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ABSTRACT. Spatial modeling using GIS-based predictor layers often requires that extraneous 
predictors be culled before conducting analysis. In some cases, using extraneous predictor layers 
might improve model accuracy but at the expense of increasing complexity and interpretability. 
In other cases, using extraneous layers can dilute the relationship between predictors and target 
variables that the modeling technique seeks to exploit. The current study seeks an automated 
method whereby a ranking of potential predictor data can be obtained so that the researcher can 
quantitatively justify including or excluding certain predictors. In our example, we seek to 
determine the relative strength of the relationship between various Landsat ETM satellite spectral 
layers and total basal area on 380 study plots established by the USDA Forest Service's Forest 
Inventory and Analysis unit. 
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Introduction 
The USDA Forest Service's Forest Inventory and Analysis unit (FIA) collects information fiom 
ground plots, summarizes this information, and produces statistical and analytical reports that 
document the quantity, distribution, composition and health of the nation's forests. In order to 
accomplish these tasks, FIA uses spatial modeling methods. Many of these spatial modeling 
techniques require that both the target variables (e.g., basal area) and the predictor dataset (e.g., 
satellite images, GIs data) be prepared before analysis by culling extraneous data and 
eliminating outliers. 

Several steps have been used to eliminate extraneous predictor data and reduce collinearity 
among the predictors. For example, summary statistical analyses and scatterplot analysis have 
been used to identify high correlations among predictor data and weak correlations between 
predictor and target data (Lister et al. In Press). This process is cumbersome when there are 
numerous predictor layers, and is difficult to perform objectively. Also, simple bivariate 
scatterplots or correlation coefficients do not reveal information about multidimensional 
relationships; certain relationships in the data might be mediated by the presence of other data in 
the model. 

Principal components analysis has been used to reduce data redundancy by creating new 
variables from a linear combination of input layers (Lister et al. In Press; McGarigal et al. 2000). 
These new variables are orthogonal to each other and describe axes of maximum variation of the 
predictor dataset as a whole. A disadvantage of using this approach is that these new variables 
only incorporate information on the suite of predictor data layers but not information on the 
relationship between the predictors and the target data. Furthermore, it is difficult to attach 
biological meaning to the principal components. 



Linear modeling approaches, for example canonical correlation analysis or multiple regression, 
incorporate information on the relationships between the predictor and target data. While subject 
to various limitations described elsewhere (e.g., Montgomery and Peck 1982), a regression-based 
approach is a convenient and easily understood method for identifying predictor variables that 
help describe variation in the target data. Traditionally, stepwise, forward and backward 
selection methods have been used to build these linear models. However, with such approaches, 
as a model is built, the inclusion of a certain variable might preclude the later inclusion of 
another predictor variable with a strong relationship with the target data. In some cases this is 
desirable, as including collinear predictors in a regression model not only affects the stability of 
the parameter estimates (Draper and Smith 198 l), but needlessly adds to the complexity of the 
model and influences the interpretation of its standard error. 

However, there are spatial modeling techniques for which highly correlated predictor variables 
might be beneficial. For example, in a regression tree context, two collinear variables might have 
different relationships within different regions of the target data's distribution, so it might be 
beneficial to make both variables accessible to the modeling procedure. For remote sensing, it is 
clearly advantageous to have a mature understanding of the multivariate interactions between 
predictor and target data. Selecting variables for inclusion in models based on traditional 
stepwise, forward, and backward selection methods severely limits one's understanding of these 
multivariate interactions because the typical result of these model building exercises is only one 
or a small number of models. 

We recommend an approach that is an adaptation of the all-subsets method and is described by 
Shtatland et al. (2001). Every combination of predictor data layers is assessed in a model, and for 
each model, fit statistics and parameter estimates are stored as rows in a database. This database 
can be summarized to identify variables that appear most frequently in models deemed "good" 
with respect to a particular fit criterion. We present an example of the method using Landsat 
imagery and FIA plot data, and discuss the benefits and limitations of this approach. 

Methods 
Data were collected using methods outlined in USDA Forest Service (2000)'. The total basal 
area of all species of trees and saplings was computed on all 380 FIA plots that were 100-percent 
forested (Figure 1). The pixel values for three seasons of six band Landsat ETM+ imagery 
(spring, leaf on (I-on) and leaf off (1-off) bands 1-6) were obtained from the location beneath the 
center subplot of the FIA plots and assembled in a database that, along with basal-area values for 
the plots (the target variable), made up the modeling data set. Both the plot data and the Landsat 
images were acquired between 1999 and 2001. All variables' distributions were assessed visually 
for normality and transformations were applied as appropriate. 

I USDA Forest Service. 2000. Forest inventory and analysis national core field guide, volume 1: Field data 
collection procedures for phase 2 plots, version 1.4. USDA Forest Service, Internal report. On file at USDA Forest 
Service, Washington Office, Forest Inventory and Analysis, Washington, D.C. 



Figure 1. The 380 FIA study plots in New Jersey, Delaware, Maryland, and Pennsylvania. 

Linear models of every combination of the 18 predictor layers (2'"r 262,144 combinations) 
were produced using ordinary least-squares regression (OLS) using S A S ~  statistical software 
(SAS Institute 1999). The parameter estimates and other information criteria (Akaike's 
Iinformation Criterion (AIC), R2 adjusted for degrees of freedom of the model (~*d,), Mallow's 
Cp Index (Cp), Schwarz' Bayesian Information Criterion (SBC) and Root Mean Square Error 
(RMSE)) were computed using standard methods (SAS Institute 1999) and stored in a database 
in which each row represented information for one of the 262,144 models. This database was 
summarized both graphically and in tabular format to depict the relationships between number of 
variables in the model and the Rzadj, as well as information on the frequency of occurrence of 
each of the 18 layers in models that were deemed to be relatively "good" (R2adj > 0.3) after the 
data summary was examined. We also determined the frequency of occurrence of each variable 
in models with 8 to 12 variables and with all parameter estimates that were significant at the 0.1 
level. Forward (with all variables being forced into the model) and backward (with all but one 
variables being forced out) selection methods were then applied to the dataset for comparison 
purposes. 

Results and Discussion 
The frequency distributions of the ~~d~ values for each category of model complexity are 
depicted as a series of box and whisker plots in Figure 2. As more variables are included in the 
models, the mean  ad^ follows an expected pattern of increasing and then leveling off with 
increasing model complexity. This occurs because certain predictor layers explain more of the 
variation in the target variable than others, and once that variation is explained by including 
those dominant predictors, smaller gains in explanatory power are gained with the addition of the 
less dominant predictors. 

The use of trade, firm, or corporation names in this publication is for the information and convenience of the 
reader. Such use does not constitute an official endorsement or approval by the USDA or the Forest Service of any 
product or service to the exclusion of others that may be suitable. 
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Figure 2. Relationship between complexity category and the distribution of ~ ~ , d ~  values. The 
wide box represents the interquartile range (IQR) for each distribution. The length of the 
whiskers (thinner bars) is 1.5 times the IQR or the difference between the 2Eith (751h) percentile 
and the lowest (highest) value, whichever is smaller. Isolated dots represent values beyond the 
whiskers. 

A useful feature of graphical depiction of model complexity vs. model fit is that one can quickly 
assess how different levels of complexity create a broad distribution of model-fit statistics. This 
suggests that a single model or a small number of models that we might have obtained resulting 
from any combination of frontward, backward or stepwise regression would have been 
inadequate if the goal was to understand the variability of model fit with respect to model 
complexity, and of model composition for a given level of goodness of fit. 

Figure 3 shows how other information indices change along with increasing model complexity. 
On average, the other information indices (which were standardized for comparison) show the 
same pattern as ~~d~ -- beyond about eight variable models, the information criteria no longer 
show large changes, suggesting that the most efficient model contains fewer than eight variables. 
This information can help one construct an efficient linear model using these predictor data if 
this is the goal. Although Figure 2 shows the average information index of all models with a 
given number of variables included, the same model complexity vs. fit assessment can be made 
using stepwise procedures to help guide the choice of model. 
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Figure 3. Relationship between model complexity and average values for several information 
criteria. Averages were computed across all possible combinations of models for each level of 
complexity. 

Figure 4 depicts the frequency of inclusion of each of the 18 input variables in the "good" 
models. The relative heights of the different variables' bars generally remain constant across all 
levels of model complexity, indicating that the popular variables within the group of models with 
~ ~ , d ~  > 0.3 remain popular across different combinations of input variables -- their popularity is 
not an artifact of asiecific configuration of input variables. 
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Figure 4. Frequency of inclusion of each of the input layers in the models with an R~~~~ > 0.3. 
The variable name convention is: sp (spring), lof (leaf off), Ion (leaf on) - bands 1-6. Note that 
the relative heights of the bars generally remain the same across all categories of model size. 

An assessment of Figure 2 led us to arbitrarily define a good model as one yielding an ~~d~ of 
0.3 or greater. On the basis of our assessment of Figures 2 and 3, we chose to more closely 



examine models with 8 to 12 variables. We call this the efficiency threshold, or the range of 
model complexity within which diminishing returns were obtained by adding extra variables. 
Figure 5 is an extract of the data from complexity categories 8 to 12, and is arranged to allow a 
quick visual assessment of the ranking of the popularity of variables included in the suite of good 
models and near the efficiency threshold. It shows all of the models (left axis), and only models 
for which all parameter estimates are significant at the 0.1 level (right axis). Table 1 shows the 
ranks of the variables fiom three variable ranking methods -- forward, backward, and all-subset 
(using only models with significant parameter estimates). The forward and backward methods 
ranked the variables in order of inclusion or duration of retention, respectively, in the model. 

El all models 
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parameter estimates 

Figure 5. Frequency with which each input layer occurs in models with an R*,~, > 0.3 and 8 to 
12 variables. The variable name convention is: sp (spring), lof (leaf off), Ion (leaf on) - bands 1- 
6. On the left axis, the scale represents the range of values for all models, and on the right side, 
the scale represents the range of values for models with all significant parameter estimates. 

The methods yield similar results with a notable exception. Leaf-on band 6 (10116) was ranked 
high in the forward selection process but low in the backward and all-subset methods. The 
forward selection process included 1-on5 early in the process; since the Pearson's correlation 
between 1-0115 and 1-on6 is high (r=0.81, p<.0001), adding 1-on6 after 1-on5 explained only a 
small amount of extra variation in the dataset, so it appeared low in the ranking. 

This situation illustrates the primary advantage of the all-subsets method -- one is not limited to a 
static ranking of variables with respect to their inclusion in a model via a stepwise selection 
procedure. Results from the latter procedure can be ambiguous and are highly influenced by the 
covariance structure of the predictor data layers (Draper and Smith 1981). Also, information on 
variables that nearly were included at each step generally is not available, nor is there a 
quantitative way to rank variables with respect to the frequency of their inclusion in a set of 
models with desirable characteristics. 



Table 1. Ranking of the predictor variables in descending order of importance based on the all- 
subset (only models with significant parameter estimates), backward, and forward selection 
procedures. 

All 
Subset Backward Forward 
1-on5 1-on5 1-on6 

spring 1 
1-on4 

spring3 
1-off1 

spring5 
spring6 
1-off3 
1-on2 
1-on3 
I-on 1 
1-off6 
1-off2 
]-off4 

spring4 
spring2 
]-off5 
1-on6 

spring 1 
spring3 
1-off3 
1-off1 
1-off2 

spring6 
spring5 
1-on4 
1-on3 
1-on2 
I-on 1 
1-off6 
I-off4 
I-off5 

spring2 
1-on6 

spring4 

spring 1 
1-on5 

spring3 
spring6 
1-off6 

spring5 
1-on 1 
1-on2 
Lon4 
Lon3 
I-off1 
1-off2 
1-off3 
I-off4 
]-off5 

spring2 
spring4 

In our example, we considered a model as desirable if it had relatively high ~~d~ values. We also 
assessed the ranking of variables in this category and that were in models in which all of the 
parameter estimates were significant. We could have chosen other information criteria (such as 
those in Figure 3) to determine a good model, or we could have altered our procedure to define a 
good model as one that performs well in a cross validation. In either case, we were able to obtain 
a ranking of the variables, and also obtain frequency distributions of these "goodness criteria" for 
models with various levels of complexity. This additional information gave us a more mature 
understanding of the variability of some of the multivariate interactions that occur within the 
dataset, and might allow us to make decisions further along in the spatial modeling process. For 
example, in the future we might limit the inputs to a maximum likelihood image classification to 
those with the highest frequency of inclusion in the good models, or a subset of those models. 
Because the all-subset method yields results similar to those obtained by stepwise selection 
procedures and provides us with additional information, we consider it valuable for reducing data 
redundancy and examining multivariate relationships within a modeling dataset. 
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