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Abstract

The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CQ,, between the atmosphere and
terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a varicty of CO; eddy flux tower sites. In this paper, we
develop a new, satellitc-based Vegetation Photosynthesis Model (VPM) to estimate the scasonal dynamics and interannual variation of GPP
of evergreen needleleaf forests. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVT), Land Surface

data from a CO;, eddy flux tower site in Howland, Maine, USA. The scasonal dynamics of GPP predicted by the VPM model agreed well
with observed GPP in 1998-2001 at the Howland Forest. These results demonstrate the potential of the satellite-driven VPM model for
scaling-up GPP of forests at the CO, flux tower sites, a key component for the study of the carbon cycle at regional and global scales.

© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The boreal fprest is the largest terrestrial biome on Earth
and is composed of a small number of plant species. Although
relatively simple in vegetation structure, boreal forests play
an important role in the global cycles of carbon, water and
nutrients as well as the climate system. Estimates of -net
primary productivity of boreal forests vary widely (Melillo et
al., 1993; Schulze et al., 1999). In recent years, a number of
field studies have used eddy covariance techniques to provide
information on seasonal dynamics and interannual variation
of net ecosystem exchange (NEE), ecosystem respiration (R)
and gross primary production (GPP) of evergreen needleleat
forests across the world (Goulden et al., 1997; Hollinger et
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al,, 1999; Law et al, 2000, 2002; Schulze et al.,, 1999).
Evergreen needleleaf forests can act as carbon sinks or carbon
sources, depending upon climate and land use history. CO,
flux data collected at flux tower sites provide invaluable
information on ecosystem processes, and can be used to
improve process-based ecosystem models (Law et al.,
2000). Eddy flux towers at forest sites provide integrated
flux measurements over large footprints that range from a few
to many hectares, depending upon tower height and weather
conditions. To scale-up CO, fluxes from flux tower sites is an
important challenge in the study of the carbon cycle at
regional and global scales.

Satellite remote sensing provides consistent and system-
atic observations of vegetation and ecosystems, and has
played an increasing role in characterization of vegetation
structure and estimation of gross primary production (GPP)
or net primary production (NPP) of forests (Behrenfeld et
al.. 2001; Field et al.. 1993, 1998; Potter et al.. 1993; Prince
& Goward, 1995; Ruimy et al., 1994, 1999: Running et al.,
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1999, 2000). These satellite-based studies have used the
light-use efficiency (LUE) approach to estimate either GPP
(Prince & Goward, 1995; Running et al., 1999, 2000) or
NPP (Field et al., 1995; Potter et al., 1993), and the
formulations of these Production Efficiency Models (PEMs)
are the following: '

GPP = ¢, x FAPAR x PAR (1)
NPP = &, x FAPAR x PAR (2)

where PAR is the incident photosynthetically active radia-
tion (MJ m™?) in a time period (day, month), FAPAR is the
fraction of PAR absorbed by vegetation canopy, and €, is the
light use efficiency (LUE, g C MI™' PAR) in GPP calcu-
lation, and €, is the light use efficiency in NPP calculation.
The time step of the PEM models ranges from daily
{Running et al., 2000) to monthly (Field et al., 1993),
dependent upon image composites of the satellite. €, or €,
is usually estimated as a function of temperature, soil
moisture and/or water vapor pressure deficit (Field et al.,
1995; Prince & Goward, 1995; Running et al., 2000).

FAPAR is closely related to Normalized Difference
Vegetation Index (NDVI), which is calculated as a normal-
ized ratio between red (p.q) and near infrared (p,;.) bands
(Tucker, 1979): :

NDVI = Prir ~ Pred (3)
Prir + Prea

In remote sensing analysis, FAPAR is usually estimated
as a linear or nonlinear function of NDVI (Prince &
Goward, 1995; Ruimy et al.. 1994; Running et al., 2000):

FAPAR = a + b x NDVI (4)

where the coefficients @ and b vary, dependent upon the
NDVI data set used by the PEM models (Prince & Goward,
1995). FAPAR is also closely related to leaf area index (LAI).
A number of process-based global NPP models do not
explicitly calculate FAPAR, but compute a leaf area index
(Ruimy etal., 1999). FAPAR can be estimated as a function of
LAJ and light extinction coefficient (k) (Ruimy et al., 1999):

FAPAR = 0.95(1 — e~*tAl (5)

These PEM models are largely based on the quantitative
LAI-FAPAR and NDVI-FAPAR relationships, and have
been applied at regional -to global scales, using monthly
NDVI data from AVHRR sensors (Field et al., 1995; Potter
et al., 1993; Prince & Goward, 1993) and SeaWiFS sensor
(Behrenteld et al, 2001). It is known that NDVI suffers
several limitations, including sensitivity to atmospheric
conditions, sensitivity to soil background. and saturation
of NDVI values in multi-layered and closed canopies. In

addition, at the canopy level, vegetation canopies are
composed of photosynthetically active vegetation (PAV,
mostly . green leaves) and non-photosynthetically active
vegetation (NPV, mostly senescent foliage, branches and
stems). NPV has a significant effect on FAPAR at the
canopy level. For example, in forests with a leaf area index
of <3.0, NPV (stem surface) increased canopy FAPAR by
10-40% (Asner et al., 1998). At the leaf level, individual
green leaves also have some proportion of NPV (e.g.,
primary/secondary/tertiary veins), dependent upon leaf age
and type. Thus, FAPAR by a forest canopy must be
partitioned into two components:

FAPAR = FAPARPAV + FAPARVPV (6)

Only the PAR absorbed by PAV (i.e., FAPARpav) is used
for photosynthesis, therefore, any model that takes the
conceptual partition of PAV and NPV of forest canopy into
consideratton is likely to improve estimation of the amount
of PAR absorbed by the forest canopy (PAV) for photosyn-
thesis and-quantification of light use efficiency (e, or €,) of
vegetation over time.

A new generation of advanced optical sensors has re-
cently come into operation, for instance, the VEGETATION
(VGT) sensor onboard the SPOT-4 satellite (launched in
March 1998) and the Moderate Resolution Imaging Spec-
troradiometer (MODIS) sensor onboard the Terra satellite
(launched in December 1999). These new sensors have
more spectral bands, in comparison to the AVHRR sensor-
that has only red and near infrared bands for vegetation
study (calculation of NDVI). The VGT sensor onboard the
SPOT-4 satellite has four spectral bands: blue (0.43-0.47
um), red (0.61-0.68 um), near infrared (NIR, 0.78-0.89
pum) and shortwave infrared (SWIR, 1.58—1.75 pm). Data
availability of these spectral bands offers an oppertunity to
develop improved vegetation indices and incorporate them
into new satellite-based models for improving estimation of
GPP of vegetation at regional to global scales.

In this study, our objective is to develop and validate a
new. satellite-based Vegetation Photosynthesis Model
(VPM) that estimates GPP of evergreen needleleaf forests
over the plant-growing season, using the improved vegeta-
tion indices that can be derived from the new generation of
advanced optical sensors (e.g., VGT). Our approach is to
combine the multi-year (1998-2001) image data from the
VGT sensor onboard the SPOT-4 satellite with CO, flux
data from an eddy flux tower site at Howland, Maine, USA.
The CO, eddy flux tower site is located near Howland,
Maine (45.20407°N and 68.74020 °W, 60-m elevation). The
vegetation of this 90-year-old evergreen needleleaf forest is
about 41% red spruce (Pinus rubens Sarg), 25% eastern
hemlock (Tsuga canadensis (L.) Carr.), 23% other conifers
and 11% hardwoods (Hollinger ¢t al., 1999). The leaf area
index (LAI) of the forest stand is about 5.3 m*/m". Plant-
growing season usually starts around mid-April ( ~ day
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100) and lasts about 180 days. Eddy flux measurements of
COs, H»0 and energy at the site have being conducted since
1996 (Hollinger et al., 1999) and is part of the AmeriFlux
network (http://public.ornl.gov/ameriflux/Data/index. cfim).
Availability of CO, flux data from a CO, flux tower site
of evergreen needleleaf forest makes it possible (1) to
evaluate the relationship between the improved vegetation
indices and photosynthetic activities of vegetation, and (2)
to assess satellite-based models that estimate the seasonal
dynamics of GPP of forests at the spatial and temporal
scales that are relatively consistent between satellite obser-
vations and flux tower measurements. Any improvement in
representation of seasonal dynamics of GPP of forests by
the satellite-based models will enrich our understanding of
net CO, exchange between the forest ecosystems and the
atmosphere over time. This study is one of many steps
towards ‘our long-term goal for development and application
of the satellite-based VPM mode!l to quantify the spatial
patterns and temporal dynamics of GPP of evergreen boreal
forests across the globe at 1-km spatial resolution.

2. A brief description of vegetation indices

A number of vegetation indices have been developed for
broad-waveband optical sensors (e.g.. Landsat, AVHRR)
over the last few decades, and can be generalized into three
categories: (1) vegetation indices that use only red and NIR
spectral bands, including NDVI; (2) vegetation indices that
use blue, red and NIR spectral bands; and (3) vegetation
indices that use NIR and SWIR spectral bands. Here we
brietly review the last two categories of vegetation indices.

2.1. Vegetation indices that use blue, red and NIR bhands

The blue band is primarily used for atmospheric correc-
tion, and has also been used in developing improved
vegetation indices that use blue, red and near infrared bands.
For instance, to account for residual atmospheric contami-
nation (e.g., aerosols) and variable soil background reflec-
tance, the Enhanced Vegetation Index (EV]) was developed
(Huete et al., 1997, 2002; Justice et al., 1998). EVI directly
normalizes the reflectance in the red band as a function of
the reflectance in the blue band (Huete et al., 1997):

. Puir ~ Pred

eVl o x Poir T (Cl X Pred G % pbluc) +L (7)
where G=2.5, C;=6, C,=7.5, and L=1 {Huete ct al,
1997). :

“EVI is linearly correlated with the green leaf arca index
(LA in crop fields, based on airbormne multispectral data
(Boegh et al., 2002). Evaluation of radiometric. and bio-
physical performance of EVI calculated from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor
indicated that EVI remained sensitive to canopy variations

(Huete et al., 2002). In an earlier study that compared VGT-
derived NDVI and EVI for Northern Asia over the period of
19982001, the results indicated that EV1 1s less sensitive to
residual atmospheric contamination due to aerosols from
extensive fires in 1998 (Xiao et al., 2003).

Significant effort and progress have been made in devel-
oping advanced vegetation indices that are optimized for
retrieval of FAPAR from individual optical sensors {Gobron
et al., 1999, 2000; Govaerts et al., 1999). Detailed informa-
tion on mathematical formulae and parameters of these
vegetation indices was given elsewhere (Gobron et al.,
2000). The implementation of these vegetation indices
requires the top-of-atmosphere (TOA) bidirectional reflec-
tance factors (BRFs) data as input data, and blue band is
used to rectify red and NIR bands (Gobron et al., 2000).
These vegetation indices have been optimized for the
Medium Resolution Imaging Spetrometer (MERIS), the
Global Imager (GLI) and the VEGETATION sensors.

2.2. Vegetation indices that use NIR and SWIR bands

In comparison to numerous studies that use red and NIR
spectral bands (e.g., in calculation of NDVI), a limited
number of studies have explored the SWIR spectral bands
(e.g., 1.6 and 2.1 pm) for vegetation study. It was reported
that the SWIR band (1.6 um) was sensitive to plant water
content (Tucker. 1980). In order to calculate leaf water
content, field and laboratory work are needed to measure
fresh weight (FW) and dry weight (DW) as well as specific
leaf area (SLA, cm™/g) of leaves. Leaf water content is
usually described by (1) foliage moisture content (FMC, %,
calculated as (FW — DW) x 100/FW, or (FW — DW) x 100/
DW) and (2) equivalent water thickness (EWT, g/em®,
calculated as (FW — DW)/Leaf Area). A number of studies
have suggested that a combination of NIR and SWIR bands
have the potential for retrieving leaf and canopy water
content (EWT, g/cmz), based on Landsat image data (Hunt
& Rock, 1989), hyperspectral image data (Gao. 1996;.
Serrano et al., 2000b) and VGT data (Ceccato et al., 2001,
2002a,b). The Moisture Stress Index (MSI), which is

-calculated as a simple ratio between SWIR (1.6 pm) and

NIR (0.82 um) spectral bands, was proposed to estimate leaf
relative water content (%) and equivalent water thickness
(EWT, g/em?) of different plant species (Hunt & Rock,
1989):

Pswir
MSI = £t (8)
Prir

The above MSI index (a simple ratio between SWIR and
NIR bands) could be used as a first approximation to
retrieve equivalent water thickness (g/cmz) at leaf level,
based on laboratory measurements, the radiative transfer
model (PROSPECT) and a sensitivity analysis {Ceccato et
al., 2001). In analyses of the 10-day composite of VGT data
that are freely available to users through the website (http://



322 X. Xiao et al. / Remote Sensing of Environment 89 (2004) 519-534

free.vgt.vito.be), another water index was calculated as the
nommalized difference between the NIR (0.78—-0.89 um) and
SWIR (1.58-1.75 pm) spectral bands {Xiao et al., 2002¢),
here it is called “Land Surface Water Index (LSWI)™:

Prir — Pswir
LSW] = ———% 9
Prir + Pswir ( )

Analyses of multi-temporal VGT data have shown that
LSWI is useful for improving classification of cropland and
forests (Xiao et al., 2002a,b,¢). This water index is similar in
mathematic formulation to the Normalized Difference Water
Index (NDWI) that uses reflectance values in the 0.86 and
1.24 um spectral bands of hyperspectral data (Gao, 1996):

NDWI = Po.ge — 124 (10)
Pogs T Pi24

Recently, Ceccato et al. (2002a,b) proposed the Global
Vegetation Moisture Index (GVMI) to retrieve equivalent
water thickness (g/m?) at canopy level, using images from
the VGT sensor:

(pnir(rcc(ilic(l) + 0. l) - (pswir + 002)

GVMI = |
(pnir(rectiﬁcd) +0. l) + (pswi, + 0.02)

(11)

where puinreciificay 18 the retlectance values of the rectified
NIR band, which are derived from a complex procedure that
involves blue spectral band and uses the apparent reflec-
tance as seen at the top-of-atmosphere (VGT-P product,
http:/fwww.vgt.vito.be) as input data (Gobron et al., 2000),
Field data collected at shrub steppe, shrub savannah, tree
savannah and woodland in Senegal (West Africa) during
19982000 were used to evaluate the potential of GVMI for
retrieval of EWT at canopy level (Ceccato et al., 2002a).
The comparison between GVMI and NDVI shows that
GVMI provides information related to canopy water content
(EWT), while NDVI provides information related to vege-
tation greenness (Ceccato et al., 2002a).

3. Description of the satellite-based Vegetation
Photosynthesis Model (VPM)

3.1. Overview of the VPM model

Based on the conceptual partition of NPV and PAV
within a canopy (see Eq. (6)), we proposed a new satel-
lite-based Vegetation Phetosynthesis” Model (VPM) for
estimation of GPP over the photosynthetically active period
of vegetation (Fig. 1):

GPP = ¢, X FAPARpsv x PAR : (12)

‘ Climate data J

CO, eddy t Surface reflectance (VGT, MODIS) I
flux tower i l

[swi | [ Bv |

N E—

GPP = (EOX Tscalarx Pscalarx wscalar) X FAPAR I’AV>< PAR

Validation
Litefature

A

Fig. 1. The schematic diagram of the Vegetation Photosynthesis Model
(VPM). EVI—Enhanced Vegetation Index; LSWI—Land Surface Water
Index: FAPARpav—the fraction of photosynthetically active radiation
(PAR) absorbed by the photosynthetic active vegetation (PAV) in the

and canopy water content, respectively; GPP-—gross primary production of
terrestrial ecosystems; &-—maximum light use efficiency (pmol COo/umol
PPFD). VGT-—VEGETATION sensor onboard the SPOT-4 satellite;
MODIS—Moderate Resolution- Imaging Spectroradiometer onboard the
NASA Terra and Aqua satellites.

where PAR is the photosynetically active radiation (umol
photosynthetic photon flux density, PPFD), and ¢ is the light
use efficiency (umol CO,/umol PPFD). Light use efficiency
(&) is affected by temperature, water, and leaf phenology:

&y = €9 X Tscatar X Wocatar X Pscalar- (13)

where &, is the apparent quantum yield or maximum light
use efficiency (umol CO,/umol PPFD), and Tiyjar, Weeatar,
and Py, are the scalars for the effects of temperature,
water and leaf phenology on light use efficiency of vegeta-
tion, respectively.

Ticatar is estimated at each time step, using the equation
developed for the Terrestrial Ecosystem Model (Raich et al.,
1991):

(T - Tmin)(T - Tmax)
[(T‘ Tmin)(T - T;nax)] - (T—‘ Topl)2

(14)

Tscnlm‘ =

where Ty Thax and T, ate minimum, maximum and
optimal temperature for photosynthetic activities, respective-
ly. It air temperature falls below 7T, Tocatar 18 s€t t0 be zero.

The effect of water on plant photosynthesis (W, u1ar) has
been estimated as a function of soil moisture and/or water
vapor pressure deficit (VPD) in a number of PEM models
(Field et al., 1995; Prince & Goward, 1993; Running et al.,
2000). For instance, in the CASA (Carnegie, Stanford,
Ames Approach) model, soil moisture was estimated using
a one-layer bucket model (Malmstrom et al., 1997). Soil
moisture represents water supply to the leaves and canopy,
and water vapor pressure deficit represents evaporative
demand in the atmosphere. Leaf and canopy water content
is  largely determined by dynamic changes of both soil
moisture and water vapor pressure deficit. As the first order
of approximation, here we proposed an alternative and
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Fig. 2. The seasonal dynamics of photosynthetically active radiation (PAR) und mean air temperature during 1998 —200! at the eddy flux tower site of Howland

Forest, Maine, USA,

1

simple approach that uses a satellite-derived water index
(see Eq. (9)) to estimate the seasonal dynamics of War

I + LSWI

1+ LSWlpay - (13)

Wiealar =

where LSWI,,« is the maximum LSWI within the plant-
growing season for individual pixels. When multi-year
LSWI data are available, we will calculate the mean LSWI
values of individual pixels over multiple years at individual
temporal points (daily, weekly or 10-day), and then select
the maximum LSWI value within the photosynthetically
active period as an estimate of LSW1,,,.

In the VPM model, P..ai.r 1S included to account for the
effect of leaf age on photosynthesis at canopy level. Leaf
age affects the seasonal patterns of photosynthetic capacity
and net ecosystem exchange of carbon in a deciduous forest
(Wilson et al., 2001). In comparing daily light use efficiency
from four CQa flux tower sites (an agriculture field, a
tallgrass prairie, a deciduous forest and a boreal forest),
the results support inclusion of parameters for cloudiness
and the phenological status of the vegetation {Turner et al.,
2003). In the VPM model, calculation of P, is dependent
upon life expectancy of leaves (deciduous versus ever-
green). For a canopy that is dominated by leaves with a
life expectancy of 1 year (one growing season, e.g., decid-
uous trees), Py 18 calculated at two different phases (note
that detailed discussion of Py .- of deciduous forests will be
presented in another paper.):

I + LSWI
Pocatar = T

During bud burst to leaf* full expansion (16)
Peatar = 1 After leaf full expansion (17)

Evergreen needleleaf trees in temperate and boreal zones
have a green canopy throughout the year, because foliage is
retained, for several growing seasons. Canopy of evergreen
needleleat forests is thus composed of green leaves at
various ages. Fixed turnover rates of foliage of evergreen
needleleaf forests at canopy level were used in some
process-based ecosystem models (Aber &-Federer, 1992;
Law et al., 2000). In this version of the VPM model,
therefore, a simple assumption of Py, is made for ever-
green needleleaf forests:
Pscalar =1 (]8)

Photosynthetic activity of vegetation canopy is in part
determined by the amount of PAR the PAV absorbs for
photosynthesis. To accurately estimate FAPARpay in forests
is a challenge to both radiative transfer modeling and field
measurements. In this version of the VPM model, FAPAR
pav Wwithin the photosynthetically active period of vegetation
is estimated as a linear function of EVI:
FAPARpay = EVI (19)

3.2. Estimation of model parameters for evergreen boreal

Jorests

The &y values vary with vegetation types, and nforma-
tion about &, for individual vegetation types can be obtained
from a survey of the literature (Ruimy et al., 1995) and/or
analysis of gross ecosystem exchange of CO, and photo-
synthetic photon flux density (PPFD) at a CO; eddy flux
tower site {Goulden et al., 1997). Estimation of the g
parameter is largely determined by the choice of either a
linear or nonlinear model (e.g., hyperbolic equation) be-

- tween GPP and incident PPFD data (generally at half-hour
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time-step) over a year (Frolking et al., 1998; Ruimy et al.,
1993, 1996):

NEE = f8 x PPFD — R (20)

ax PPFD x GEE 1
" & X PPFD + GEE ¢

NEE oy © )

where « is apparent quantum yield (as PPFD approaches to
0), and f is the slope of the linear fit.

For instance, in a review study that examined the rela-
tionship between GPP and PPFD from 126 published data

sets (Ruimy et al., 1995), it was reported that in a linear
model, GPP=0.020 X PPFD (i.e., £=0.020 umol CO,/
pmol PPFD or ~ 0.24 g C/mol PPFD), but in a nonlinear
hyperbolic function, GPP=0.044 X PPFD X 43.35/(0.044 x
PPFD +43.35) (i.e., £g=0.044 pmol CO»/umol PPFD or
~ 0.528 g C/mol PPFD). In the VPM model, g, values
derived from the hyperbolic function are used.

In order to obtain g value for the VPM model, a
literature survey was conducted to gather published infor-
mation on g for evergreen needleleaf forests, in those
publications &, values were estimated using the nonlinear
hyperbolic function (Eq. (21)). The Boreal Ecosystem—
Atmosphere Study (BOREAS) conducted CO, flux mea-

120
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Fig. 3. The seasonal dynamics of net ecosystem exchange of €O, (NEE) and gross primary production (GPP) at the eddy flux tower of Howland Forest,

Maine, USA.



X. Xiao et al. / Remote Sensing of Environment 89 (2004) 519-534 525

surement at a few evergreen needleleaf forest sites in
Canada. During 3/16/1994--10/31/1996, the eddy covari-
ance technique was used to measure net ecosystem ex-
change of CO. between the atmosphere and a black
spruce. (Picea mariana) forest in central Manitoba, Canada
{Goulden et al., 1997). The site (55.879°N, 98.484°W) is
dominated by 10-m-tall 120-year-old black spruce, with a
minor layer of shrubs and continuous feather moss. Through
examination of the relationship between GPP and incident
photosynthetically active photon flux density (PPFD), it was
reported that apparent quantum- yield for the tower site is
£=0.040 pumol CO,/umol PPFD (Goulden et al., 1997).
Similarly, an intensive field campaign (IFC) was conducted
in midsummer or peak growing season (IFC-2=July 26 to
August 8, 1994) at the P. mariana forest (old black spruce,
or OBS site, .located at 53.85°N and 105.12°W) in Canada
(Sullivan et al., 1997). Vegetation at the site consists
primarily of a P. mariana overstory (up to [2 m tall and
155 years of age) with some tamarack and Pinus banksiana
present. The apparent quantum yields calculated from the
data measured in IFC-2 were 0.04] £ 0.003 for upper
canopy and 0.035 +0.002 (umol COy/pumol PPFD) for
lower canopy, respectively (Sullivan et al., 1997). In this
study, we used g,=0.040 umol CO»/umol PPFD, or 0.48 g
C/mole PAR for evergreen needleleaf forest (Goulden et al.,
1997). The £,=0.040 pmol COZ/umol PPFD value was also
used in the 3-PG model that uses leaf area index to calculate
FAPAR of a Pinus ponderosa forest (Law et al., 2000). In
the standard MODIS-based GPP/NPP algorithm (MOD17)
that uses NDVI to calculate FAPAR (Running et al., 1999,
2000), the g, value of evergreen needleleaf forest is 1.008 g
C/MIJ (approximately 0.46—0.49 g C/mol PPFD), very close

to the 0.48 g C/mol PPFD used here from a boreal forest
tower site in Canada (Goulden et al., 1997), based on an
approximate conversion of 2.05-2.17 between MJ (10® J)
and mol PPFD (Aber et al., 1996; Weiss & Norman, 19853).
In calculation of Tyur (see Eq. (14)), Tiins Topt and Trmax
values vary among different vegetation types (Aber &
Federer, 1992; Raich et al,, 1991). For evergreen needleleaf
forest, we use 0, 20 and 40 °C for Tin, Topr and Ty,
respectively (Aber & Federer, 1992). Photosynthesis of
conifers in temperate to boreal zones is limited by low
temperatures (DeLucia. & Smith, 1987). To better capture
the effect of air temperature, in calculation of T, instead
of using the daily mean air temperature that is calculated as
the average value between daily maximum temperature
(generally daytime) and daily minimum temperature (night
time), we used the average daytime temperature, which was
calculated ‘as the average between daily mean temperature
and daily maximum temperature (Aber & Federer, 1992).

4. Site-specific data for simulation and validation of the
VPM model

4.1. Description of site-specific field data

Daily climate (maximum/minimum temperature, precip-
itation) and photosynthetically active radiation (mol/day
PPFD) data during 1996--2001 at Howlapd Forest were
available for this study. The annual mean air temperature
during 19962001 was about 6.7 °C, while the annual
mean daytime air temperature during 1996—-2001 was about
9.2 °C. In order to be consistent with the 10-day composite
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Fig. 4. The seasonal dynamics of surface reflectance values of four spectral bands of VEGETATION sensor during 19982001 at the eddy flux tower site of
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satellite images we used (see Section 3.2), we calculated the
10-day mean temperature from the daily temperature data,
and the 10-day sum of PAR from the daily PAR data,
respectively (Fig. 2).

Daily flux data of NEE, GPP and ecosystem respiration
(R) at Howland Forest during 19962001 were generated
from the half-hourly flux data. Half-hourly values were
calculated from the covariance of the fluctuations in vertical
wind speed and CO, concentration measured at 5 Hz
(Hollinger et al., 1999). Half-hourly flux values were
excluded from further analysis if the wind speed was below
0.5 ms™ ', sensor variance was excessive, rain or snow was
falling, for incomplete half-hour sample periods, or instru-
ment malfunction. At night flux values were excluding from
further analysis if the friction velocity (u*) was below a
threshold of 0.25. To obtain annual estimates of CO,
exchange, values missing from the half-hourly record of
annual NEE were modeled by combining estimates of
canopy photosynthesis and nocturnal respiration. Daytime
CO, exchange rates were obtained from Michaelis—Menten
models of PPFD with coefficients fitted on a monthly basis.
Missing nocturnal CO, exchange values were obtained from
second order Fourier regressions between Julian day and
nocturnal respiration. Filled half-hourly NEE data were used
to estimate respiration and GPP in the following way. All
data points with PAR values less than 5 pmol m™> s~ ' were
used to estimate dark respiration rate. For each year, all
“dark” NEE values were regressed against measured soil
temperature. The resulting regression equation was then
used with measured soil temperatures to predict respiration
during “light” periods (PAR>5 pmol m~? s~ ). GPP was
then estimated as NEE minus estimated respiration for all
“light” periods (using convention of opposite signs for GPP
and respiration). We calculated the 10-day sums of GPP and
NEE from the daily GPP and NEE data, in order to be
consistent with the 10-day composite satellite images we
vsed (Fig. 3).

4.2. Description of images from the VEGETATION sensor

We used 10-day composite images from the VEGETA-
TION (VGT) optical sensor onboard the SPOT-4 satellite
that. was launched in March 1998. The VGT sensor
provides daily images for the globe at I-km spatial
resolution. Standard 10-day synthetic products (VGT-S10)
are generated by selecting a pixel with the maximum
Normalized Difference Vegetation Index (NDVI) value in
a 10-day period, and are freely available to the public
(http://free.vgt.vito.be). There are three 10-day composites
within a month: days 1--10, 11-20, and 21 to the end of
month. We acquired the VGT-S10 data over the period of

Details on methods for pre-processing and calculation of
vegetation indices from VGT-S10 data were presented
elsewhere (Xiao et al., 2002¢, 2003). In this study, we
extracted spectral bands from one 1-km pixel that covers

the eddy flux tower site at Howland Forest (Fig. 4), based
on the geographical information (latitude and longitude) of
the tower, and then calculated vegetation indices (Fig. 5). In
order to estimate LSWI,,.. for the Howland Forest site, we
calculated the mean seasonal cycle of LSWI for all 10-day
periods in the 4-year data set (1998—2001). The resulting
mean seasonal data at the 10-day interval represents a
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Fig. 5. The seasonal dynamics of vegetation indices during 1998—-2001 at
the eddy flux tower site of Howland Forest, Maine, USA.
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“typical year”, and we then selected the maximum LSWI
value (0.41; July 21-31) within April 1-November 10 as an
estimate of LSWI,,,o, (i.e., LSWI .. =0.41).

5. Results

3.1. Seasonal dynamics of EVI and NDVI for evergreen
needieleaf forest

The seasonal dynamics of EVI differs from that of
NDVI during late April—early November in terms of both
magmitude and phase (Fig. 5). During summer (June, July
and August) of 1998-2001, the maximum NDVI valie

than the maximum EVI values (in the order of ~ 0.5).
When calculating FAPAR using LAI for the Howland
Forest site (see Eq. (5), with k=0.5, LAl=5.3 m’/m?),
the resultant FAPAR is about 0.88. There were relatively
large differences between NDVI and EVI over the plant-
growing season at 10-day interval in 1998-2001 (Figs. 3
and 6).

During the plant-growing season, EVI reached its peak in
early summer and then declined gradually (Figs. 5 and 6).
The observed decrease of EVI after reaching its peak in
early summer may be caused by many factors, including
complex interactions between atmosphere and leaf/canopy
as well as leaf optical property. In addition to the correction
term (6 X preg — 7.5 X ppe) in the EVI equation, which
corrects residual atmospheric contamination above the can-
opy, changes in leaf properties may also contribute to the
decline of EVI over time. Evergreen needleleaf trees consist
of leaves with various ages of years. As a needleleaf gets
old, it changes in its size (e.g., leaf thickness), dry weight,
chlorophyll content and nitrogen content. Based on a
comparative assessment of needle anatomy of red spruce
(Rock et al., 1994), needleleaf thickness of 1st year leaves
(726 *+ 44 pm) is about 11% smaller than that of 2nd year
leaves (803 + 46 um), and there is less mtercellular air space
(%) in the 2nd year leaves. Although chlorophyll and
nitrogen concentrations (mg/g DW) may be relatively stable
over seasons, an increase in leaf thickness results in a larger
volume of needleleaf, which leads to dilution effect of
chlorophyll and nitrogen in the needleleaf (mg/cm®). The
changes in leaf size (e.g., thickness), intercellular air space,
dry weight, and the dilution effect might together affect
reflectance, transmittance and absorption of needleleaf, for
instance, the 2nd year needles of red spruce have slightly
higher reflectance values in blue band but little change of
reflectance values in red band, in comparison to the first-
year needles (Rock et al., [994). The adjusting factor (L=1)
for soil and vegetation background in the correction term
(6 X Prea — 7.5 X poe +L) of EVI equation also plays a
large role-in the seasonal dynamics of EVI. After reaching
its peak in early summer, NIR values declined gradually,
resulting in lower EVI values (Fig. 4).
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Fig. 6. A comparison between vegetation indices and gross primary
production (GPP) at the eddy flux tower site of Howland Forest, Maine,
USA. The data within the period of April 1 to November 10 during 1998
2001 were used.. The simple linear regression models between GPP and
EVI or NDVI have a P<0.0001.

The comparisons between vegetation indices (EVI,
NDVI) and GPP show that the seasonal dynamics of EVI
followed those of GPP better than NDVT in terms of phase
and amplitude of GPP (Fig. 6). When using all the obser-
vations within April 1 to November 10 during 1998--2001,
EVI has a stronger linear relationship with GPP than NDVI
(Fig. 6). The NDVI curve seems to be out of phase with
GPP in the early and late part of the plant-growing season.
After its peak in early summer, EVI gradually declined over
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Table 1

Time-integrated sums of gross primary production (g C/m®, GPP),
photosynthetically active radiation (mol/m?, PAR), and precipitation (mm,
PPT) at Howland Fprest, Maine, USA

Year Tower data VPM model  PAR and climate
GPPoys (112 GPPobs a1y GPPpea a1y PAR4_y1 PPTy_y;

1998 1418 1285 1171 7108 386
1999 1430 1262 1227 7578 591
2000 1514 1384 1102 6858 527
2001 1506 1379 1253 7736 393

GPPys (112 i the obser\;ed GPP from January to December, GPPys (4.
11y GPPped 4~ 11 PARy .y and PPT,_y; are the observed GPP, predicted
GPP, PAR and PPT over the period of April T to November 10, respectively.

late summer and fall seasons while NDVT had little change
during the same period (Fig. 6).

5.2, Seasonal dvnamics of LSWI for evergreen needleleaf

Jorest

Among the three vegetation indices (LSWI, EVI, and
NDVI), the seasonal dynamics LSWI is unique and charac-
terized by a “spring trough” and a “fall trough™ (Fig. 5). At
Howland Forest site, forest stands in the winter and early
spring is largely composed of snow, wet soil and vegetation.
A snow pack of up to 2 m could exist from December to
March. Snow has much higher reflectance in visible and
near infrared bands, in comparison to vegetation. The high
LSWI values in winter and early spring are attributed to
snow cover in the forest stands. As snow melted in late
spring, LSWI declined. The 10-day periods that had mini-
mum LSWI in spring season were May {10 (1998), April
11-20 (1999), April 1-10 (2000) and May 1-10 (2001),

0.8

respectively. The “spring trough” corresponds to the begin-
ning of photosynthetically active period of evergreen nee-
dleleaf forest. LSWT increased through spring and reached
its peak in late July. The 10-day periods that have minimum
LSWI in fall season were November 110 (1998), October
2131 (1999), November 1-10 (2000) and October 11-20
(2001). The “fall trough” corresponds to the ending of
photosynthetically active period. Seasonally integrated
GPP over the pertod of April | to November 10 accounts
for 91% (1998), 88% (1999), 91% (2000) and 92% (2001)
of the annnally integrated GPP from January 1 to December
31, respectively (Table 1). The “spring trough™ and “fall
trough” ‘of LSWI time series within a year were also
observed in an earlier study that examined multi-temporal
LSWI data for deciduous broadleaf forests and evergreen
needleleaf forests in Northeastern China (Xiao et al., 2002¢).

LSWI time series data in 1998--2001 had distinct sea-
sonal dynamics within the plant-growing season (Fig. 5).
We also calculated the Moisture Stress Index (MSI, see Eq.
(8)) for all 10-day composites of VGT data in 1998-2001
and the comparison between MSI and LSWI (Fig. 7) shows
that there is a close relationship between MSI and LSWI for
evergreen needleleaf forest at Howland Forest site. The
results from a modeling study that used the PROSPECT
radiative transfer model confirmed the relationship between
equivalent water thickness (EWT, g/cm2) and the MSI, and
MSI could therefore be used as a- first approximation to
retrieve vegetation water content at leaf leyel (Ceccato et al.,
2001). At canopy level, EWT ynopy (g/m?) is a product of
EWTeur (&/m?) and leaf area index (LAI, m*/m®) (Ceccato
et al.,, 2002b). No field measurements of leaf and canopy
water content at-Howland Forest site during 1998-2001
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Fig. 7. A comparison between the Land Surface Water Index (LSWI) and Moisture Stress Index (MS1) during 19982001 at the eddy flux tower site of

Howland Forest, Maine, USA,
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were available for comparison between LSWI and vegeta-
tion water content. However, field sampling of fresh weight
(FW) and dry weight (DW) of spruce and hemlock needles
at Howland Forest site were conducted on six dates (5/19, 6/
6, 7/9, 7/16, 8/7, 9/11) in 2002. Foliage moisture content
(FMC, %) at Howland Forest was calculated using fresh
weight (FW) and dry weight (DW) of leaves (=100 x
(FW = DW)/FW). Because no field measurements of spe-
cific leaf weight (SLW, g/cm?) and leaf area index (LAI)
were conducted on those sampling dates in 2002, we cannot
accurately calculate EWT on those sampling dates. Unlike
the grassland and savannah vegetation that have large
seasonal changes in SLW and LAI over the plant-growing
season (Ceccato et al., 2002a), mature stands of evergreen

529

needleleaf forests have only slightly changes in LAI and
SLW over the plant-growing season, and therefore, single
LAI and SLW values were often used in estimation of GPP
of evergreen needleleaf forests by some - process-based
ecosystem models (Aber & Federer, 1992; Law et al,
2000). As a simple approximation, we used LA[=5.3 m%/
m” and SLW =280 g/m* (Aber & Federer, 1992) to estimate
EWT of evergreen needleleaf forest for the six sampling
dates at Howland site (Fig. 8), and the resultant EWT varied
from 0.018 g/em?® (5/19/2002) to 0.048 g/cm” (7/9/2002),
within the EWT range reported in a study that examined the
relationship between MSI and EWT (Ceccato et al., 2001).
The temporal dynamics of LSWI within the plant-growing
season at the Howland site are sensitive to changes of FMC
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and EWT in 2002 (Fig. 8). For future field work at the
Howland site, additional field measurement of SLW and
LAI should be carried out together with measurements of
foliage fresh weight and dry weight, which would lead to
improve retrieval of EWT through satellite-based water
indices, as demonstrated in recent studies (Ceccato et al.,
2001, 2002a,b). As suggested by the limited field data of
FMC in 2002 (Fig. 8) and the close relationship between
LSWI and MSI during 1998~2001 (Fig. 7) at the Howland
site, LSWI might be a useful indicator for canopy water
content of evergreen needleleaf forest.

3.3. Seasonal dynamics of predicted CO,; fluxes from the
VPM model

The VPM model was run using the site-specific data of
temperature, PAR and vegetation indices in 1998-2001.
The seasonal dynamics of predicted GPP (GPP,.q) from the
VPM model was compared with the observed GPP (GPP,,)
data at 10-day interval over the period of April | -Novem-
ber 10 (Fig. 9). The seasonal dynamics of GPP,.q over the
plant-growing season agreed reasonably well with those of
GPP,ps. The simple linear regression model also shows a
good agreement between GPPp.q and GPP.y, during the
plant-growing season in 1998-2001 (Fig. 10). Seasonally
integrated GPPpy (g C/m?®) over the period of April 1 to
November 10 is.lower than seasonally integrated GPP,,,
ranging from —20% in 2000 to — 3% in 1999 (Table 1).
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6. Discussions

The ‘multi-year simulations of the VPM model have
shown that in general, there is a good agreement between
GPPq and GPP,, over the photosynthetically active
period during 1998-2001. However, there still exist large
differences between GPP,, and GPP,.q4 in a few 10-day
periods (Fig. 9), for instance, smaller GPP,,.q in early April,
and October—November during 1998-2000. Those . large
discrepancies between GPPyns and GPPq may be attrib-
uted to three sources of errors. The first source is the
sensitivity of the VPM model to PAR and temperature.
Air temperature in October—November is relatively low,
Ticalar may be over-corrected (smaller values), resulting in
lower light use efficiency (g). Selection of T, is likely to
have some impact on Ty, particularly in both early spring
and late fall seasons. In this study, we used 7T,;,=0 °C
{Aber & Federer, 1992), while another process-based eco-
system model used Tp,,=—2.0 °C for temperate forest
{Raich et al., 1991). The second source is the error (over-
estimation or underestimation) of observed GPP (GPP,y,).
GPP,,, is calculated from field-measured NEE (NEE,.)
and ecosystem respiration (Ry,y and Ryighe): NEEps= GP-
PPobs — (Rday T Ruigne). For a given amount of NEE as
measured by the eddy-covariance method, an error in
estimation of Ry,y would result in an error in estimation of
GPP. The two major steps that must be taken to derive GPP
are the gap filling of NEE and estimation of daytime
ecosystem respiration. Both of these steps require subjective
decisions. and are currently the subject of a great deal of
discussion (Falge et al., 2001ab). The third source is the
time-series data of vegetation indices derived from satellite
images. We used the 10-day VGT composites that have no
BRDF correction or normalization, and thus, the effect of
angular geometry on surface reflectance and vegetation
indices remained. The NDVI-based compositing method
used to generate the 10-day composite VGT image may
also affect the time-series data of vegetation indices (EVI
and LSWI). Use of daily cloud-free VGT data may improve
prediction of GPP by the VPM model. Further investiga-

tions are needed to quantify the relative role of individual -

sources of error in evaluation of the VPM model using CO,
flux data from tlux tower sites.

In the VPM model, we propose two simple but inno-
vative ideas that could result in significant improvement in
estimating seasonal dynamics of gross primary production
of evergreen needleleaf forests at large spatial scales. The
first hypothesis in the VPM model is to use an improved
vegetation index (e.g., EVI in this study) to estimate the
fraction of PAR absorbed by photosynthetically active
vegetation (PAV) for photosynthesis (FAPARpay), which
clearly differ from the other PEM models that use NDVI to
estimate FAPAR (Potter et al., 1993; Prince & Goward,
1995: Running et al.. 2000). Quantitative partition of
vegetation canopy intoe PAV and NPV components, and
consequently partition of FAPAR into FAPARpay and

FAPARypy are important, and a laboratory-based study
was conducted to estimate canopy photosynthetic and non-
photosynthetic components from spectral transmittance
(Serrano et al., 2000a). EVI is a semi-empirical mathe-
matic transformation of observed reflectance from individ-
ual spectral bands (blue, red and NIR) of optical sensors
(Huete et al., 2002). The seasonal dynamics of EVI agreed
well with the observed GPP of evergreen needleleaf forest
in 1998-2001, but NDVI had poor correlation with GPP
of evergreen needleleaf forest during the plant-growing
season (Fig. 6). Another study also reported that canopy
NDVI did not correlated with leaf net CO- uptake of
mature evergreen chaparral shrubs in 19981999 (Stylin-
ski et al., 2002). One interpretation of the observed
decrease of EVI during late summer and fall seasons is
that less amount of PAR is absorbed by the PAV for
photosynthesis due to the aging process of leaves (possibly
an increase of NPV within leaves, changes in leaf structure
and pigments). Ongoing measurements in the California
chaparral suggest that evergreen shrubs undergo large
seasonal changes in their leaf carotenoid/chlorophyll ratios
(Sims & Gamon, 2002). More field and laboratory studies
across leaf, canopy and landscape levels are needed to
better understand and quantify the relationship between
improved vegetation indices (e.g., EVI) and FAPARpy of
forests in the plant-growing season. In addition, progress

‘has recently been made in using radiative transfer model-

ing approach to develop advanced vegetation indices for
estimation of FAPAR, using the top-of-atmosphere (TOA)
reflectance data. from the VGT sensor (Gobron et al.,
2000), When the TOA reflectance data from the VGT
sensor become freely available to users, it will be of
interest to compare those advanced vegetation indices
(Gobron et al., 2000) with the semi-empirical EVI, using
CO, flux data from the flux tower sites.

The second hypothesis in the VPM model is to use a
satellite-based water index for estimating the water scalar
(Wecalar) In calculation of light use efficiency (&). This
alternative approach differs from other PEM models that
use soil moisture and/or water vapor pressure deficit to
adjust the water scalar (Wy.q,,) in calculation of light use
efficiency (¢) (Field et al., 1993; Prince & Goward, 1995;
Running et al., 2000). To what degree canopy water content
can be retrieved from satellite images is an important
research question for remote sensing science (Champagne
et al., 2003; Penuelas et al., 1997; Sims & Gamon, 2003).
While the best wavelength for prediction of canopy water
content from ground-based data (no atmospheric interfer-
ence) were 960 and 1180 nm, the best wavelength for
satellite remote sensing of canopy water content (with
atmospheric interference) would be 1150--1260 and
15201540 nm (Sims & Gamon, 2003). The availability
of time-series data of SWIR :and NIR bands from the new
generation of optical sensors (e.g., VGT, MODIS) offers
new opportunity for quantifying canopy water content at
large spatial scales through both the vegetation indices
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approach’ (Ceccato et al., 2002b) and the radiative transfer
modeling approach (Zarco-Tejada et al,, 2003). Earlier
studies have shown that the Moisture Stress Index (MSI)
and the Global Vegetation Moisture Index (VGMI) are
sensitive to changes in equivalent water thickness (g/cm?)
at leaf and canopy levels (Ceccato et al., 2001, 2002a,b;
Hunt & Rock, 1989). A water index calculated as a
normalized difference between MODIS band 6 (1628-
1652 nm) and band 2 (841-876 nm) was compared to in
situ top layer soil moisture measurement from the semiarid.
Senegal and the results showed a strong correlation between
the water index and soil moisture in 200! (Fensholt &
Sandhol, 2003). The preliminary comparison between
LSWI and foliage moisture content of evergreen needleleaf
forest at Howland Forest; Maine (Fig. 8) has shown the
seasonal changes of leaf water content and sensitivity of
LSWI in the plant-growing season. More fieldwork are
needed to collect multiple-year data of leaf and canopy
water content of evergreen needleleaf forests over the plant-
growing season, in support of the effort to retrieve canopy
water content through both the empirical and radiative
transter modeling approaches. In addition to improving
quantification of the accuracy, adequacy and precision of
water indices (e.g., LSWI), more field and laboratory work
are also needed to study the effect of leaf and canopy water
content on photosynthesis of evergreen needleleaf forests,
so that our hypothesis about the relationship between leaf
water content and photosynthesis in the VPM model could
be fully tested at the canopy level and over the plant-
growing season. '

7. Summary

The Howland Forest site is representative of an ecotonal
boreal-northern hardwood transitional forest (Hollinger et
al., 1999). The eddy covariance measurements have shown
that evergreen needleleaf forest ‘at the site had distinct
seasonal dynamics and moderate interannual variation in

water vapor exchange at Howland Forest due to climate
variation are similar to those of other spruce forests (Goul-
den et al., 1997; Hollinger et al., 1999). The satellite-based
VPM model uses two improved vegetation indices (EVI and
LSWI) that can be generated only from the néw generation
of optical sensors (e.g., VGT), which has the potential to
provide major improvement over the current satellite-based
Production Efficiency Models that only employ NDVI. The
VPM model is capable of tracking seasonal dynamics and
interannual variations in GPP of evergreen needleleaf forest
at a sub-monthly (10-day in this study) temporal resolution.
Additional studies are needed to continue validation of the
VPM model across various forest tower sites, that is, cross-
biome comparison and cross-site comparison within a
biome type. Calculation of GPP is the first step in the study
of carbon cycle of terrestrial ecosystems. Our progress in

satellite-based modeling of GPP may have significant
implications on the study of carbon cycle processes of
evergreen needleleaf forests in both temperate and boreal
zones. As the VGT sensor provides daily images of the
globe, there is a potential to use the VPM model and climate
data (temperature and PAR) to quantify the spatial pattemns
and temporal dynamics of GPP of boreal forests at 1-km
spatial resolution.
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