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Abstract

Ecotones are inherent features of landscapes, transitional zones, and play more than one functional role in ecosys-
tem dynamics. The delineation of ecotones and environmental boundaries is therefore an important step in land-use
management planning. The delineation of ecotones depends on the phenomenon of interest and the statistical
methods used as well as the associated spatial and temporal resolution of the data available. In the context of
delineating wetland and riparian ecosystems, various data types (field data, remotely sensed data) can be used to
delineate ecotones. Methodological issues related to their detection need to be addressed, however, so that their
management and monitoring can yield useful information about their dynamics and functional roles in ecosystems.
The aim of this paper is to review boundary detection methods. Because the most appropriate methods to detect
and characterize boundaries depend of the spatial resolution and the measurement type of the data, a wide range of
approaches are presented: GIS, remote sensing and statistical ones.

Introduction

Historically, ecologists have studied homogeneous
regions to characterize and understand ecosystem
processes and have avoided the heterogeneous areas
between ecosystems. As a result, transition zones have
often been ignored or reduced to lines on a map. How-
ever, these transitional zones, called "ecotones", are
dynamic and play several functional roles in ecosys-
tems dynamics; for example, they control the flux of
materials between ecosystems and influence biodiver-
sity (Naiman and Décamps 1990). In fact, because
species may be at the limits of their tolerance in these
transitional zones, characteristics of ecotones may be

especially sensitive to environmental change. Hence,
ecotones are dynamic and changes in their location
can be used as indicators of environmental changes.
For example, the analysis of historic ecotonal shifts
can yield information about past climates and culture
(Crumley 1993). For these reasons, ecotones have re-
cently become a focus of investigations in landscape
ecology (among others, Holland et al. 1991; Hansen
and Di Castri 1992; Gosz 1993; Fortin et al. 1996)
and global climate change (among others, Risser 1990;
Neilson 1991). As interest in ecotones increases (Hol-
land et al. 1991; Hansen and Di Castri 1992; Gosz
1993), there is increased need for formal techniques to
detect them (Johnston et al. 1992; Fortin 1994; Fortin
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and Drapeau 1995). Hence, to better study and under-
stand the functional roles and dynamics of ecotones
in ecosystems, we need quantitative methods to iden-
tify their location and to characterize them (Fortin and
Edwards 2000; Gosz 1993).

In the context of wetland and riparian ecosystems,
ecotones are important transition zones; they serve as
the aquatic-terrestrial interface that regulates the flux
of material and the biochemical processes between
these two highly productive ecosystems. Recently,
however, these ecotones have been heavily impacted
by human activities, which can affect their func-
tional roles in these aquatic and terrestrial ecosystems
(Naiman and Décamps 1990). The objective of this pa-
per is to highlight the methodological issues related to
the detection and quantitative characterization of eco-
tones. Hence we discuss the role of geographic infor-
mation systems (GISs) in linking these techniques and
data resources for ecotone detection as well as spatial
analysis, image processing, statistics, and modeling
that can be used to detect these ecotones. An objective
use of these methods will improve understanding of
the role ecotones play between ecosystems and of their
management. Material presented in this paper evolved
from discussions at a workshop on wetland and ripar-
ian ecotones1 and related issues presented by Fortin
and Edwards (2000).

Wetland and riparian ecotones

Currently, the conceptual definition (Holland 1988)
of ecotones is ‘a zone of transition between adja-
cent ecological systems, having a set of characteristics
uniquely defined by space and time scales and the
strength of the interaction between adjacent ecological
systems.’ In theory, ecotones can be detected by the
high rate of the co-occurance of species from adja-
cent ecosystems. In practice, because ecotones have
often been located subjectively by investigators the
comparison of their movement over time has not been
possible.

There are biotic and environmental ecotones: bi-
otic ecotones reflect species’ responses to environmen-
tal change (sharp or gradual), to species interactions,

1 The 3-day international workshop ‘Wetland and Riparian Eco-
tones in Landscape Dynamics: A Workshop on Applying Theory,
Data, and Methods’ was held in Oak Ridge, Tennessee, during
September 1990 and was primarily sponsored by the U.S. Man
and the Biosphere Program with additional funding from the U.S.
Department of Energy and the Environmental Protection Agency.

or to both; while environmental ecotones correspond
to sharp physical changes in either moisture, soil,
topography, or geology. Biotic ecotones can be identi-
fied in terms of the location of high rates of change in
species’ abundance or species’ spatial co-occurrence
of replacement using presence-absence data. Often,
the delineation of a biotic ecotone is used as an in-
dicator of the potential location of a physical ecotone
(Fortin et al. 1996). Unfortunately, not all species, or
species’ measurements, change exactly at the same lo-
cation (Naiman and Décamps 1990; Hansen and Di
Castri 1992; Holland et al. 1991; Fortin et al. 1996).
For example, canopy coverage of trees may provide
a different perspective on community structure than
individual tree-density measurements (Fortin 1997).
Hence, objective statistical methods are needed to
compare differences in delineated boundaries (Fortin
et al. 1996) as shown in the section ‘Ecotone Detection
Methods.’ Furthermore, investigators need to clearly
define the criteria, rationale, and scale used to identify
ecotones for their specific study.

To illustrate the role of spatial scale, we considered
five scales and their associated characteristics that in-
fluence ecotone detection (Table 1). Each column of
the matrix in Table 1 represents a discrete scale unit
chosen arbitrarily but logically with respect to ecotone
detection. We concentrate on identifying studies of
wetland and riparian ecotones to illustrate these scales.

Wetland-upland interface.These are small, easily
traversed areas where the wetland and upland bound-
aries meet. The boundary, or ecotone, will often
fluctuate dramatically depending on season and year,
and these fluctuations greatly influence the ecolog-
ical processes. Johnston and Naiman (1987) found
that the dynamics of the wetland-upland interface in
Minnesota was greatly influenced by the geomorpho-
logical setting and the presence of beaver dams.

Wetland-upland zone.This scale has, as a typical
study area, a stream reach with its accompanying
riparian forest or a stretch of coastline with its ac-
companying lowland and upland vegetation. The area
can still be traversed by foot but can have a width
up to about 30 km. Peterjohn and Correll (1984) and
Whigham et al. (1986) have studied the impact of
riparian forest and associated ecotones on water qual-
ity in Maryland at this scale. Vought et al. (1994)
and Gilliam (1994) have reviewed the value of these
ecotones in retention of nutrients in riparian buffer
strips.
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Table 1. Characteristics of spatial scales in terms of properties associated with ecotone detection.

Study unit Wetland upland Wetland upland Subwatershed Watershed Ecoregion

interface zone

Map scale, km 50 m-2 2–15 10–40 24–100 50–500

Available resolution, m 1–10 5–20 10–50 10-1-80 30–500

Sharp edge detection, m 2–40 10–80 20–200 20–320 60–2000

Sharp edge mensuration, m 6–200 30–100 20–1000 60–1600 180–10000

Remote sensing platform Helicopter Aircraft NHAP SPOT TM

Low flying plane NHAP SPOT TM MSS

SPOT TM MSS AVHRR-1 km

AIRSAR AIRSAR ESTAR

Practical extent, km 4–8 30–60 80–160 200–400 1000–global

Animal Crayfish Fish Beaver Deer Bobcat

Tricoptera Muskrat Bat

Verification method Quadrats Transects Transects Transects Transects

Ground photos Ground photos Aerial photos Windshield Aerial photos

Soil cores Soil cores Plots survey National

Transects Plots Aerial photos inventory

Note: Study unit– spatial unit of interest.Map scale– scale at which the ecotone being detected would be drawn on a
map.Available resolution– considering current available remote sensing platforms and technology, available resolution (or
grain size) refers to the smallest feature on the ground that can be tractably detected at the particular scale of study.Sharp
edge detection– related to available resolution, this attribute is an estimate of the minimum width of an ecotone boundary
detectable by the technology. Sharp edges can usually be detected reliably within 2 to 4 times the size of the available
resolution (i.e., 2 to 4 pixel width).Sharp edge mensuration– estimate of the minimum width needed for detection of a
gradient within an ecotone boundary. Widths approximately 6 to 20 times the available resolution are needed before reliable
assessments of gradients within the ecotone boundary can be detected.Remote sensing platform– devices being used to
obtain remotely sensed data at the various scales.Practical extent– area (on the ground) that can be practically analyzed with
current restraints (for most investigators) in computing power, data storage, and wall space on which to mount a map.Animal
– example of an animal that utilizes the landscape at the specified scale.Verification method– methods available for verifying
the presence of an ecotone after the detection has occurred via remote sensing.

Subwatershed. At this scale, the areal extent begins
to be substantial and satellite imagery begins to be an
important source of data. Ecotone studies performed
at this scale include the detection, classification, and
measurement of ecotones between forest and wetland
patches in a glaciated Minnesota landscape (John-
ston and Bonde 1989) and the First ISLSCP (Inter-
national Satellite Land Surface Climatology Project)
Field Experiment (FIFE), designed to assess vege-
tation influence on climate in the Konza Prairie of
Kansas (Sellers et al. 1988). Whigham et al. (1988)
also demonstrated the importance of wetland type and
location within watersheds for nutrient and particulate
processing. Corneleo et al. (1996) evaluated the rela-
tionships between stressors and contamination in 25
subwatersheds of the Chesapeake Bay.

Watershed. The extent of the watershed scale can
vary tremendously, and most of the data available
at the subwatershed level are also very useful. Sta-
tistical relationships between land cover or land use

and water quality within watersheds have been de-
veloped for several locations in the United States
(Omernik 1987; Osborne and Wiley 1988). Décamps
et al. (1988) analyzed the historical human influences
on riparian dynamics on a watershed along the River
Garonne in southern France. Gosselink et al. (1990)
used a landscape approach, with major emphasis on
the stream-forest boundary, to assess current condi-
tions and plans for enhanced landscape conservation in
a large watershed in northeastern Louisiana. Hornbeck
and Swank (1992) promoted watershed ecosystem
analysis to study effects of forest harvest practices and
past land use across the eastern United States.

Ecoregion. Ecoregions are areas of relative homo-
geneity in ecological systems (Omernik 1987) and are
usually larger than a typical watershed. At the ecore-
gion scale, ecotones become wider and fuzzier than at
the watershed scale. As an example, Iverson (1988)
used a GIS to examine the relationship between land-
use change and landscape attributes in Illinois. In this
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study the wetland-upland boundaries were delineated
via major soil associations that separate uplands from
bottomlands. Although wetland and riparian ecotones
are not manifested at the ecoregion scale, we mention
ecoregions because of the potential this concept has
for improving regional management of environmental
resources, especially with respect to the need to assess
and predict existing and attainable water quality (Gal-
lant et al. 1989). At level IV of Omernik’s ecoregions
a river valley, such as the Sequatchie in the Cumber-
land Plateau of Tennessee, may be uniquely delineated
(Griffith et al. 1997). This regional assessment concept
has been well developed in Bailey (1996) and applied
for the Southern Appalachians (SAMAB 1996).

The dynamics of ecosystem boundaries at regional
scales are being examined relative to climate change
at several of the Long-Term Ecological Research Pro-
gram sites (Swanson and Sparks 1990). The Sevilleta
site in New Mexico, the Arctic Tundra site in Alaska,
the Niwot Ridge site in Colorado, and the North Inlet
site in South Carolina all have long-term sampling pro-
grams to monitor the environment and have transects
of plots crossing ecotones at each site. Gosz (1993)
discussed ecotone hierarchies and scales with respect
to the Sevilleta site and presented a multilevel, nested
sampling design that relates plant-edge ecotones to the
dynamics of the biome ecotone. Given the various spa-
tial resolutions of data associated with these spatial
scales (field data, aerial photographs, in the following
section and remotely sensed images), various meth-
ods can be used to detect ecotones as shown in the
following section.

Ecotone detection methods

Methods for ecotone detection include spatial analy-
sis (such as GIS and remote sensing) to detect spatial
patterns, statistics to quantify and contrast patterns,
and modeling to formulate and predict multivariate
interactions. Recent advancements in capabilities and
increased availability of GISs are key factors in de-
veloping approaches capable of dealing with the com-
plexities of ecotones, and allowing performance of
spatial analysis, image processing, statistics, and mod-
eling all within the same system. The edge detection
methods discussed in this section can often be applied
to a variety of data, independent of the resolution of
the data or data collection procedures.

Detection of ecotones can be made with field data
gathered along transects (one dimension) or across a

grid (two dimensions). The type of data will guide
the choice of method(s) to be used (Table 2). For in-
stance, two-dimensional sampling can produce a grid
of observations (raster format) that can be used to esti-
mate the degree of sinuosity or waviness of an ecotone
not possible from one-dimensional transects. Remote
sensing is ideal for producing a grid of data (raster
format) for analysis, whereas data collected via field
work may be limited to transect or point data.

Geographic information systems

The power of a GIS is its ability to synthesize informa-
tion about spatial phenomena, such as ecotones, by in-
tegrating geo-referenced data to show the original data
and derived information in new ways and perspectives
(Arnoff 1989). An important decision in designing a
spatial database for ecotone study is the selection of
the underlying geo-reference system and spatial reso-
lution (Table 1). Although the choice of scale may be
strongly influenced by existing data, the selection is
important for establishing a common system for data
integration, for addressing data-quality issues, and for
specifying detection limits. An understanding of the
precision and accuracy of the data within a GIS is
also important. Even though a GIS can mechanically
reformat and transform data from different sources
into a common system, it is the responsibility of the
GIS user to determine the consequences of integrat-
ing data that has been collected at different scales,
represented by different topological structures, digi-
tized with varying degrees of precision, or containing
other sources of errors. Unfortunately, elegantly drawn
GIS maps usually do not convey the uncertainty as-
sociated with boundaries or contour lines. However,
cartographic techniques can be used that provide more
information. Clarke et al. (1991) delineated ecological
regions and subregions for Oregon and assigned two
attributes to each boundary – the relative width of the
transition zone and the rank of the importance of the
characteristics used to determine the boundary.

This issue of scale and its importance to rela-
tionships between landscape structure and process
is illustrated by the paper by Hunsaker and Levine
(1995). Some literature indicates that land use close
to streams (i.e., in riparian zones) is a better pre-
dictor of water quality than land use over an entire
watershed, whereas empirical evidence from other lit-
erature concludes that the upland land uses are as
important as near-stream land uses. Hunsaker and
Levine (1995) conclude that the seemingly contra-
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Table 2. Statistical methods for measuring and characterizing ecotones. The choice of a particular analytical method depends on the
type of data available.

Ecotone attribute Data type

Grid data (raster format) Transect data Sparse dataa

Detection Edge detection algorithms
and kernels

Magnitude of first difference Irregular edge detection

Location Thresholding of edge opera-
tions

Maximum of first difference Functional criteria

Width Goodness of fit for loca-
tion statistic; inverse slope of
brightness

Magnitude of first difference Magnitude of first difference

Evenness Dispersion of widths along
boundary

Dispersion of widths along
boundary

Sinuosity Length of boundary as a func-
tion of grid precision; fractal
dimension

Length of boundary as a func-
tion of grid precision; fractal
dimension

Coherence and significance Boundary statistics overlap
statistics (different between
boundaries vegetation, soil,
etc.)

Coincidence of limits more
often than by random chance

Boundary statistics overlap
statistics (different between
boundaries vegetation, soil,
etc.)

aSparse data refers to scattered point measurements taken over the landscape.

dictory results within the literature are a function of
the large differences in data resolution and different
approaches between studies. Factors that enter into
these apparent contradictions are the data resolution
of land cover, stream vectors, and digital elevation
data and the accuracy of GIS functions to approxi-
mate riparian zones (e.g., equal area buffers around
coarse-resolution stream vectors or hydrologically ac-
tive areas for overland flow as defined by topography).

The two major types of GIS data models are raster
and vector, each with different functions for detect-
ing ecotones. In raster systems, values are assigned
to each cell or pixel in anx,y-grid; most remote sen-
sors generate raster data. Pattern recognition, optimal
corridor location, moving window, and most spatial
modeling techniques are better suited to raster data.
In vector systems, attributes are associated with point,
line, and polygon features, and adjacent features are
related to each other through topology. Vector systems
can more readily calculate lengths, areas, and fractal
dimensions; identify adjacent ecosystems; calculate
buffer zones; and generate more traditional carto-
graphic products. However, with vector systems, most
ecotones are reduced to a line while in fact they should
be portrayed as transitional zones (Clarke et al. 1991).
GIS functions that may be applied to the detection of
sharp or gradual ecotones are those for raster format,
such as the image enhancement algorithms that use a
filter (moving window) to identify edges. At first these

filters were developed to segment remotely sensed im-
ages, but lately most raster GISs offer these functions
(Burrough 1986; Arnoff 1989; Cornelus and Reynolds
1991). The use of GIS techniques, in combination
with image processing, for the quantitative analysis of
ecotones are described in Johnston et al. (1992). The
specifics of these edge-detection filters are presented
in the next section on remote sensing.

Remote sensing

Remote sensing can be used to visualize transitional
zones and to detect ecotones based on surface prop-
erties (e.g., vegetation, soil type, and soil moisture),
especially at the watershed and broader scales. Im-
agery is available from a variety of remote sensors
with a range of temporal, spatial, and spectral reso-
lutions (Table 1). However, it is interesting to note that
in the past, image processing has reduced ecotones
to simple lines between homogeneous areas. Given
this perspective, new image-processing approaches are
needed to focus on ecotones themselves.

Extensive work has been done to recognize and
classify terrestrial vegetation on the basis of remote-
sensing data (e.g., Hardisky et al. 1986; Justice et al.
1985; Butera 1983; Wolter et al. 1995). Ecotones
may appear in remotely sensed images as very sharp
or more gradual transitions between ecosystems. Use-
ful methodologies for detecting ecotones must be able
to handle both cases. Some ecotones are very sin-
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uous and may exhibit disjunct islands beyond the
main distribution, and to be useful, the boundary-
detection algorithms must be capable of sensing such
disconnected boundaries.

Since the 1970s, edge detection (boundaries) has
been appreciated as a computational problem and
dozens of techniques have been proposed for its so-
lution (Pitas 1993). Although many edge algorithms
have been described, it is unlikely that any one is per-
fect for general application or that any can be directly
applied to ecotone detection. Most of the relevant
methodological development in image analysis has fo-
cused on edge enhancement (visually emphasizing the
boundaries in a picture); less attention has been given
to methods for edge detection (determining whether a
clear edge is present) or localization (finding its po-
sition). In the image-processing literature, the term
texture refers to the brightness variations of an im-
age. Texture can be described using a structural or
statistical approach. In the structural approach, an im-
age is assumed to be composed of primitive elements
(groups of pixels) that can be characterized by their
shape and size as well as their pattern of repetition.
However, because image processing encounters prob-
lems similar to those met in field ecology (i.e., mis-
classification or unclear repetitive patterns) a statistical
approach is often preferred. Such an approach con-
sists of analyzing the intensity of the gradient among
neighborhood pixels with various techniques, such
as autocorrelation functions, autoregressive models,
spatial intensity co-occurrence probabilities, textural
edginess, and structural element filtering (Pitas 1993).

The major problems in the detection of edges in
image processing are noise due to bad resolution; the
spatial resolution of the image (this is similar to the
situation in field data where the finest level at which
an edge can be detected depends the resolution of
the samples – pixels, quadrat size, or at the limit,
the crown canopy size); the texture that adds itself to
the noise; and the intensity of the discontinuities. If
the discontinuities do not contrast sufficiently with the
background (texture), they are considered as noise.

The most common edge detection methods take
into consideration locally neighboring pixels and are
called parallel methods because, in theory, all the pix-
els should be processed at the same time. The simplest
methods are the ones that are based on linear differ-
ences, such as Sobel and Kirsch operators or local
first-order derivatives between adjacent pixels, and
are called edge detector kernels or simply edge filters
(Pitas 1993). These kernel operators can be either win-

dows of 2×2 or 3×3 pixels. Gradients computed from
3×3 windows are smoother than those computed from
2 × 2 windows and hence reduce more of the noise.
The size of the window is critical, as is the block size
in field data, for overcoming noise and for the ability
to detect small edges.

These algorithms, based on linear differences and
first-order derivatives, detect edges by showing the
presence of the highest rate of change between ad-
jacent pixels. When an edge is wide, it is important
to detect its starting and ending locations. This can
be accomplished by using second-order derivatives,
where the derivative values equal zero except at the
locations where the boundary begins and ends. Such
second-order derivative operators are known as Lapla-
cian operators (Pitas 1993). The major problem with a
Laplacian operator is that it is so sensitive to noise that
it is necessary to smooth the data first.

There are several other parallel edge detection al-
gorithms: nonlinear ones that use kernels based on
polynomials; edge-preserving smoothing techniques
with nonlinear filters; global thresholding that seg-
ments the pixels based on their spectral brightness;
and adaptive filters that correct for random noise as
well as additive or multiplicative noisy data related
to the image scene (Pitas 1993). Multivariate spatial
analysis of spectral data may yield a much fuller pic-
ture of vegetation patterns. For subtle transitions to
be detected, multispectral images must be exploited
fully rather than relying on a single ratio, such as the
normalized vegetation index, or any other single scalar
derived from the multispectral image. For instance,
with a training set in which homogeneous vegetation
types and their ecotones are identified from ground
truth information, we can use multivariate discrimina-
tion to determine the combination of spectral variables
that best distinguishes these components of the land-
scape. There are several ways to combine the evidence
for transitions displayed in different wavelengths [e.g.,
color edge detection and metrics derived from band
combinations (DeFries et al. 1995)].

The appearance of vegetation often changes as
seasons change, and techniques that can exploit this
temporal dimension may be quite useful for detecting
ecotones (e.g., Wolter et al. 1995). For instance, decid-
uous forests go through many phenological changes
each season, with different species following different
schedules. By comparing repeated images of the same
site through time and observing phenological changes,
it should be possible to detect ecotones with more
precision and to determine their species composition.
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Spatial clustering techniques in image analysis are
grouped under the heading of image segmentation.
They have been used for several decades to carry
out automated image analysis in a variety of fields,
including remote sensing, medical imaging and indus-
trial imaging. Three broad categories of segmentation
techniques have emerged. These are region-growing
techniques, edge-detection techniques, and hybrid
techniques. Region-growing techniques rely on ‘seed’
regions which may have been determined ahead of
time, either by another algorithm or a human operator,
which are then grown outwards using a homogeneity
criterion based on spatial contiguity until the regions
meet at boundary zones. Boundary techniques, on
the other hand, use edge detection methods to iden-
tify boundary elements, and then attempt to connect
discontinuous boundaries together to form a spatial
partition. Hybrid methods use both region-growing
and edge detection strategies.

A large variety of segmentation strategies have
been developed over the past several decades. There
exist at least several hundred different types of seg-
mentation. Aggregation methods, hierarchical strate-
gies, Fourier techniques, context-based methods,
methods which statistically iterate towards a better
partition, fuzzy set theory approaches, texture-based
methods, and so on have all been developed. Although
in principle methods have been developed to extract
transition zones, these have largely been applied to
applications in medical and industrial imaging, and
only infrequently to remote sensing data. This is an
area where more work might be usefully attempted.
Despite the large number of segmentation techniques
which have been developed, relatively little attention
has been paid to the need to develop error measures for
the resulting partitions (Edwards 1995). Beauchemin
et al. (1995) surveyed different methods which have
been used to characterize the error or uncertainty as-
sociated with segmentation techniques. None of these
are fully satisfactory, but they do provide some insight
into the errors involved.

Over the past several years, the use of image seg-
mentation techniques has evolved towards methods
which mimic human vision more closely (Cantoni
et al. 1997). Again little effort to study error has ac-
companied these efforts. Nonetheless, these methods
of identifying boundaries and regions in images repre-
sent the beginning of a convergence towards the kinds
of processes used by humans in photo-interpretation
tasks, and may well provide new insights into the
sources of error and uncertainty found in the lat-

ter (Story and Congalton 1986; Edwards and Lowell
1996).

Statistical methods

The choice of statistical methods to detect ecotones
depends on the data available and the question asked
(Table 2). Several quantitative studies have addressed
the problems of detecting transition zones (Wiens et al.
1985; Cornelius and Reynolds 1991; Johnston et al.
1992). Statistically, a boundary can be defined as
the location where the highest rate of change occurs
(Burrough 1986). Recently, new methods have been
developed that use moving split-window techniques
(Figure 1a) to compute the amount of variance in
adjacent samples along transect data (Ludwig and Cor-
nelius 1987; Johnston et al. 1992) and the boundary is
the location where the value of variance is the highest.

With quantitative regularly spaced data, an edge
detection algorithm called ‘lattice-wombling’ (Fig-
ure 1b) can be used (Fortin 1994, Fortin and Drapeau
1995). This algorithm requires that the values of the
variable be mapped on the nodes of a rectangular lat-
tice as is the case for remotely sensed data. The rate
of change is computed for the first-order partial deriv-
atives of each of four quadrats forming a square (see
Fortin 1994, for the mathematical details). When the
values in the four quadrats are similar, the magnitude
of the rate of change will be close to zero; when the
values at the four quadrats change abruptly, the mag-
nitude of the rate of change is high. A boundary is
identified from the spatially adjacent locations which
are characterized by high values of the rate of change.
When several variables are available for study, the
mean rate of change is defined as the average of the
rate of change for the given assemblage of variables.

When field data are quantitative but irregularly
spaced, a triangulation-wombling edge detection algo-
rithm (Figure 1c) is more appropriate (Fortin 1994).
Indeed, as mentioned above, field data are usually
sampled using either random, stratified or system-
atic sampling designs, which require less sampling
effort than a complete survey of an area. To bypass
the regularly spaced data requirement, Fortin (1994)
modified the lattice-wombling algorithm in such way
as to deal directly with irregularly spaced samples.
The algorithm also finds first-order partial derivatives,
but rather than using four nearby points that form a
square, it uses the three nearest points that form a tri-
angle. The Delaunay algorithm can be used to find the
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Figure 1. (a) Moving Split-Window computed using a window of
8 sampled where the edge is at the location where the variance is
the highest. (b) Lattice-wombling computed for the four adjacent
quadrats that forms a square as indicated by the dash line. The num-
ber in each quadrat is the quantitative value measured. The filled
square indicated the location of the centroid at which the rate of
change is computed. Thez-axis is the quantitative value. The slope
of grey plane that fits the quantitative values represents the inten-
sity of rate of change. (c) Triangulation-wombling computed for the
three adjacent quadrats that forms a triangle as indicated by the dash
line. The number in each quadrat is the quantitative value measured.
The filled square indicated the location of the centroid at which the
rate of change is computed. Thez-axis is the quantitative value. The
slope of grey plane that fits the quantitative values represents the
intensity of rate of change. (d) Categorical-wombling computed for
pair of adjacent quadrats that are linked following a Delaunay net-
work indicated by dashed lines. An edge is computed as mismatch
between adjacent quadrats and is indicated by the filled squares.

list of nearby samples that form triangles (Upton and
Fingleton 1985).

Ecological data include not only quantitative vari-
ables, but also semi-quantitative and qualitative ones
such as presence/absence of species, type of soil, ge-
omorphologic formation, etc. With such qualitative
data, boundaries can be established by computing a
dissimilarity, or distance value, using the data of sev-
eral variables at once, and looking for the highest
dissimilarity between adjacent sampled points (Oden
et al. 1993; Fortin and Drapeau 1995). With this cate-
gorical approach (Figure 1d), qualitative data (or semi-
quantitative or quantitative data) are transformed into
quantitative coefficients such as dissimilarity mea-
sures, or a simple mismatch measure (Oden et al.
1993). To detect boundaries, only the dissimilari-
ties between pairs of spatially adjacent samples are
considered. Adjacent samples are defined as those di-
rectly connected by the links of a Delaunay network,
although other network structures can be used. An
overall high dissimilarity value indicates the presence
and location of a boundary.

However, as with any statistical analysis, a signif-
icance test is needed to establish whether or not the
highest rates of change observed are higher than would
be expected under a null hypothesis, here which is the
absence of a cohesive boundary. Indeed, statistics will
always yield numerical results regardless of whether
or not they make sense (e.g., edge detection algorithms
will always find some rates of change higher than oth-
ers). Thus, significance tests are needed to ensure that
the highest rates of change differ significantly from the
random expectation. Such significance tests have been
developed for transect data (McCoy et al. 1986) as
well for two-dimensional data where observed statis-
tics that reflect the characteristics of boundaries, such
as contiguity of the highest rates of change in a long
narrow line, are tested against expected values gen-
erated by randomizing the original data (Fortin and
Drapeau 1995; Fortin et al. 1996).

In general, an ecotone is a multivariate concept that
implies the co-occurrence of rapid change for several
features, such as density and composition of vege-
tation and soil moisture. It would be useful to test
whether or not different characteristics or measures
of different variables have boundaries that coincide.
Overlap statistics (Fortin et al. 1996) can be used
to assess the degree of spatial relationship between
the spatial location of boundaries as detected with
different variables. Significance of these overlap sta-
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tistics should also be assessed using randomization
tests (Fortin et al. 1996).

Once located, ecotones can be measured for width,
evenness, and sinuosity (Table 2). Width estimation
may be an associated output of the location algorithm,
or it could be measured by the magnitude of the gradi-
ent at points along the ecotone. Transect studies give
only point information at selected locations about the
steepness of rate of change and width, whereas area
studies can give information about the shape of the
ecotone, as well as the variation in gradient of change
and width. Evenness of the width can be measured by
an index of the dispersion of width measures along the
ecotone. The degree of sinuosity can be measured by
the length of the ecotone per unit area using the fractal
dimension (O’Neill et al. 1988). Milne and Johnson
(1995) used changes in the multifractal geometry of
density classes to support the hypothesis of a spatial
phase transition with regard to vegetation gradients or
ecotones.

Modeling

The GIS, remote-sensing, and statistical approaches
discussed in this paper can be applied to a variety of
ecotones. If we know the origin, maintenance factors,
or other dynamics associated with an ecotone, we may
be able to use that information to build a model that
incorporates these processes. Hydrologic modeling of
wetland and riparian ecotones are examples of this
approach.

Whether the ecotone of interest is between vegeta-
tion communities within a wetland or between aerobic
and anaerobic soil conditions, hydrology is often the
primary factor controlling the location, width, and
shape of wetland and riparian ecotones. Therefore, hy-
drologic models that use spatially defined parameters
are useful for detecting wetland and riparian ecotones.
In addition, hydrologic models provide a tool for mod-
eling seasonality in ecotone location (i.e., estimate
a spatial frequency distribution of ecotone boundary
location based on the time of year).

For a hydrologic model to predict locations of eco-
tones, it is best driven by spatial data. Typical model
data include elevation data available from the U.S.
Geological Survey (USGS) as Digital Elevation Mod-
els (DEM), land use data, and soils data from Nature
Resource Conservation Service surveys. Data are con-
verted to a common grid representation within a GIS
and linked to the model. The selection of the cell size
for the grid determines the size of ecotone that can

be modeled (Table 1). Additionally, the spatial na-
ture of the data and model allow output to be mapped
for interpretation. Examples of hydrologic models that
can be used in this way are TOPMODEL (Beven and
Kirkby 1979) and one, which we will call COUNT,
developed by Jensen and Dominque (1988).

TOPMODEL uses DEM, soil conductivity, and
rainfall data to generate hydrographs for a watershed
and to calculate topographic convergence values for
each cell within the watershed grid. Topographic con-
vergence is the ratio of drainage area to land surface
slope for an individual cell. Cells that have large
drainage areas and low slopes have high values of
topographic convergence, which means they are more
likely to be saturated or have standing water than
cells with small drainage areas and steep slopes. Thus,
TOPMODEL can model the moisture gradient within
a watershed. Topographic convergence and stream
network information can be combined with field ob-
servations to initially identify possible ecotones. Field
transect data on elevation, tree species, etc. can be
used to identify the threshold value for topographic
convergence where the ecotone occurs between upland
and riparian forest. At this point, as many variables
as are available, either measured or modeled, can be
evaluated or used (e.g., slope aspect, shading). Once
determined, a threshold value can be used to classify
the cells, indicating the ecotone location and shape as
controlled by moisture and other variables found to be
useful.

Although riparian ecotones can be approximated
using land-use and stream network data with a GIS,
the resolution of the stream network is often not fine
enough to capture the spatial pattern of hydrologic
processes. The model by Jensen and Dominque (1988)
can produce stream networks with over 95% accu-
racy for various types of landscapes based solely on
topography. COUNT uses DEM data to estimate the
number of cells that contribute hydrologically to any
cell within a DEM. The output from this model can
be calibrated with field data on overland flow from
storm events to identify ecotonal areas that may only
be apparent during storm events. The model has been
implemented in ARC/INFO GIS (ESRI 1993) as flow
accumulation and is used in conjunction with aspect,
curvature, and soil-water-holding capacity to derive an
integrated moisture index that can delineate transition
zones between vegetation types (Iverson et al. 1997).
Hunsaker and Levine (1995) effectively used this tech-
nique to delineate hydrologically active areas in Texas
and model nutrient loadings to streams.
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Conclusion

Ecotones, or transitional zones between adjacent
ecosystems, are important components of the land-
scape that have often been ignored in preference for
the study of the more homogeneous ecosystems. In
this paper, we have discussed the principal issues re-
lated to the quantitative detection of ecotones, such
as the importance of spatial scales and the edge de-
tection methods used. Recent developments in GISs
provide an approach both to analyze spatial data asso-
ciated with ecotones and to link image processing of
remotely sensed data, statistical analysis of field data,
and modeling of hydrologic processes. The challenge
is to use the available data and techniques in ways
that identify the heterogeneous zones as entities rather
than simply to reduce them to a line between adjacent
patches. A parallel has been drawn between the edge
detection and image segmentation methods found in
remote sensing and those applied to ecological data.
It seems reasonable, therefore, to exploit these cross-
disciplinary links to further develop and characterize
the delineation of transition zones across a wide vari-
ety of sources of data and methods of analysis. This
multidisciplinary effort should lead to a greater un-
derstanding of ecotone delineation, systematizing the
results from smaller studies to a broader context. Re-
search needs include image-processing algorithms for
edge detection and enhancement that are capable of
sensing disconnected boundaries and exploiting mul-
tispectral images. In addition, significance criteria and
statistical tests need to be used to quantify the level of
change observed in the data relative to random fluc-
tuations. Finally, we need a program of long-term
monitoring, in which both field and remotely sensed
data are collected by means of sampling designs ori-
ented more toward ecotone detection. Such a database,
coupled with techniques presented here, would allow
us to more fully understand the role of ecotones in the
landscape.
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Appendix A. Data resources

Site- to subwatershed-scale field studies designed to
collect data specifically to detect and monitor eco-
tones are relatively rare. As part of a workshop on
wetland and riparian ecotones (Wetland and Ripar-
ian Ecotones in Landscape Dynamics: A Workshop
on Applying Theory, Data, and Methods, 1990), a
questionnaire on existing data relevant to ecotones was
sent to over 200 candidate sites, including interna-
tional biosphere reserves (69), U.S. biosphere reserves
(79), long-term ecological reserves (15), environmen-
tal research parks (13), and workshop participants
(50). Twenty responses were received, and only 11
indicated data appropriate for ecotone studies. Re-
spondents indicated the need for data on wetlands,
detailed vegetation maps, long-term monitoring of
vegetation composition, and data collected using pro-
tocols that allow cross-site comparisons. Generally
speaking, very little field data appear to be available
or classified as relevant for ecotone studies. An ex-
ample of available, relevant information is Appendix
A in Gosselink et al. (1990), which contains lists of
many sources of aerial photos and data for the study of
bottomland and hardwood wetland ecosystems and a
summary of present and future remote sensing sources
by the U.S. Army Corps of Engineers (1993).

Ecotone detection at the watershed and larger
scales can effectively use extant data acquired from
both aircraft and satellite platforms. Many federal
agencies in the United States have highly organized
data directories, database systems, and the ability to
respond to outside inquiries for data. On-line direc-
tories of environmental data can be accessed on the
Internet to locate desired data sets and to determine
how to acquire them. Some of the major sources of
data are summarized below.

The National Aeronautics and Space Admin-
istration (NASA) Global Change Master Direc-
tory (GCMD) (http://gcmd.gsfc.nasa.gov) "points to"
sources of data related to global change programs,
which may reside either within or outside of the NASA
archive. In this way, a person searching for vegetation
classifications, for example, may place an initial in-
quiry with GCMD and be referred to relevant data sets
held by other agencies.
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Table A.1.Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers
(DAACs) and Affiliated Data Centers

ASF [Alaska SAR (Synthetic Aperture Radar) Facility] DAAC (http://www.asf.alaska.edu/)

Alaska SAR Facility (Fairbanks, Alaska)

Discipline: Polar processes, SAR products

EDC [EROS (Earth Resources Observation Systems) Data Center] DAAC -

(http://edcwww.cr.usgs.gov/landdaac/landdaac.html)

EROS Data Center (Sioux Falls, South Dakota)

Discipline: Land processes

GSFC (Goddard Space Flight Center) DAAC (http://daac.gsfc.nasa.gov/)

NASA Goddard Space Flight Center (Greenbelt, Maryland)

Discipline: Upper atmosphere, global biosphere, atmospheric dynamics, geophysics

JPL (Jet Propulsion Laboratory) DAAC (http://podaac-www.jpl.nasa.gov/)

Jet Propulsion Laboratory (Pasadena, California)

Discipline: Physical oceanography

LaRC (Langley Research Center) DAAC (http://eosdis.larc.nasa.gov/)

NASA Langley Atmospheric Sciences Data Center (Hampton, Virginia)

Discipline: Radiation budget, tropospheric chemistry, clouds, aerosols

NOAA (National Oceanic and Atmospheric Administration) Satellite Active Archive (SAA)

(http://www.saa.noaa.gov/common _www_html/impmess.html)

National Oceanic and Atmospheric Administration Satellite Active Archive (Camp Springs, Maryland)

Discipline: Satellite data (atmosphere, land, ocean, earth sciences, remote sensing)

NSIDC (National Snow and Ice Data Center) DAAC (http://www-nsidc.colorado.edu/NASA/GUIDE/)

National Snow and Ice Data Center (Boulder, Colorado)

Discipline: Snow and ice, cryosphere and climate

ORNL (Oak Ridge National Laboratory) DAAC (http://www-eosdis.ornl.gov/welcome.html)

Oak Ridge National Laboratory (Oak Ridge, Tennessee)

Discipline: Biogeochemical dynamics

The National Oceanic and Atmospheric Adminis-
tration’s (NOAA’s) Environmental Services Data Di-
rectory (ESDD) (http://www.esdim.noaa.gov/NOAA-
Catalog/NOAA-Catalog .html) allows users to search
for publicly available environmental data held by pub-
lic and private sources throughout the world. Data
sources include descriptions related to climatology,
meteorology, ecology, pollution, geology, oceanog-
raphy, and remote sensing satellites. ESDD contains
descriptions of over 8,000 datasets and NOAA’s legacy
National Environmental Data Referral Service con-
tains descriptions for over 22,200 datasets.

The U.S. Geological Survey (USGS) Earth Science
Data Directory (ESDD) (http://www.usgs.gov/fact-
sheets/ESDD/ESDD.html) is a system for readily de-
termining the availability of specific earth science
and natural-resource data. It offers on-line access

to a USGS repository of information about earth-
science and natural-resource databases. The term
"earth-science and natural-resource data," as used for
ESDD, is an all-embracing term referring to any sys-
tematic body of knowledge, automated or not, relating
to the Earth, its environment and its energy, min-
eral, water, land, plant, animal, and other resources.
Geographic, sociologic, economic, and demographic
databases are among those cataloged. ESDD also pro-
vides leads to data for geographic information system
(GIS) applications.

The U.S. Federal Geographic Data Committee
(FGDC) Clearinghouse Activity (http://www.fgdc.gov/
clearinghouse/index.html) is a decentralized system
for digital geospatial data. Governmental, nonprofit,
and commercial participants worldwide make their
collections of spatial information searchable and ac-
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cessible on the Internet using free reference imple-
mentation software developed by the FGDC. The sys-
tem uses the metadata elements defined in the Content
Standards for Digital Geospatial Metadata to pro-
vide consistent query and presentation across multiple
participating sites.

The Global Information Society initiative is spon-
soring the Environment and Natural Resources Man-
agement project (http://www.g7.fed.us/enrm/enviro.
html) that will use the information infrastructure to ad-
dress key environmental and natural resources issues
of relevance to both developed and developing nations.
The objective is to increase the electronic linkage and
integration of sources of data and information rele-
vant to the environment and natural resources. The
project builds on existing international efforts to create
a Global Information Locator service definition, to fur-
ther interconnect catalogs and directories around the
world and ensure their accessibility to developed and

developing countries, and to facilitate the exchange
and integration of data and information about the Earth
for use in a variety of applications. The long-term re-
sult will be a virtual library of data and information
held in globally distributed electronic sites accessible
on emerging electronic networks.

The Earth Observing System (EOS) Data and In-
formation System (EOSDIS) is a comprehensive data
and information system developed by NASA under the
Mission to Planet Earth (MTPE) Program. EOSDIS
manages data from NASA’s past and current Earth
science research satellites and field measurement pro-
grams, and provides data archive, distribution, and
information management services. EOSDIS consists
of an interconnected network of specialized Data Ac-
tive Archive Centers (DAACs) that provide search and
order services. The DAACs and their areas of focus
are listed in Table A.1.

Acronyms related to remote sensing

Acronym Definition

Agencies:

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

USGS U.S. Geological Survey

EPA U.S. Environmental Protection Agency

EROS Earth Resources Observing System

Sensors:

AVHRR Advanced Very High Resolution Radiometer

MSS MultiSpectral Sensor

TM Thematic Mapper

SPOT Systeme Pour d’Observation de la Terre

CZCS Coastal Zone Color Scanner

NHAP National High Altitude Photography

ESTAR Electronically Scanned Thinned Array Radiometer

AIRSAR Airborne synthetic aperture radar

Others:

GIS Geographic Information System

NVI Normalized Vegetation Index

DEM Digital Elevation Model
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