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Abstract 

Rough sawn, kiln-dried lumber contains characteristics such as knots and bark pockets that are considered by most people to be defects.
When using boards to produce furniture components, these defects are removed to produce clear, defect-free parts. Currently, human 
operators identify and locate the unusable board areas containing defects. Errors in determining a defect and its location, known as
operator error, lead to lower lumber yield and increased product cost. Technology exists that would alleviate these problems and is a viable
option to avoid wasting lumber because' of human error. This study was performed in a rough mill collecting data on the errors made by
humans when marking defects. Computer-based simulation tools were used to assess the significance of these errors. It was found that 
three-quarters of the decisions made by human operators are erroneous in some way resulting in an absolute yield loss of approximately
16.1 %. Thus, automated defect detection systems that perform more accurately than do humans could have a payback period of 1 year or 
less. Published by Elsevier Science Ltd. 
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1. Introduction  
Lumber costs are the single most important cost for 

furniture manufacturers. Between 12% and 15% of the 
furniture production cost, depending on style and quality of 
the furniture, is due to lumber costs [4]. A popular rule of 
thumb states that saving 1 % of the incoming raw material 
(i.e. lumber) reduces total production costs by as much as 
2% [5]. As a result, manufacturers are aggressively trying 
to improve yield. Yield is defined as the ratio of aggregate 
part surface area output in relationship to aggregate lumber 
surface area input [6]. 

Wood is a non-homogeneous material with unusable 
areas randomly dispersed throughout the board. Each board 
is classified in appropriate quality classes based on defect 
sizes, locations, frequencies, and other geometric 
characteristics [7]. Boards of the same quality class are 
then processed in rough mills that either employ crosscut-
first or rip-first sawing technology. Ripfirst technology is 
the most commonly used technology today [8]. Classifying 
all the different natural characteristics of lumber is a 
difficult task performed by human operators. Some board 
characteristics are considered acceptable, others as a 
defect. It is the responsibility of the operators, or "marker" 
as they are called in the wood industry, to determine which  

Solid wood dimension parts for furniture and cabinets are
cut from rough sawn, kiln-dried, random length, and random 
width lumber. In a rough mill, boards are processed into
rough-sized furniture parts utilizing two processing
methods: rip-first or crosscut-first. Rip-first processing
begins by ripping the board into narrow strips, then
chopping the strips into part lengths. Crosscut-first 
processing chops the board to the part lengths, then rips the
board segments to the correct widths. This paper is
concerned only with rip-first processing. For a thorough
discussion of rough mills see [1]. Furniture parts are mainly 
produced using hardwood lumber, however, the price of
hardwood lumber has almost doubled during the last 20
years [2]. During this same period, domestic furniture
manufacturers were competing with imported, low price,
good quality, solid wood furniture in most retail market
sectors. In fact, furniture imports have grown significantly
over the last decade, comprising one-third of all furniture
sales in the US [3]. Not surprisingly, US manufacturers are
striving to minimize their production costs to compete with 
foreign producers. 
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Fig. 1. Two strips with defects that are perfectly marked. 

characteristics are acceptable and which are not. Operators
are constantly fed narrow board strips from the ripsaw over
roller conveyors. Both sides of each strip are inspected and
defects are marked with a scanner-readable chalk. A
computerized saw with a camera reads these marks and
optimizes the fit of parts into the clear areas, then cuts the
strips into segments of clear wood with no defects and
unusable segments containing defects. Fig. 1 shows two
strips as an operator could encounter them. The black areas
symbolize defects and cannot be used for the finished
product. The operator has to distinguish between clear areas
of the strip and the areas containing defects. The marks
encompassing the defects in Fig. 1 show the two strips
marked perfectly, i.e marked such that no clear wood is
wasted. 

However, due to the difficulties in distinguishing some
defects from sound wood, the high speed at which operators
have to work, and the long hours on the job, human errors
occur. Operators theoretically can make four decisions when
marking strips. These decisions are shown in the decision 
matrix in Fig. 2. 

As shown in the decision matrix, an operator has a choice
of four decisions when marking strips. Two are correct and
two incorrect (Fig. 2). Positive outcomes result under one of
two conditions: a defect is identified and removed (Yes-
Yes) and defect free wood is not marked for removal (No-
No). Costly errors can result from the other two conditions.
When a defect-free area is marked as a defect, then usable
wood is wasted (Yes-No, Type II error). When a defect is
not detected (No-Yes, Type I error), then this defective area
will be used to produce a part that will either require costly
remanufacturing or the part will be discarded later in the
production process. Rejects are especially costly as they
result not only in a loss of wood; but labor as well. In the
last case, when the operator marks an area that contains no
defect, (Yes-No, Type II error), then a negative outcome is
achieved in that clear, usable wood is cut out and wasted. 

Two other errors can occur: (1) incorrectly marking the 
end of a defect, leaving a small portion of the defect in the
board to be used for a part (Fig. 3, A), and (2) marking the
end of a defect beyond its true end resulting in wasted
usable material (Fig. 3, B). 

Both errors A and B are mistakes, which can lead to 
waste material and increased production costs. How 
ever, error A is of more concern since it may lead to a part
containing a defect that will be rejected later in the
production process. The loss of usable wood is an error,
which is present regardless of human error in defect 

Fig. 3. Two special cases of operator error: (A) when mark is within 
defect, and (B) when mark is beyond defect. 

identification since the optimization of a strip's clear areas
is rarely able to find chop solutions that use 100% of the
clear area. Since a minimal amount of usable wood is lost
when optimizing the clear areas of a strip, error B is
increasing costs only marginally. Therefore, we did not
further investigate this error. In summary, there are three
operator errors that are of significance and will lead to
either a loss of usable, clear wood or to rejects because
defects will be contained in the part: 

(1) Type II error, detection of a defect where there is 
none.  

(2) Type I error, when a defect goes undetected.  
(3) Incorrect marking of a defect within its boundaries 

 (Fig. 3, A). We will refer to this type of error as 
 "partial Type I error." 

Little knowledge exists concerning the amount of lumber 
or money lost due to operator error. However, Huber et al. 
published a paper in 1985 concerning the ability of 
operators to correctly detect and mark defects in boards [9]. 
This study assessed the performance of six experienced 
operators from three different plants by asking them to 
assess a board in 1 min and to memorize the location and 
type of defects. The operators then used an eight (length of 
the board) by two (width of the board) matrix to indicate 
the location and type of defects found in the board. This 
test was performed twice for each employee on 30-2A 
common southern red oak boards. The authors concluded 
that operators need to be able to (a) "see and recognize 
defects", (b) "have the mental aptitude to properly locate 
the cuts", (c) "possess the physical strength to position the 
board manually" , (d) "resist boredom and maintain an alert 
mental attitude", and (e) "be able to remember defect 
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 West Virginia. Roughly 200 boards were collected and 158 
were found to be usable for this study. The remaining 42 
boards were discarded because they were either below 
grade or had excessive crook. Crook is when a board has a 
substantial arc from end to end across the grain. Thus, if 
you would lay a board flat and put one side against a wall, 
the middle of the board would not be touching the wall. The 
boards were digitized according to Anderson et al. [12]. 
Fig. 4 displays an example of a digitized board. The USDA 
Forest Service's computerized ultimate grading and 
remanufacturing system (UGRS) was employed to grade 
the selected boards into appropriate quality classes [13]. 
The material used in this study consisted of 8.3% FIF, 6.8% 
Selects, 51.6% 1 Common, 25.9% 2A Common, and 7.4% 
3A Common. Appendix A shows the details of the lumber 
sample used. 

Cutting bills, as shown by Buehlmann et al. [14], have a 
significant influence on yield. A cutting bill is the list of 
pieces that need to be produced during a given production 
run. To minimize the influence of cutting bill composition 
on this study, we used a cutting bill that is considered easy 
to complete [15]. Part quantities for this cutting bill were set 
such that all pieces could be obtained from the 158 boards 
available. Appendix B gives the details of the cutting bill 
used. The prioritization algorithm we used was length-
square times width (L 2W) with the maximum part value 
set at 1000. Prioritization algorithms are necessary to allow 
the software to decide which parts to prefer over others in 
situations where different part-choices exist. The part 
values assigned help the prioritization algorithm determine 
which part is more preferable than others for a given 
situation. For a more complete discussion of part 
prioritization, see [15]. 

 2.2. Rough mill 

The first processing step is to rip the boards into narrow 
strips. An arbor, which is a steel rod holding the saw blades, 
is used to rip the boards into strips. The part widths are the 
distances between the saw blades. GRADS [16], the gang-
ripsaw arbor design program, was used to determine the 
optimal arbor width spacing arrangement. The ripping 
process optimizes the placement of the board with respect 
to the saws such that the highest yielding strip combination 
is obtained. 

The strips resulting from gang-ripping were then 
presented to the human operator. Since the relevance of our 
findings was directly connected with the abilities and 

 

location on one side while marking on the other side". This 
study highlights the difficulty of the tasks performed by 
operators. Although all persons tested were experienced, 
motivated individuals, the average mean composite score 
(i.e. the combination of all individual parameters tested) was 
68%, the minimum was 59%, the maximum 74%, 
respectively. Highest mean scores were achieved for 
location (75 percent), followed by number of defects (71 
percent) with defect types being lowest (65%). 

Although these tests demonstrated the magnitude of human 
error in marking, they did not assess yield effects resulting 
from operator errors. To fill this gap, the objective of this 
study was to evaluate the frequency of operator errors (Type 
I, Type II, and partial Type I errors) and the resulting yield 
losses in a state-of-the-art rip-first rough mill. By 
quantifying the potential yield increases, one can investigate 
the economics of automated scanning systems for reducing 
or eliminating yield losses due to operator error. Such 
vision-based lumber defect detection systems are becoming 
commercially available [10]. They recognize defective areas 
of boards with a high accuracy and thus allow computer-
based yield optimization and saw control systems to 
efficiently use the clear areas of a board.  

 

2. Methodology 

 

Due to careful planning of an earlier study involving the 
validation of a computer-based rough mill simulation model 
called ROMI-RIP, previously ",ollected data could be used 
[7,11]. These two publications also contain more details 
about the rough mill and simulation setup used for this 
study. This study used randomly sampled kiln-dried red oak 
hardwood lumber from a sawmill in southeastern West 
Virginia. After digitization of the boards, they were cut to 
strips in a state-of-the-art rough mill and the strip solutions 
were recorded. Next, an experienced employee marked the 
strips. The results were compared to the digitized location of 
the individual defects to establish the number of inaccurate 
marks. Both datasets were then employed to perform 
simulation to assess yield losses associated with operator 
error. 

2.1. Materials 

Rough sawn, kiln-dried lumber was randomly sampled 
fro  the lumber grading conveyor of a large sawmill in  m 
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Table 1
Results of the operator accuracy tests 

simulated exactly as it occurred in the rough mill, the 
average of four repetitions from the simulation was used. 
The feeding sequence of strips influences yield, since the 
placement of individual parts within the available areas 
depends on the sequence in which the strips are processed. 
However, this effect, although discernible, is small and 
does not alter the conclusions of this study.  

4. Results 

A total of 1303 defects were present in the 158 boards 
used in the study (Table 1). Out of these boards, the ripsaw 
produced 404 strips: 59, 1.75in wide; 259,2.00 in wide; and 
86  3.50 in wide. The operator made 1331 marks on the 
strips or 3.45 marks per strip on average. No marks were 
necessary for defects located < 1 in from either end of the 
board since the system was set to make a I-in trim cut on 
both ends. The number of marks and the number of defects 
are loosely correlated. Often several defects in close 
proximity are marked together between two beginning and 
ending marks. 

Twenty-six of all marks set were Type II errors, i.e. the 
operator marked areas where no defects were present. The 
operator also made 578 Type I marking errors, i.e. not 
marking a defect when there was one. Furthermore, 437 
partial Type I errors, meaning that marks were placed 
inside the defective area, were made by the operator. Table 
1 shows the test results obtained. 

As these results show, 78.2% of the decisions made by 
the human operator deviated from the optimum decision. 
Type I error, not detecting a defect when one is present, 
was the most common error constituting 43.4% of the total 
number of errors committed (Table 1). Partial Type I 
errors, marking a defect inside the 

, 

motivation of the person doing the marking, a person
with more than 5 years of experience was employed. The
worker's ability to detect defects and react properly was
tested using the Wais-R digit symbol recognition test used
earlier in the Huber study [9]. For this test, a score of 40
points was achieved by the operator, which indicated that
the worker's performance is comparable to the performance
of the average rough mill operator. The tests were
performed at the worker's regular workstation with no
change to the workplace that could indicate testing was
being done. The worker marked all areas of the strips.
containing defects with a scanner readable crayon. The
strips were directly fed to a Barr-Mullin Turbo Wondersaw
crosscut saw, with the sawblade removed, allowing for the 
measurement and recording of the operator's marks. After
this step, there were two sets of strip-data for the
simulation: (a) the digitized board data, and (b) the defect-
marking solution as done by the human operator. Fig. 5
displays the marking solutions by the operator shown in
gray, with defects digitized before ripping shown in black.  

3. Computer based rough mill simulation 

The USDA Forest Service's ROugh Mill RIP (ROMI
RIP) first simulator, Version 2.0, was employed [11,17].An
ad itional computer program was written to assess the
accuracy of the operator. This program overlaid the
locations of the operator's grade marks with the actual
defect locations on the board. From this comparison several
important evaluation factors were determined including: (1) 
how close the marks were to the defect(s), (2) defect sizes
and types not marked, (3) defects split, (i.e. defects not
entirely in a marked area), (4) marked areas with no
defects, and (5) defects properly marked and entirely
included in a marked area. This information described the
accuracy of the human operator. 

A second test was designed to estimate yield losses due
to operator error. Here the boards were processed on the
ROMI RIP simulator using the marked area information
from the operator, cutting clear parts and parts that
contained defects. Using a special software tool, these
computer generated parts were then checked for remaining
defects due to operator error. Parts containing defects were
rejected. By tracking the rejected parts, an accurate 
assessment of the operator's performance in respect to yield
could be performed. Since the strip feeding sequence to the
chop saw could not be 

d
 

Fig. 5. Sample board showing the actual defects and the operator solutions. 

Total boards used 
Total strips marked 
Total no. of defects registered 
Total marks placed 

Type of error 
Type II 
Type I 
Partial Type I 

Total 
Average error/strip 

158 
386 
1303 
1331 
Missed (%) 
20 
43.4 
32.8 

Missed (no.) 
26 
578 
437 

1041 
2.7 

78.2 
78.2

bgatewoo

bgatewoo
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Table 2        
Rejected parts due to human marking error      

 Input lumber Output parts Yield including Reject parts Rejects as percentage of Yield without 
 area area rejects area   rejects 

Run (m2) (m2) (%) (m2) Input (%) Output (%) (%) 

A 88.0 55.6 63.2 14.0 15.9 25.1 47.3 
B 87.9 55.9 63.6 14.2 16.1 25.3 47.5 
C 85.3 54.4 63.8 13.5 15.8 24.8 48.0 
D 87.1 55.2 63.4 14.4 16.6 26.2 46.8 

Average 87.1 55.3 63.5 14.0 16.1 25.4 47.4 
std. dev. 1.3 0.7 0.3 0.4 0.3 0.6 0.5 

 No. of boards No. of parts  Rejected parts  Rejected parts  
Run (No.) (No.)  (No.)  (%)  
A 155 1485  330  22.2  
B 156 1494  323  21.6  
C 149 1441  324  22.5  
D 154 1463  316  21.6  

Average 153.5 1470.8  323.3  22.0  
std. dev. 3.1 23.7  5.7  0.4  

defective area, accounted for 32.8% of the errors made and
Type II errors, identifying a defect when one is not present, 
only constituted 2.0% of the total number of errors. 

Four repetitions of the simulation of the strip cuts were
performed to detect yield rates associated with human
operator error (Table 2). On average, 25.4%, or more than a
quarter of the parts produced (output), would be rejected
because they contained a defect or a partial defect resulting
in a decrease of yield from 63.5% to 47.4% yield. 

wood. If a mark was made one-sixteenth of an inch 
(1.6mm) inside the recorded defect area, the verification 
program registered that as an operator error. Therefore, the 
error rate indicated in Table 1, although true, is 
exceptionally rigorous. Since most furniture parts are cut 
slightly overlength in the rough mill, some of these "errors" 
would not be rejected. 

Due to the traditionally high reject rates in furniture 
plants, rough mill operators should be taught to mark 
defects away from the apparent end of the defects in the 
clear wood to decrease the probability of part rejections. 
This will help decrease rejection rates due to partial Type I 
errors. It is hypothesized that the loss of 1-5 mm of clear 
wood for each defect will not significantly reduce yield due 
to the optimization schemes. Conversely, Type I errors will 
require more effort, such as increased operator training, 
better lighting, and easier to understand defect 
specifications, to be eliminated. 

This phenomenon is also responsible for the significantly 
lower part reject rate compared to the much higher operator 
error rate. Although the operator error was 78.2%, a 
significantly fewer number of parts, 22% (25.4% on an area 
basis), were rejected. The excess clear area relative to part 
length required eliminates most, if not all, rejects from 
partial Type I operator errors. Additionally, Type II errors 
(2.0%), although they lower yield, do not lead to rejected 
parts. 

Type I errors (43.4%) are the major contributors of 
rejected parts. The negative impact from these errors is 
lessened by two factors: (a) overlooked defects tend to be 
small, and (b) small defects are often clustered close 
together. Therefore, many rejected parts contained more 
than one Type I error. Also, some of these overlooked 
defects may have been adjacent to a defect that the operator 
marked correctly. Due to the excess clearance 

5. Discussion 

Marking lumber in a rough mill is a truly challenging
occupation. The average operator stands 8 hours a day in a
noisy, often poorly lighted workplace and is required to
mark hundreds of strips indicating defective areas. Also,
what constitutes a defect is not clearly defined and a wide
range of definitions exists within the industry and
sometimes even within the same operation [18]. In addition,
wood defects can have a wide variety of shapes and colors,
often making it challenging to: (a) recognize the defect, and
(b) determine the border between defect and clear wood.
These factors, when combined, lead to a high error rate that
costs the industry millions of dollars every year. Kline et al.
[19] estimated that for an average rough mill, a 1 % yield
increase results in estimated savings of $150,000 to
$300,000 in lumber and operation costs per year. 

This study's measurement quality standards were very
demanding. The verification programs that compared a
mark and the beginning/end of a defect did not allow any
deviation from the optimum position, except if the mark was
made outside of the defective area in the clear 

bgatewoo
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the supply of well-educated and motivated employees, who
are needed to run such complex vision and optimization
systems. Research and development also will have to
generate systems that are easier to setup and to manage and
have a high degree of robustness and reliability.
Furthermore, the data derived for this study will allow the
creation of software, which will enable companies to
simulate their yield losses due to human operator error. 

effect described above where the part optimization process
usually wastes some clear wood, some defects were cut out
in this process. The remaining undetected defects were
responsible for the 22.0% reject rate of parts. 

Vision-based lumber scanning systems exist and are
being increasingly adopted by the industry [20,10]. With
prices for such systems below $1,000,000, they seem to be
an attractive investment for medium to large size rough
mills. Although such systems currently are not perfect due
to the difficulty of detecting and classifying wood defects, 
small yield improvements allow the investment to be
recaptured within the required payback periods [19]. A
system able to reduce part-reject rate to half would save an
average rough mill approximately $1.2 million a year,
making the simple payback period < 1 year (assuming 8%
higher yield, an average saving of $ 150,000 per 1 % yield
per year [19], and an annual interest of 10%). However,
problems other than technology or financing, such as
employee education, managerial capabilities, or facility
environment, are barriers to implementation of these
systems. 
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Using an experienced employee and computer simulation,
this study researched the reliability and the accuracy of a
human operator when marking defects on wooden strips
prior to cut-up for furniture parts. Three types of operator
error were investigated: (a) when the operator marked a
defect when there was none, (b) when the operator missed a
defect, and (c) when the operator marked a defect inside the
defective area of the strip. Acknowledging that the test
criteria were stringent, 78.2% of all defects were marked
incorrectly. Two percent of all marks made were Type II
errors, 43.4% were Type I errors, and 32.8% were partial
Type I errors. This high error rate translated in a highdrate
of rejected parts after the processing (22.0%). The overall
yield was reduced from 63.5% before rejections to 47.4%
after rejections. 

Vision-based lumber scanning systems are able to solve
many of the operator errors observed in this study. Due to
the high rate of human errors, such systems do not need to
be flawless. If their defect detection ability is 
50% better than the one observed in the human case studied
here, payback periods for such advanced systems could be
as low as 1 year. However, as discussed above, problems
other than technology or financing are barriers to
implementation of these systems. 

Future research will have to address the problems 
beyond financing and technology that slows the industry in 
adopting such systems. One major area of interest is 

Appendix A 

See Table 3 below.

Table 3 
Quality classification of the lumber sample used 

Lumber Board Board Board footage Board count 

grade footage count as percentage as percen 
tage 

   of total of total 

FIF 77 11 8.3 7.0 
Selects 63 17 6.8 10.8 
I Common 480 77 51.6 48.7 
2A Common 241 39 25.9 24.7 
3A Common 69 14 7.4 8.8 
Total 930 158 100% 100% 

Appendix B 

See Table 4.
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Table 4     

Cutting bill part size and quantity requirements  

Part Part Part Quantity Part prioritization 

number width (in) length (in)  value 

1 3.50 67.00 12 1000 
2 3.50 57.00 6 724 
3 3.50 43.50 6 422 
4 3.50 33.50 12 250 
5 3.50 31.25 30 218 
6 3.50 29.50 12 194 
7 3.50 27.50 6 168 
8 3.50 25.50 12 145 
9 3.50 20.50 18 94 
10 3.50 18.25 62 74 
11 2.00 65.25 18 542 
12 2.00 59.00 36 443 
13 2.00 49.50 33 312 
14 2.00 43.50 18 241 
15 2.00 35.75 55 163 
16 2.00 31.25 49 124 
17 2.00 29.50 18 III 
18 2.00 27.50 90 96 
19 2.00 25.50 130 83 
20 2.00 23.00 II3 67 
21 2.00 20.50 204 54 
22 2.00 18.25 36 42 
23 1.75 65.25 30 474 
24 1.75 43.50 30 211 
25 1.75 27.50 30 84 
26 1.75 25.50 30 72 

[5] Wengert EM, Lamb FM. A handbook for improving quality and 
efficiency in rough mill operations: practical guidelines, examples, 
and ideas. Blacksburg, VA: Virginia Polytechnic Institute and State 
University, p. 12. 

[6] Gatchell CJ. Impact of rough-mill practices on yields. In: White JC, 
editor. Eastern Hardwood: the source, the industry, and the market. 
Proceedings of Symposium, September 9-ll, 1985. Harrisburg, PA: 
Forest Products Research Society. 1985. p. 146-56. 

[7] Buehlmann U, Thomas RE. Lumber yield optimization software 
validation and performance review. Robotics Comput Integr Manuf 
2001;17:27-32. 

[8] Mullin S. Why switch to rip-first? Furniture Design Manuf 
 1990;62(9):36-42. 
[9] Huber HA, McMillin CW, McKinney JP. Lumber defect 
 detection abilities of furniture rough mill employees. Forest 
 Products J 1985;35(1l/12):79-82. 
[10] Conners RW, Kline DE, Araman PA, Drayer T. Machine vision 
 technology for the forest products industry. IEEE Comput 

 Innovative Technol Com put Professionals 1997;30(7):43-8. 
[11] Thomas RE, Buehlmann U. Validation and performance 
 comparison: the RaMI-RIP rough mill simulator versus an 
 actual rough mill. Forest Products J 2002;52(2):23-29. 
[12] Anderson RB, Thomas RE, Gatchell CJ, Bennett ND. Computerized 

technique for recording board defect data. Research Paper NE-671. 
Radnor, PA: Northeastern Forest Experiment Station, USDA Forest 
Service, 1993. 17p. 

[13] Moody J, Gatchell CJ, Walker ES, Klinkhachorn P. User's guide to 
UGRS: the ultimate grading and remanufacturing system (version 
5.0). General Technical Report NE-254. Radnor, PA: USDA Forest 
Service, Northeastern Forest Experiment Station, 1997.40p. 

[14] Buehlmann U, Noble Jr R, Kline DE. Lumber yield estimation using 
the method of least squares. Proceedings of the Conference on 
Flexible Automation and Integrated Manufacturing (FAIM) 1999. p. 
657-73. 

[15] Thomas RE. Prioritizing parts from cutting bills when gang 
 ripping first. Forest Products J 1996;46(10):61-6. 
 [16] Culbreth CT, Bendeck MO. GRADSTM-gang ripsaw arbor 
 design and scheduling operations manual, Version 3. Raleigh, 
 NC: North Carolina State University, 1995. 25p. 
[17] Thomas RE. A guide for using RaMI-RIP 2.00, a ROugh MIll RIP-

First Simulator. General Technical Report NE-259. USDA Forest 
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64p. 
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