the total number of 'in' trees selected on the 
point, A is the forest land area and F i s  the basal 

Figure 1 .  Illustration of CHS with the expanded tree area factor of the angle gauge used (Kitamura, 
stem (translucent), sample point (vertical line) and 1962; lles, 197Ya; ~ ~ ~ ~ h ,  1986). 
critical point (upper circle). 

point) that would always select this critical height 
as shown by the upper circle in the figure. Denote 
the diameter of the tree at this critical point as d', 
and likewise, the diameter at the base of the tree 
as D. The circular borderline area at the tree base, 
proportional to D, is also shown. 

The probability of selecting a critical point on 
the tree stem has been shown by several authors 
(McTague and Bailey, 1985; Lynch, 1986; Van 
Deusen and Merrschaert, 1986). Because it is use- 
ful to recall this result before developing CPRS 
in the next section, we briefly review it here. The 
cumulative distribution function that yields the 
probability of being closer to the centre of 
the selection circle defined by D, than a point on 
the expanded tree circle defined by the critical 
point d', is given by the ratio of the circular areas 
described above, viz. 

For the critical height estimator to be unbiased, 
tree selection, and thus the selection circle, must 

a be at the lowest point on the tree containing the 
volume of interest, normally stump height, rather 
than breast height (Lynch, 1986; Van Deusen and 
Merrschaert, 1986; Van Deusen, 1987). The 
probability density function (PDF) of d is found 
by differentiation to be 

CPRS theory and design 

The development of CPRS is very similar to that 
of CHS. Conceptually, begin by conditioning on 
a log having first been selected with a wide-angle 
gauge under PRS as described in Gove et al. 
(1999). Because the log has already been chosen 
with the angle gauge, the log is longer than the 
projected angle of the gauge. Next, align one pin 
of the angle gauge (i.e. one side of the projected 
gauge angle) with either the small or large end of 
the log. The other pin on the angle gauge must 
therefore intersect the log at some point along its 
length. The point where this other pin of the angle 
gauge intersects the log determines a critical point 
on the log; this is shown with projected angles in 
Figure 2. This procedure can be thought of as 
being similar to scanning up a standing tree to the 
critical height on a tree that has already been 
selected on an HPS point. Thus, the critical point 
on the log determines a random sampling loca- 
tion on the log with associated critical length and 
diameter, just as CHS provides a critical height 
and associated diameter. In the following, it will 
be shown that the PDF for the critical point and a 
design-unbiased estimator for log volume estima- 
tion can be developed. 

To illustrate the general idea, Figure 3 shows 
two inclusion zones for a log under PRS. The out- 
side zone corresponds to the inclusion zone for the 
entire log as we would normally envision it under 
PRS (Gove et al., 1999). The periphery of the 
smaller, internal zone delineates a locus of PRS 
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sample points where the same critical point on the 
log would be chosen by an angle gauge of v = SOo, 
when aligning one side of the gauge with the large 
end of the log. For simplicity, the following devel- 
opment of CPRS theory assumes that one side of 
the angle gauge is always aligned with the large end 
of the log as shown in Figures 2 and 3; however, 
this assumption will be relaxed subsequently. 

Figure 2. Illustration of CPRS with a wide-angle 
gauge. The critical point is where the gauge angle 
intersects the log (not the gauge's projected shadow, 
which is simply an artefact of the light sources used 
in ray tracing). 

The development of the PDF for critical PRS fol- 
lows directly from that of CHS. The probability of 
a random sampling point determining a length 1 
that is shorter than some critical length P for a 
sample log of total length L under PRS is given as 

where the dimensionless constant (p determines 
the log's inclusion area as the union of two over- 
lapping circles (Gove et  al., 1999). By differentia- 
tion, the PDF is 

The expected critical length under this PDF is 2W3 
and the variance is L2/18. 

Let the total volume on the tract be given by 
summing the volumes on the individual downed 
logs, viz. 

where vl is the volume of the ith log, with N logs 
on the forest tract. Then an unbiased estimator 
for volume on the tract for a given point sample 

Figure 3. Illustration of the geometry of CPRS with an gauge angle of v = 50" when sampling the log from 
the large end. A random PRS sample point falling anywhere on the inner (dashed line) inclusion zone 
boundary will always choose the same critical point on the log with associated length 1'. 
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under PRS may be written in terms of the critical 
diameters and lengths of the sampled logs as 

where n is the number of logs that are 'in' with 
the angle gauge on a PRS point, C is the PRS 
squared-length angle gauge factor (Gove et al., 
1999), A is the forest area in hectares, 4 is the log 
diameter with the same units as length (i.e. metres) 
at the critical uoint and the constant c is a correc- 
tion for unbiasedness as developed below. 

In an inventory of downed CWD where PRS is 
used on p sample points, one typically desires 
some estimate of the variance for volume. In this 
case, let 6; be the volume estimate by CPRS from 
n, logs tallied on the kth sample point, then the 
volume of downed CWD would be unbiasedly 
estimated by 

The associated variance estimator is given as 

Proof of estimator unbiasedness 

The proof of unbiasedness for the estimator (2) of 
total log volume follows closely from the methods 
of Lynch (1986) and Van Deusen and Merrschaert 
(1986), who generalized the proof for CHS of 
standing trees given by McTague and Bailey 
(1985). Let ti be an indicator random variable that 
takes the value 1 if the log is selected under PRS 
and 0 otherwise. Then the CPRS estimator of vol- 
ume for a single PRS point can be written as 

To prove unbiasedness, the expectation is taken, 
viz. 

L~ . 
where P(t, = 1) = + IS the probability of sampling 
a log of length Li under PRS (Gove et al., 1999). 

An invertible taper function is assumed for the 
log such that l(d') and d(l') both denote the same 
critical point on the log. Because of the taper 
function constraint, one of the variables ( I ' ,  d ' )  is 
viewed as random and the other as fixed, as the 
situation dictates, as in regression. In addition, in 
the following, the substitution d; = 4r: is made, 
acknowledging that the same relationships hold 
between radius and length as between diameter 
and length in the taper functions. Thus, 

where c = n/8 is a constant factor that ensures 
estimator unbiasedness. The penultimate step 
above follows from the formula for the volume 
for a solid of revolution by the disk method from 
the calculus (Mizrahi and Sullivan, 1982, p. 309). 
Therefore, the estimator is unbiased, since 

Note in the above proof that the quantity v,lLz is 
a volume-to-length squared ratio, much like the 
volume-to-basal area ratio that results from the 
critical height proofs under HPS. 

Designing the estimator protocol 

In the proof of the last section, it was assumed 
that one pin of the angle gauge was always aligned 
with the large end of the log in question. It should 
be clear that unbiasedness can similarly be proven 
when the assumption is made that one pin of the 
angle gauge is aligned with the log's small end 
instead. What may not be immediately obvious, 
however, is that it does make a difference whether 
the gauge is aligned consistently with the log's 
large or small end when considering the variance 
of the estimator. Because a similar form of the 
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estimator (2) is used in either case, this stage in 
the development concerns the sampling protocol, 
and possible associated reduction in variance that 
can be obtained by judicious choice of gauge 
alignment when subsampling for critical length 
using CPRS. 

Williams (2001) presented a method based on 
simulation that allows the visualization of the sur- 
face that results from sampling at all possible loca- 
tions on a arid. Direct com~utation of means and - 
variances are possible, facilitating comparison of 
different estimators and protocols. In brief, assume 
that one or more logs are distributed onto a plane 
A, with area A, that has been tessellated into a 
grid. At each grid cell, and for each log, a test is 
made as to whether the log is to be selected under 
PRS. If a given log is 'in', the critical point for that 
log is determined with the gauge angle used, and 
the value of the grid cell is assigned based on equa- 
tion (2) with n = l. When more than one log is 
selected at a given grid cell (n > I), the value 
obtained is the sum of the values for the selected 
logs as in equation (2). In this way, a surface is 
built up for all grid cells - the resulting surface is 
known as the sampling surface (Williams, 2001). 
Sampling in this way is exhaustive for a given grid 
size, because it is like visiting each grid cell, estab- 
lishing a PRS point at its centre and calculating the 
estimated volume under the CPRS estimator for 
that point location. Evidently, geometrically simi- 
lar methods were used with regard to CHS by both 
Kitamura (1962) and Iles (1979b). 

Assume that A has been divided into m sam- 
pling locations, or grid cells, and let the estimated 
value of the surface under CPRS at cell (x, y) be 
given as G(x,y). Then the mean and variance of 
the surface are estimated as 

and 

respectively. The finer the mesh of the grid, the 
closer the simulated estimates will be to the true 
vaIues of the population parameters they esti- 
mate. To reiterate, these are essentially the 
traditional Monte Carlo estimators with all pos- 
sible samples under repeated sampling without 

replacement, when sample points are restricted to 
falling at the centre of each grid cell. In addition, as 
the grid cell size goes to zero, the sampling surface 
becomes analogous to the infinite population 
Monte Carlo methods described in Valentine 
et al. (2001). 

To facilitate the sampling surface simulations, 
artificial logs or populations of logs were gener- 
ated. The taper and associated total log volume 
equations used in the sampling surface simula- 
tions are from Van Deusen (1990), and allow for 
logs with various taper models and non-zero 
small-end diameters, viz. 

with 

V=.rrkL (d, -dJZ - [ L:4) 

where d, and dU are the large- and small-end 
diameters, d and I are intermediate diameters and 
lengths at, for example, the critical point and k 
scales diameter to the same units as length. Log 
form is controlled by the parameter r, with O .; 
r < 2 a neiloid, r = 2 a cone and r > 2 a parabo- 
loid. In the following examples, the assumed log 
form is a paraboloid with r = 3.  The log length 
and large-end diameters are also held constant at 
L = 8 m and d, = 0.5 m, while the upper log diam- 
eter is allowed to vary 0 < d,, i dl as noted in each 
example. 

Large-end protocol 
The large-end estimator protocol has been previ- 
ously described and is illustrated in Figure 3, while 
the estimator was given in equation (2). Figure 4a 
shows the sampling surface for the large-end esti- 
mator protocol when the small end of the log 
tapers to dU = 0. In this figure and those to follow, 
the log is situated such that the large end is 
at {x,y) = (0,0), and the small end is at (8,O). 
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Figure 4. Sampling surfaces (truncated) for large- 
end protocol using a relascope angle of Y = 4S0: the 
large end of the log is situated at (0, 0); L = 8 m and 
d, = 0.5 m with (a) dU = 0 m and (b) du = 0.3 m. 

The surface has been artificially truncated to 
max(i?(x, y)) = 25 for display purposes only, to 
facilitate comparison among the methods. While 
this surface has been generated from exhaustive 
sampling, it is exactly analogous to  the expanded 
tree stem surface shown in Figure 1 for CHS, 

which was generated analytically as a constant 
function of tree diameter along the stem. Notice 
that the surface is extremely uneven and reaches a 
peak (singularity) at the large end of the log, where 
the sampling point (grid cell) happens to fall very 
close to the centre of the large-end diameter of the 
log; this singularity is a result of the critical length 
approaching zero. The surface volume quickly 
recedes towards the small end and outwards, away 
from the log. One can faintly discern the outline of 
the PRS inclusion zone for the entire log from the 
shadows cast by the surface in this figure. 

Figure 4b shows another surface, this time with 
the log tapering to  a small-end diameter of du = 
0.3 m. Notice that, while the surface behaviour is 
still the same at the large end, the surface is notice- 
ably higher at the small end of the log. Inspection 
of equation (2 )  shows that this is due to  the fact 
that at any given critical length, the critical diam- 
eter is larger for this log than that of the previous 
example, and therefore so is the estimate of vol- 
ume produced, all other things being equal. The 
sampling surface for this truncated log clearly 
shows the outline of the PRS inclusion zone, 
which was only faintly visible in the first log. 

Small-end protocol 
As an alternative to the large-end protocol, it is 
possible to align one side of the projected rela- 
scope angle with the small end of the log, rather 
than the large end. Under this protocol, the criti- 
cal point is similarly defined as the point where 
the other leg of the projected angle intersects the 
log. The natural question to ask is whether the 
use of this protocol has any effect on the resulting 
estimate of volume? It was mentioned above that 
this protocol is also unbiased, but the variance 
could be different due to the change in definition 
of the critical point itself along the log. This idea 
is explored further in this section. 

The small-end protocol is illustrated in Figure 5. 
Because the critical point determined with this 
protocol will be different than the critical point 
determined by the large-end protocol, the CPRS 
small-end estimator for volume is defined as 

where d" and 1" are the critical diameter and 
length, respectively, using the small-end protocol. 
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Figure 5. CPRS geometry with an gauge angle of v = 60" for three protocols: large end (dashed) with 
critical length I', small end (dashed-dotted) with critical length I" and antithetic points p1 and p, combining 
the two. 

The sampling surfaces generated with this estima- 
tor protocol are shown in Figure 6 and are directly 
comparable with the large-end surfaces in Figure 
4. The actual statistics for the corresponding sur- 
faces are shown in Table 1. The surface appears 
markedly different for the small-end protocol 
when the top diameter tapers to zero (Figure 6a). 
When the sampling point falls near the small end 
of the log, both the critical diameter and the 
length are small, so the surface goes to zero as the 
critical point approaches the tip since f12 j 0 
faster than 1". As the critical point approaches the 
large end of rhe log, both diameter and length 
increase, and the proportional rate of increase 
in P2 over 1" is relatively small, producing a 
maximum height of the surface that is dramati- 
cally less than that for the large end (Table 1). In 
Figure 6b, d,, = 0.3 m, and the sampling surface 
resembles that of the large-end protocol, but 
again, much reduced in height because dU c dl. 
Intermediate between the two. as the small-end 
diameter increases, the sampling surface appears 
to melt around the edges in Figure 6a while slowly 
building a spike at the small end, until it resem- 
bles Figure 6b. 

Williams (2001) notes that the evenness of the 
sampling surface is directly related to the variance; 
this can be seen by inspection of equation ( 3 ) .  As a 
result of the large peak in the surface under the 

large-end protocol, the sampling surface is very 
uneven as compared to the respective small-end 
surfaces. Consequently, the large-end protocol has 
higher variance than the small-end protocol for the 
log in question as shown in Table 1. Note that 
even the relative variability, as judged by the coef- 
ficient of variation, is always higher for the large- 
end protocol and is useful for comparing logs of 
differing dimensions within a common protocol. 
The simulations will address whether these results 
hold true for a larger population of logs. 

Antithetic protocol 
Antithetic sampling was introduced in connection 
with CHS and importance sampling by Van 
Deusen and Lynch (1987) as a means of reducing 
the variance of the proposed estimators. The gen- 
eral reasoning was that when subsampling a log 
for volume estimation, if more than one measure- 
ment is to be taken, it would be better to take one 
measurement near the small end and one near the 
large end, rather than taking them both nearby, 
at say, the middle (Van Deusen, 1990). This 
follows because sampling at the extremes using 
antithetic pairs introduces negative correlation 
into the variance and therefore is a variance 
reduction technique (Rubinstein, 1981, p. 135). 
When sampling measurement locations from a 
uniform probability density with random variable 
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U E [0, L], for example, the diameters sampled at 
d(zt) and d(1-  u) form an antithetic pair. The two 
protocols presented above naturally lead to a 
kind of antithetic sampling when they are com- 
bined; that is, one would take pairs of measure- 
ments by employing the large- and small-end 

I 
protocols on a given log. This is illustrated in Fig- 
ure 5 where the points p,  and p, both select the 
same antithetic pair of sampling points (d', 1') and 
(d", F'). Unlike the preceding two protocols, 
where PRS points can fall anywhere along the 
periphery of the CPRS zones, p1 and p,  are the 
only two such PRS points that select these anti- 
thetic pairs. In addition, rather than sampling 
from a-uniform density, sampling is from k u a -  
tion (1) for each of the two points. The proposed 
estimator combines the antithetic pair as a simple 
average, viz. 

Because both u' and u" are unbiased, u"' will also 
be unbiased (Rubinstein, 1981, p. 135). 

It is straightforward to envision the sampling 
surfaces ~enerated with this ~rotocol  because 

L, 

they are simply the average of large- and small- 
end surfaces taken at each respective grid cell. If 
Figures 4a and 6a are compared, for example, it 
is clear that the surface from the large-end proto- 
col will dominate that of the small-end protocol 
(Figure 7a). Likewise, comparing the variance of 
the antithetic protocol with the other two in 
Table 1 shows no gain over the small-end estima- 
tor for a log that tapers to the tip. However, as 
the small end of the log becomes more and more 
truncated, all other things being equal, so that the 
log becomes more cylindrical, the variance of the 
antithetic estimator decreases to where it is lower 
than the small-end estimator. In addition. this 
result evidently holds for logs of various lengths 
as is shown in Table 1 for a log where L = 2 m 
and dU = 0.4 m (Figure 7b). 

Finally, it is worth noting that the pairs of criti- 
cal points generated by this form of antithetic 
sampling may not always be negatively correlated. 
Referring once again to Figure 5, one can envision 
PRS points within the log's inclusion zone where 
the small- and large-end urotocols could choose 

u 

critical points on the log that are close together. 

Figure 6. Sampling surfaces for small-end pro- 
tocol using a relascope angle of Y = 45': the large 
end of the log is situated at (0, 0); L = 8 m and 
d, = 0.5 rn with (a) dU = 0 m and (b) du = 0.3 m. 

In such cases, the antithetic estimate would gain 
nothing over the small-end protocol variance- 
wise, regardless of the taper model. In this sense, 
one might think of the protocol described in this 
section as a pseudo-antithetic sampling approach, 
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Table 1: Sampling surface comparison of CPRS estimator protocols for a log with d, = 0.5 m and parabolic 
taper (r = 3); relascope angle u = 45" 

Protocol d,, (m) V (m3) TI (m3) sd(ir(x,y)) * (m3) CV(V)+ (%) max(;(x,y)) (m3) 

L = 8 m  
Large end 0 0.673 0.665 3.407 512 272.7 

0.3 1.126 1.113 3.592 323 274.1 
0.4 1.334 1.319 3.676 279 274.5 

Small end 0 0.673 0.666 0.747 112 1.7 
0.3 1.126 1.113 1.793 161 103.5 
0.4 1.334 1.319 2.657 201 179.0 

Antithetic 0 0.673 0.666 1.825 274 137.2 
0.3 1.126 1.113 2.160 194 137.9 
0.4 1.334 1.319 2.450 186 138.1 

L = 2 m  
Large end 0.4 0.333 0.329 3.382 1028 273.1 
Small end 0.4 0.333 0.329 2.673 811 183.6 
Antithetic 0.4 0.333 0.329 2.522 766 140.3 

" Surface standard deviation: sd(C(x,y))= 4- 
+Surface coefficient of variation: cv(V) = 100 x sd(~(x,~))nl'. 

which has the ~otential to realize gains in effi- " 
ciency with a little extra measurement effort when 
judiciously applied in the field. 

In general, regardless of the protocol used, the 
other log shapes given by the taper equations (4) 
will tend to generate sampling surfaces that are 
similar to the ones illustrated in the overall form. 
However, because taper can vary quite substan- 
tially between the neiloid and a fat paraboloid 
(e.g. r = 7), there will be some variation in sam- 
pling surfaces for logs with similar dimensions 
under the different taper models when compared 
for each of the estimators. 

Correction for sloped, crooked and forked logs 

At this point, the reader may object that much of 
the presentation above seems to assume straight, 
unforked logs lying on perfectly level terrain. This 
assumption, of course, is unlikely to be satisfied in 
practice, but it is not a necessary assumption for 
the correct and unbiased implementation of the 
method. What is required is that the log can be 
defined relative to a straight, unforked axis, so that 
the expectations and integrals in the development 
above are defined relative to the projection of the 
log onto that axis. In the field, that assumption can 
be satisfied exactly through a simple, unified cor- 
rection procedure. The procedure and its rationale 
follow the work of Williams et al. (2005b) closely. 

Define the log needle as the line segment within 
a convenient horizontal plane, joining the projec- 
tion of the two endpoints of the log into that 
plane; likewise, let L also be defined on that 
plane. Projection of all the measurements of the 
log onto that needle can be accomplished easily in 
the field, and corrects for sloped, crooked and 
forked logs. 

Correction for sloped logs 
Suppose that the log is straight and elevated above 
(or below) the log needle. If l' and I" are measured " 
in terms of the log needle, and the cross-sectional 
area is measured in the plane normal to the nee- 
dle (i.e. vertically), then the proofs given above 
still hold. If either d' or d" are measured with 
calipers, this does require operating the calipers 
vertically rather than perpendicular to the axis of 
the physical log. It will also typically require 
measuring more than one diameter to establish 
the cross-sectional area of the log, as a vertical 
section through a sloping log will tend to be ellip- 
tical rather than circular. 

Correction for crooked logs 
Suppose that the log is deflected away from the 
log needle by some curve or sweep. If I' and I" are 
measured in terms of the log needle, and the 
cross-sectional area is measured in the plane nor- 
mal to  the needle, then the proofs given above 
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Figure 7. Sampling surfaces for antithetic pro- 
tocol using a relascope angle of v = 45': the large 
end of the log is situated at (0, 0);  dl = 0.5 m with 
(a) L = 8 m and d,, = 0 m and (b) L = 2 m and 
dU = 0.4 m. 

%. 

still hold. This may require additional fieldwork 
to identify the critical point on the needle, which 
now may not coincide with the log, and also to 
project the plane perpendicular to  the log needle, 

onto the log to establish the location for diameter 
measurement. 

Correction for forked logs 
Suppose that the log ramifies. Given any suitable 
a priori definition of what constitutes the two 
'ends' of the log, a log needle can still be identi- 
fied. For example, the basal end of the needle 
might remain the same, but the distal end of the 
log needle could be defined as the projection of 
the furthest branch apex from the base onto the 
horizontal plane. Having defined the needle in 
this fashion, the log cross-sectional area at the 
critical point would be taken as the sum of the 
cross-sectional areas of the branches. measured 
following the protocols for sloped and crooked 
logs given above. In other words, the cross- 
sectional area of the log at the critical point is the 
sum of the cross-sectional areas of the branches 
measured in the plane normal to  the log needle 
and passing through the critical point. 

These procedures correct for slope, crookedness 
and forking exactly because the volume of the log 
equals the integral along the log needle of the log 
cross-sectional area perpendicular to the needle. 
These correction procedures merely operationalize 
the field measurements when the physical log is 
not exactly coincident with the log needle. Initial 
selection of a log with any of these conditions 
under PRS would also require the establishment of 
the needle as outlined in Gove et a!. (2002). 

Sampling surface simulations 

The simulations designed in this section seek to  
determine whether the observations concerning 
the estimator protocols based on a single log 
extend to populations of logs. Specifically, inter- 
est revolves around the protocol that will provide 
the lowest variance for a given population of logs. 
The simulations also seek confirmation that all 
estimator protocols are indeed unbiased, as was 
formally proved for the large-end estimator. The 
simulation results will hold regardless of the rela- 
scope angle used, therefore, and the angle of v = 
45" was chosen for all simulations. 

Each population consisted of a tract A with 
area A = 1 ha, that was divided into grid cells of 
size 0.15 m, providing an effective sample space of 
444 889 grid cells (relascope points). Each of three 
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Table 2: Sampling surface simulation results of relative bias, B, and standard +viation, sd(G(x,y)), for CPRS 
estimator protocols and PRS, with v = 45" for N = 50 logs; relative efficiency (E) is given in parentheses where 
applicable 

Neiloid ( r  = 1) Cone ( r  = 2) Paraboloid ( r  = 3 )  

Protocol B sd(G(x,y)) (m3) B ~ d ( f i ( x , ~ ) )  (m3) B sd(fi(x,y)) (m3) 

CPRS 
Large end 

Tip 0.989 254.5 (5.06) 0.992 292.3 (3.61) 0.994 270.7 (2.87) 
Truncated 0.994 284.8 (2.25) 0.995 362.8 (2.23) 0.995 303.1 (2.02) 

Small end 
Tip 0.993 59.0 (1.17) 0.997 86.2 (1.06) 0.998 95.0 (1.01) 
Truncated 0.996 162.7 (1.29) 0.997 204.3 (1.25) 0.997 193.8 (1.29) 
Antithetic 0.997 159.7 (1.27) 0.997 196.1 (1.20) 0.997 180.8 (1.21) 

PRS 
Tip 0.996 50.3 0.997 80.9 0.998 94.2 
Truncated 0.996 126.1 0.998 162.9 0.998 149.7 

different taper models based on equations (4) 
was used for comparison: neiloid ( r  = I), cone 
(r = 2) and paraboloid (r = 3). For each of the 
three taper models, N = 50 logs were generated in 
two sets of populations with random placement 
and orientation within the respective population. 
In the first population, all logs were allowed to 
taper to the tip. In the second, logs were randomly 
truncated to some small-end diameter 0 I dU I d,. 
The same two populations were then used for 
small- and large-end protocols, and for truncated 
logs only, the antithetic protocol. The large-end 
diameter of the logs was chosen as Uniform(0, 1) 
m, while the log length was Uniform(0.15, 6.8) 
m. In the simulations where the anithetic proto- 
col was used, it was applied only to the subsam- 
ple of logs that met the condition dU 2 0.74, based 
on the findings of the last section. 

If the true volume of the log is known, PRS is 
unbiased for volume estimation. In addition, it 
should always have a variance smaller than the 
critical point-based methods proposed here. This 
is easy to visualize because the sampling surface 
for a log under PRS resembles the union of two 
cylinders with height LAVL2 (Williams and Gove, 
2003); such a surface will always be smoother 
(lower variance) for a given population of logs 
than those generated by CPRS protocols. Because 
the true volume V of each log is known from equa- 
tion ( 5 )  and its true length L is also known, PRS 
provides a standard for comparison for the pro- 
posed CPRS methods. The interested reader may 

consult Williams and Gove (2003) for simulations 
showing how PRS performs with regard to effi- 
ciency, relative to other commonly used methods 
when sampling for CWD volume. 

The results are presented in Table 2. For each of 
the methods, the relative bias was computed as 

where the appropriate value for V is substituted 
from the simulation results for each method, 
including PRS. The variability is judged in 
terms of the simulation standard deviations 
(sd(O(x,y)) = Jvaro)) as in the individual 
log results of Table 1. In addition, the relative 
efficiency, defined as 

- sd(fi(x,y)) E =  
sd(G(x, y)) * ' 

where the denominator is with regard to PRS, is 
also given. 

It is important to note that the relative bias can 
only be exactly unity if the surface integral is com- 
puted exactly for an unbiased method. Approxi- 
mating the integral by sampling from a grid is 
analogous to approximation with a Reirnann sum. 
Therefore, for unbiased methods, the degree to 
which the statistics B depart from unity is based on 
the resolution of the sampling surface, but they 
should be close. With this in mind, it is clear that 
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all the simulations for each CPRS protocol, and 
for PRS, confirm the unbiasedness of these meth- 
ods. On the other hand, the difference in variabil- 
ity between the different protocols is striking. In 
general, the large-end protocol produces the high- 
est variability, regardless of log truncation. For all 
methods, the variability is smaller for logs that 
taper to the tip. This is undoubtedly due to the fact 
that random truncation of logs introduces larger 
differences in volume between logs, and thus pro- . duces a larger population variance. For logs that 
taper to the tip, the small-end protocol produces 
results nearly equal to PRS in terms of efficiency. 
For truncated logs, variability is 25-30 per cent 
higher than PRS. The antithetic protocol does 
indeed reduce the variance when compared with 
the large-end protocol, but the reduction is mar- 
ginal when compared with the small-end protocol. 

The simulation results are consistent across 
taper models and, because these models encom- 
pass most of the geometrical models often applied 
to logs in terms of tree sections, it is reasonable to 
expect that similar results will apply to popula- 
tions of real downed CWD in the absence of 
advanced decay. In addition, because of the simi- 
larity between the single log and population con- 
clusions, it is reasonable to expect that the results 
would hold for larger populations as well. 

Discussion and conclusions 

CPRS has been shown, both analytically and 
through simulations, to be a design-unbiased 
method for volume estimation in PRS surveys of 
downed CWD. However, unbiasedness alone is 
not necessarily beneficial in an estimator if that 
estimator has inherently high variance. The PDF 
of the CPRS estimator produces a naturally uneven 
surface, yielding high variability, most notably 
with regard to the large-end protocol. The small- 
end protocol's variance is markedly less for the 
same population of logs, but still suffers from high v 

variability when the population is highly variable 
in the sense of log sizes; adding the second anti- 
thetic measurement contributes a further small 

L reduction in variance. When all logs taper to the 
tip, the small-end protocol performs almost as 
well as PRS with known volume - i.e. it is unbiased 
and has similar variance properties. Across log 
taper models, all CPRS estimators perform worst, 

in terms ,of relative efficiency, on the population of 
neiloid-shaped logs. Fortunately, only a small 
component of tree form, in the area of butt-swell 
near the base, conforms to such models. 

The antithetic estimator protocol produced 
marginal gains in efficiency over the simple small- 
end protocol. However, if it is applied based on a 
rule such as that used in the simulations, one 
would only be using it on a portion of the logs in 
the sample. It is difficult to judge whether it would 
be worth the extra effort in practice. This cer- 
tainly depends on the form a i d  distribution of 
the log attributes in the population in question, 
and whether taking the extra measurements for a 
small decrease in variance is in line with the goals 
of the inventory. If it is important to get unbiased 
minimum variance (among extant methods) esti- 
mates of downed CWD volume, PDS should be 
used. Alternatively, some form of subsampling 
using importance sampling could be considered. 
However, in all methods, the downed material in 
question is assumed to be relatively free from 
decay. For logs in advanced stages of decay where 
deflation, crumbing and the like have altered the 
solid content and original form, none of the meth- 
ods can be applied without some degree of modi- 
fication or augmentation to arrive at true estimates 
of volume. 

Unbiasedness of the critical height method for 
standing trees has been proved in the past by the 
use of the shell integral. Attempts at using the 
shell integral for CPRS failed to show unbiased- 
ness in the simulations, even though it appeared 
that the method provided unbiased estimates 
analytically. The reasons for this are unknown, 
but the shell integral, if revisited, might provide 
a more homogenous sampling surface, and hence 
lower variance in practice. In addition, Van 
Deusen and Lynch (1987) arrived at similar con- 
clusions regarding the high variability of CHS 
when applied independently with one measure- 
ment per tree, through an analysis of sample size 
comparisons. Using a simpler version of equa- 
tions (4), they found that antithetic sampling 
dramatically reduced the sample size required 
for CHS, and therefore the variance as well. 
Because our version of antithetic sampling relies 
on the relascope and a non-uniform sampling 
PDF, our results do not show the profound 
reduction in variance associated with the tech- 
nique. In addition, our limited simulations may 
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not do justice to the antithetic approach com- 
pared with sampling many hundreds of logs on 
a larger inventory. 

Finally, while not being explored here, it was 
mentioned earlier that the mean of the CPRS PDF 
occurred at a point 2W3. This was developed in 
terms of the large-end estimator, but applies 
equally to the small-end protocol. Simple repeated 
sampling from equation (1) shows that this length 
is indeed realized on average. Thus, it could also 
provide a simplified measurement point for vol- 
ume estimation on every log under PRS. It may be 
that this is found to be similar to centroid sam- 
pling for standing trees (Wood et a[., 1990). The 
drawback to this method would be the necessity 
to locate the critical point at two-thirds the log 
length on each log with a good degree of accuracy 
in order for the method to remain unbiased. This 
would undoubtedly require the extra measure- 
ment of total log length at a minimum. However, 
if an estimate of other quantities under PRS, such 
as number of pieces or length per unit area, is 
desired for the inventory overall, total log length 
will be a required measurement regardless. 

In summary, the small-end protocol with pos- 
sible augmentation of the antithetic point on logs 
that have relatively large small-end diameters pro- 
vides a desizn-unbiased extension to the PRS 

L, 

method for the estimation of log volume. In areas 
where entire trees with excurrent shape have been 
toppled, such as large wind events, the method 
would provide an unbiased technique with excel- 
lent variance properties approaching PRS with 
known volume, and thus PDS as well (Williams 
and Gove, 2003). It is probably best applied on 
larger inventories where there would be a large 
total sample of logs, or on quick inventories where 
variance might be less of a concern. In both cases, 
its use presumes the use of PRS as the main tech- 
nique for the downed CWD inventory. Where this 
is not the case, PDS will provide a design-unbiased 
estimate of log volume with minimum variance 
among extant estimators in most practical cases. 
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