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Abstract 

We are using a deterministic regression tree analysis model (DISTRIB) and a stochastic migration model (SHIFT) 
to examine potential distributions of - 66 individual species of eastern US trees under a 2 x C02 climate change 
scenario. This process is demonstrated for Virginia pine (Pinus virginiana). USDA Forest Service Forest Inventory 
and Analysis data for more than 100000 plots and nearly 3 million trees east of the 100th meridian were analyzed 
and aggregated to the county level to provide species importance values for each of more than 2100 counties. 
County-level data also were compiled on climate, soils, land use, elevation, and spatial pattern. Regression tree 
analysis (RTA) was used to devise prediction rules from current species-environment relationships, which were then 
used to replicate the current distribution and predict the potential future distributions under two scenarios of climate 
change (2 x CO,). RTA allows different variables to control importance value predictions at different regions, e.g. at 
the northern versus southern range limits of a species. RTA outputs represent the potential 'environmental envelope' 
shifts required by species, while the migration model predicts the more realistic shifts based on colonization 
probabilities from varying species abundances within a fragmented landscape. The model shows severely limited 
migration in regions of high forest fragmentation, particularly when the species is low in abundance near the range 
boundary. These tools are providing mechanisms for evaluating the relationships among various environmental and 
landscape factors associated with tree-species importance and potential migration in a changing global climate. 
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1. Introduction 

With mounting evidence of a general trend 
toward global warming, (MacCracken, 1995), var- 
ious climate models are predicting increases in 
global temperatures of 1-4.5"C during the next 
century due to a doubling of atmospheric CO, 
(Kattenberg et al., 1996). It is projected that these 
increases will have profound biological effects, 
including changes in species distributions (Over- 
peck et al., 1991; Peters et al., 1992; Shriner and 
Street, 1998). Some ecological studies have at- 
tributed observed northward shifts in species dis- 
tribution to ongoing global warming (Barry et al., 
1995; Parmesan, 1996). Paleontological studies of 
North American plants during the Holocene 
warming have shown that: (a) species generally 
shifted northward (Delcourt and Delcourt, 1988); 
(b) species did not shift in unison (Davis, 1981; 
Webb, 1992); (c) variations in competition and 
dispersal mechanisms seemed to have little influ- 
ence on vegetation migration patterns or rates (i.e. 
historical data show little distinction in past mi- 
gration patterns between trees with wind-dis- 
persed or animal-dispersed propagules 
(Malanson, 1993); (d) while species generally re- 
sponded in a uniform manner (Webb et al., 1987; 
COHMAP, 1988). evidence o f  occasional migra- 
tion lags strongly suggests that, among all organ- 
isms, species tended to migrate at a rate near their 
physical maximum (Huntley, 1991). For example, 
beetle carapaces, which are indicators of relatively 
warm water temperatures, appeared in northern 
lakes long before the vegetation that would be 
expected under such a climate (Coope, 1977, 1979; 
Huntley, 1991). 

Scenarios of global warming project climate 
changes that may be both faster and greater in 
magnitude than those of the Holocene period 
(Overpeck et al., 1991; Davis and Zabinski, 1992), 
though recent evidence suggests that past climate 
changes could be rapid, potentially about - 5°C 
in as few as several decades (Nicholls, 1996). Past 
tree migrations, however, were largely a result of 
plants moving through unfragmented landscapes. 
With today's fragmented landscapes, there are 
fewer individuals producing propagules and fewer 
sites for these propagules to colonize. Dramatic 

ecological changes in the modern landscape sug- 
gest that life-history attributes (e.g. dispersal 
mode, age to mortality), ecological attributes (e.g. 
competitive ability, shade tolerance, habitat 
breadth), and context (e.g. landscape pattern, 
habitat availability) may be critical in predicting 
future plant assemblages. 

Many models are being used to assess possible 
outcomes of climate change on the Earth's forest 
biota (Pitelka et al., 1997). Because these models 
cannot be truly validated (Rastetter, 1996; Rykiel, 
1996), multiple approaches are being used to look 
for convergence (e.g. Hobbs, 1994; VEMAP mem- 
bers, 1995; Lauenroth, 1996). Several models as- 
sess changes in global biomes (e.g. Prentice et al., 
1992; Woodward, 1992; Neilson, 1999, including 
recent models that couple vegetation effects di- 
rectly into the global circulation models (GCM) 
so that feedbacks are continuously incorporated 
into the outcome (e.g. Foley et al., 1996). Others 
assess several species over a regional scale (e.g. 
Overpeck et al., 1991; Botkin and Nisbet, 1992; 
Burton and Cumming, 1995; Dyer, 1995; Schulze 
and Kunz, 1995; Hughes et al., 1996; Starfield and 
Chapin, 1996; Sykes et al., 1996). According to 
Pitelka et al., (1997), the best research approach 
in reducing uncertainty associated with possible 
future outcomes is to analyze specific regions and 
vegetation types. 

In this paper we focus on the development and 
trial application of three procedures required to 
predict future transient distributions of trees. 
First, we estimate the current distribution of tree 
abundance. Second, we use a deterministic model, 
called DISTRIB, to predict potential suitable 
habitat and future species abundance for individ- 
ual tree species by relating current climate and 
other environmental variables to their present dis- 
tribution and abundance and then project these 
values onto future climate scenarios. These two 
steps have been completed for SO tree species from 
the eastern United States, and are being published 
in an atlas which details the distributions of im- 
portance, the environmental variables related to 
each species' importance, and the potential future 
suitable habitat modeled from DISTRIB for each 
species (Iverson et al., in press). Third, we use a 
stochastic model, called SHIFT, to model likely 



INPUTS DISTRIB SHIFT 
OUTPUTS OUTPUTS 

Forest 
Cover, % 

Range Maps 

I FIA K-11 IV Acmal Iv* 

Current Climate 
Soil Predicted 
Landscape Current* 
Land use 
Elevmon 

1 Future Climate .n' d-p$ijywl 
Landscape 
Land use SHIFTed 
Elevation GISS 

Fig. I .  Flow diagram shows inputs. DISTRIB outputs, and SHIFT outputs to predict possible future species importance values after 
100 years in a globally changed climate. Boxes showing an asterisk (*) are mapped in Fig. 3 for Virginia pine. 

scenarios of species migration through fragmented 
forested habitats. These methods require a num- 
ber of critical assumptions and several numerical 
approximations based on statistical analyses. The 
intent is to derive new information on the factors 
associated with the current distributions of spe- 
cies, and then create projections on how species 
may respond to a doubling of atmospheric CO,. 
Finally, we describe our process in detail for 
Virginia pine (Pinus virginiana). 

The procedures we developed include three pri- 
mary components: inputs, DISTRIB outputs, and 
SHIFT outputs (Fig. 1). The inputs (Table I) are 
derived from a range of sources to provide infor- 
mation for DISTRIB and/or SHIFT models. In 
DISTRIB, we use regression tree analysis with 33 
variables to predict current and potential future 
species distributions. With SHIFT, we add a 
model that incorporates the effects of time and 
fragmented forest cover to provide a realistic pic- 
ture of predicted distributions after 100 years. 

2.1. Estimates of current abundance 

An opportunistic species, Virginia pine is com- 
mon in the Piedmont and the foothills of the 
Appalachian Mountains in the south eastern 
United States. It is a moderate to slow-growing 
species, generally short lived with relatively short 
generation times (Carter et al., 1990). Virginia 
pine establishes easily on abandoned and cutover 
lands, nearly to the point of being considered a 
'weed species' by some. It grows best in humid 
climates, on low pH soils classified as Spodosols 
or Inceptisols, and at elevations below 760 m 
(Carter et al., 1990; Iverson et al., in press). 

Our first task was to determine current distribu- 
tion limits. Range maps of Little (1971) were used 
to set the primary distribution boundaries of spe- 
cies. Little's distributions were drawn from exten- 
sive field experience and herbaria records. We 
modified Little's species boundary slightly (see 
Fig. 3a) on the basis of a current data set of 
USDA Forest Service forest inventory and analy- 
sis (FIA) plots (Hansen et al., 1992). The FIA 
data are based on more than 100000 plots and 
nearly 3 million trees assessed east of the 100th 
meridian in the eastern United States (Iverson et 
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al., 1996). Because FIA data (and other data sets) 
are reported by county rather than a on standard 

Table 1 
County environmental and land-use variables used in the RTA 
process and reported for each county 

Abbreviation Var~able 

Climcrtic Factors 
AVGT 
JANT 
JULT 
PPT 
PET 
MAYSEPT 
JARPPET 

Sail Fr,ctors 
TAWC 

CEC 
PH 
PERM 
CLAY 
B D 
KFFACT 

OM 
ROCKFRAG 

NO10 
NO200 
ROCKDEP 
SLOPE 
O R D  

ALFTSOL 
INCEPTSL 
MOLLISOL 
SPODOSOL 

Land UselCo~,er 
F(~ctors 

FORST.LND 
CROPS 
GRAZE.PST 
DIST.LND 

Mean annual temperature (OC) 
Mean January temperature ("C) 
Mean July temperature ("C) 
Annual precipitation (mm) 
Potential evapotranspiration (rnm/month) 
Mean May-September temperature ("C) 
July-August ratio of precipitation to 
PET 

Total available water capacity (cm, to 
152 cm) 
Cation exchange capacity 
Soil pH 
Soil permeability rate (crnlhour) 
Percent clay (<0.002 mm size) 
Soil bulk density (g/m2) 
Soil erodibility factor, rock fragments 
free 
Organic matter content ('XI by weight) 
Percent weight of rock fragments 8-25 
cm 
Percent passing sieve No. 10 (coarse) 
Percent passing sieve No. 200 (fine) 
Depth to bedrock (cm) 
Soil slope (percent) 
Potential soil productivity, ms of 
timberjha) 
Alfisol ('XI) 
lnceptisol ( 'Kt)  

Mollisol (%I) 
Spodosol ('%I) 

Forest land ('%,) 
Cropland ('%I) 
Grazing pasture land.(%) 
Disturbed land (I%,) 

Eleccrf ion 
MAX.ELV Maximum elevation (m) 
MIN.ELV Minimum elevation (rn) 
ELV.CV Elevation coefficient of variation 

La~~dscupe Pcirtenl 
E D  Edge density (rn:ha) 

grid, and most all of the counties in the east are 
similar in size, we selected the county as the 
sampling unit for our study. 

Second we created and mapped a measure of 
abundance within the distribution limits. 
Mapped outputs from the FIA summaries by 
county were overlaid with digitized Little 
boundaries. We used importance value (IV) as a 
measure of abundance. County estimates of 
Virginia pine's IV were derived from FIA plot 
data by calculating the mean IV for all plots in 
the county. Relative amounts of basal area and 
number of stems (maximum score of 100 for 
each) were used so that a maximum IV of 
200 could potentially be reached if the plots 
were entirely comprised of Virginia pine (Iver- 
son et al., 1996). Relative values also were used 
to emphasize the position of Virginia pine rela- 
tive to other species in the county regardless of 
absolute quantities of basal area or number of 
stems. 

Third, we smoothed the data using an in- 
verse distance weighting method on the county 
centroids (IDW in ArciInfo Grid Software, En- 
vironmental Systems Research Institute, 1993). 
IDW creates a smoothed surface, more 
amenable as input into the SHIFT model com- 
pared to raw FIA data which contain disjunct 
county boundaries. This process created a sur- 
face that did not contain contrived boundaries 
corresponding to county lines. Because there is 
only one FIA plot for every 1500-2500 ha of 
forest, species that occur sparsely are often un- 
recorded from a county where it is indeed 
present. For gaps of no recorded occurrences of 
the species within the distribution limits de- 
scribed by Little, a small IV was assigned to 
obtain a 'present' status within Little's 
boundaries, and to achieve a smoothed distribu- 
tion for input into SHIFT; this value was 0.25 
for Virginia pine. 

2.2. Preclicting rrer nbru1(lr17ce f,wn 
maironrnent~rl rrlc~tiortships 1r.itlt DISTRIB 

Environmental factors. modified by distur- 
bance processes, generally control the overall 
range of distribution and abundance of tree spe- 
cies (Woodward, 1987). Within a region, i t  has 
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been assumed that species respond primarily to 
regional climate factors, whereas variations in ter- 
rain, soil, and land-use history tend to control 
local distributions. However, we have found that 
soil and elevation factors also can be important 
with respect to the regional IV distributions of 
some species (Iverson and Prasad, 1998). We are 
interested in predicting potential species range 
shifts following climate warming. Working at a 
continental scale, different variables may drive 
species abundances within different portions of 
their ranges. Thus, the preferred statistical tech- 
nique is one that is flexible enough to capture 
these spatial variations in driving variables. Re- 
gression tree analysis (RTA, also known as clas- 
sification and regression trees, or CART) is well 
suited for this purpose because it is based on 
recursive sampling of the data to form prediction 
rules and it automatically incorporates the possi- 
bility of interactions among the predictors (Brei- 
man et al., 1984). 

Although a relatively new technique in the eco- 
logical sciences, RTA is rapidly gaining in popu- 
larity for devising prediction rules for rapid and 
repeated evaluation, as a screening method for 
variables, as a diagnostic technique to assess the 
adequacy of linear models, and for summarizing 
large multivariate data sets (Clark and Pergibon, 
1992). RTA uses a binary recursive partitioning 
approach to split a data set, based on a single 
predictor variable at each split, into increasingly 
homogeneous subsets until another split is infeasi- 
ble. The variables that operate at large scales 
usually split the data early in the model, while 
variables that influence the response variable at 
more local scales operate later. The process is 
explained in Michaelsen et al. (1994) and Iverson 
and Prasad (1998). 

For the development of our model, DISTRIB, 
more than 100 predictor variables were gathered 
or  calculated for each of more than 2100 counties 
in the FIA data set. These variables were reduced 
to 33, which included: (a) seven climatic variables 
(US Environmental Protection Agency, 1993); (b) 
18 soil variables (Olson et al., 1980; US Depart- 
ment of Agriculture and Soil Conservation Ser- 
vice, 1991); (c) three elevation variables (US 
Geological Survey, 1987); (d) four land uselland 

cover variables (Olson et al., 1980; Zhu and 
Evans, 1994); (e) one landscape pattern variable 
(based on satellite land cover data (Zhu and 
Evans, 1994) analyzed by FRAGSTATS (Mc- 
Garigal and Marks, 1995)). Selection of final vari- 
ables was accomplished by: (a) correlation 
analysis to remove some highly redundant or 
irrelevant variables (from 138 to 65 variables); (b) 
summary and weighting of variable importance 
with RTA analysis of 103 species (65 to 44 vari- 
ables); (c) expert opinion on relevancy and inter- 
pretability (44 to 37 variables); and (d) removal of 
climate variables that have no analog in future 
GCM scenarios (37 to 33 variables) (Table 1). 
Trial RTA runs with various subsets of variables 
showed that the models were not appreciably 
affected by the reductions in variables. Processing 
of soil variables via STATSGO data is explained 
in Iverson et al. (1996); for information on data 
sources, see Iverson and Prasad (1998). 

RTA was conducted so that the IV's of Virginia 
pine, as derived from actual FIA plot data could 
be compared with those of a predicted current 
distribution according to RTA modeled output. 
We then estimated potential future IV's for Vir- 
ginia pine by changing the climate inputs as pre- 
dicted by two GCM outputs: GFDL (Wetherald 
and Manabe, 1988) and GISS (Hansen et al., 
1988). Predicted future climate data as processed 
from those models were obtained from the US 
Environmental Protection Agency (1993). The 
output of potential distribution then becomes the 
'envelope' into which the species is allowed to 
migrate with the SHIFT model. Assumptions for 
the model are as follows: (a) the GCM scenarios 
are realistic with respect to future temperature 
and precipitation; (b) only the climate variables 
listed in Table 1 will change with the climate- 
change scenario, though in reality one would also 
expect various soil and landscape variables to 
change to some degree; (c) the suite of county- 
level data, used as predictor variables, is reliable 
and representative of the habitat requirements for 
Virginia pine; (d) changes in competition among 
species and/or water-use efficiency due to in- 
creased C 0 2  would not affect outcomes; (e) the 
distribution and IV's of Virginia pine are in equi- 
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librium with the present climate; (f) violations of 
statistical assumptions, including spatial autocor- 
relation, would not change the predictions 
markedly. 

In addition, while RTA may be the most appro- 
priate tool for analyzing data sets with many 
possibly interacting predictor variables and for 
separating macro and micro-level effects on the 
response, there are limitations. The ideal response 
should be approximately normal since least 
squares and the group mean are used in deriving 
the best split (Clark and Pergibon, 1992); this 
condition is not always met because of the high 
frequency of zeros. However, since the regression 
is local, the effect of long tails is much more 
confined than in a linear regression model (B.D. 
Ripley, personal communication). 

In a criticism of model-based assessments of 
climate change effects on forests, Loehle and 
LeBlanc (1996) noted that many forest simulation 
models assume that tree species occur in all envi- 
ronments where it is possible for them to survive, 
and that they cannot survive outside the climatic 
conditions of their current range (fundamental vs. 
realized niche). The DISTRIB model addresses this 
criticism by considering a wide range of variables 
and evaluating only potential range changes due to 
climate change. DISTRIB also assumes equi- 
librium, but acknowledges that soil, land use, and 
elevation can be barriers to migration. In the next 
section we describe how the SHIFT model incor- 
porates time and spatial context into migration. 

2.3. Simulation of species migration 

A spatially explicit, cellular automata simulation 
model, SHIFT, was developed to describe a prob- 
ability distribution for the colonization of cur- 
rently unoccupied habitats (Schwartz, 1992). 
SHIFT uses three variables (habitat availability, 
within-stand abundance in occupied cells, and 
distance between occupied and unoccupied cells) to 
calculate a colonization probability for each unoc- 
cupied cell in each generation of a simulation run. 
SHIFT minimizes assumptions about and approx- 
imations of biologically important variables (e.g. 
seedling establishment, juvenile mortality, inter- 
specific competition) in favor of the simple as- 

sumption that species can maintain an average 
migration rate of 50 kmlcentury in fully forested 
regions. This rate is the upper end of the range of 
observed migration rates during the Holocene 
(Davis, 1981, 1989). SHIFT predicts migration 
rates to slow as habitat availability decreases, 
leaving fewer colonization opportunities and a 
greater mean distance between cells. In a hypothet- 
ical landscape, migration rates are observed to be 
as low as 10 kmlcentury when 20% of the land- 
scape remains as suitable habitat (Schwartz, 1992). 
These results do not differ greatly from similar 
models that have specified more biological vari- 
ables to predict migration response to habitat 
fragmentation (e.g. Dyer, 1994, 1995; Collingham 
et al., 1996). 

The equation SHIFT uses to determine the 
probability of an unoccupied cell becoming colo- 
nized (Ci) is: 

Ci= Hi x S (H, x F, x l/D;) (1) 

where H represents habitat availability in occupied 
( j )  and unoccupied (i) cells, F, represents the 
within-stand abundance (IV) of the target popula- 
tion in occupied cells, and Dii represents the dis- 
tance between occupied and unoccupied cells. 
SHIFT uses an inverse power parameter (a) of the 
distance between sites (Du) to determine coloniza- 
tion probability (Schwartz, 1992). This dispersal 
function was chosen based on fitting of the tails of 
empirical seed-dispersal data sets (Portnoy and 
Willson, 1993). The inverse power function allows 
more long-distance dispersal than a negative expo- 
nential function, the other commonly used disper- 
sal function. The coefficient (a) was determined by 
calibrating the species to mi~ra te  through the 
habitat matrix at 50 kmlcentury when habitat 
availability was high (80% of all cells) and forest 
abundance was moderate. 

Habitat availability of occupied (H j )  and unoc- 
cupied (Hi) cells was determined by AVHRR- 
derived forest density (percent forest by AVHRR 

., 
pixel) (Zhu and Evans, 1994), as modified by forest 
type.(i.e. extremely high agricultural regions in the 
Midwest were coded as non-forest). Species abun- , 

dance of occupied cells (5) was estimated from a 
smoothed IV map of FIA data as described previ- 
ously. 
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SHIFT was run with a grain size of 3 km and 
with an extent of the eastern United States as 
described earlier. SHIFT was run to simulate 100 
years, or five generations, based on an estimated 
(and optimistic) average maturation period of 20 
years (Altman and Dittmer, 1962) for growth of 
Virginia pine within forested stands. One hundred 
years also approximates the time projected by the 
Intergovernmental Panel on Climate Change 
(IPCC) for the Earth to reach 2 x CO, (500 
ppmv, which approaches twice the preindustrial 
levels of 280 ppmv (Houghton et al., 1996)). This 
simulation process was repeated for 50 replica- 
tions to describe each initially unoccupied cell by 
a colonization probability over the next century. 

Along with its relatively simple math, SHIFT 
carries several simplifying assumptions. First, we 
make several assumptions for computational con- 
venience: (a) local extinctions are not possible 
(these would tend to lower migration rates); (b) 
habitat is coded simply as a percentage of forested 
habitat per cell so that variations in forest type or 
matrix quality are not considered; and (c) colo- 
nization is equally likely in all directions from an 
occupied site. Second, we assume that biological 
processes, such as species autecologies and inter- 
specific interactions, that gave rise to observed 
Holocene migration rates continue to dominate 
migration responses of trees. 

We know that anthropogenically introduced 
species and species moving through agriculture or 
along roadsides move very fast; they probably are 
not migration limited. Among trees this is a lim- 
ited subset and probably includes only several 
trees along with many shrubs. We do not have 
sufficient ecological data to identify all these spe- 
cies precisely. In addition, many trees (such as 
Virginia pine) may move quite well into disturbed 
second growth forest. Since we do not distinguish 
between low- and high-quality forest (only quan- 
tity of forest within a 3 x 3 km cell), we assume 
that all forest is of high habitat quality. Thus we 
do not underestimate habitat availability for 
weedy trees but will overestimate availability for 
trees more specific to high-quality forests. The 
model, as it stands, seems appropriate for Virginia 
pine. We also assume that there will be relatively 
few patches that move from a non-forested to a 

forested state, and that they are balanced by 
patches moving in the opposite direction. For the 
past 30 years we have seen forest percentages 
grow in many parts of the eastern United States, 
but this trend is now slowing or reversing due 
largely to urbanization (Powell et al., 1993). 

Finally, trees with animal-dispersed seeds have 
the potential to be net benefactors of habitat loss 
and fragmentation because their seed dispersers 
may sometimes be moving longer distances, on 
average, as they move from patch to patch. This 
would increase the mean distance of long-distance 
dispersal events or the frequency of long-distance 
dispersal events. We do not have sufficient disper- 
sal information on most of these species to distin- 
guish this effect. Historical data show little 
distinction in the past migration patterns between 
trees with wind-dispersed or animal-dispersed 
propagules. For our purposes, we use this histori- 
cal fact as justification for not distinguishing 
among life histories of trees for attributes other 
than mean generation time. 

2.4. illerging DISTRlB and SHIFT 

By combining results from the estimation of 
current distribution, the RTA analysis of future 
potential distribution (DISTRIB) and migration 
(SHIFT), we predict the potential response of 
Virginia pine to global warming over the next 
century. Simple intersection of the results from 
both models yields maps where constraints on 
future distributions are provided by each model: 
DISTRIB gives those areas where suitable habitat 
can occur, while SHIFT provides realistic scenar- 
ios of migration rates over the next century. We 
create a plausible prediction of the extent to 
which the region of climatically suitable habitat 
will shift and the extent to which this new distri- 
bution envelope will be saturated due to species 
migration through the landscape as it currently 
exists. Of course, the model is fraught with as- 
sumptions and is best viewed as a hypothesis for 
potential response. This is an important step, 
however, in that it will guide the scale of empirical 
studies to examine for global warming responses 
of trees. and provide early information on forest 
management. 
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Fig. 2. RTA tree diagram showing environmental drivers to the Virginia pine IV's. Predicted IV's are given at the terminal nodes, 
while the number of counties following a particular split are given in brackets. 

2.5. Data management 3. Results and discussion 

Developing predictive models for the distribu- 
tion of all common tree species in the eastern 
United States requires extensive data management 
and substantial computing power. Our geographi- 
cal information system (GIs), statistical analysis, 
statistical modeling, programming, and simula- 
tion modeling are conducted in a workstation 
environment. The hardware platform was a Sili- 
con Graphics workstation; software included vari- 
ous Unix tools, Arc/Info (Environmental Systems 
Research Institute, 1993), S-PLUS (Statistical Sci- 
ences, 1993), and the C programming language. 
Details on the operating environment are found in 
Prasad and Iverson (1997). 

In this section we describe outputs of each 
model separately for Virginia pine, then the com- 
bination, as shown in Fig. 1.  The final output goal 
is a realistic picture of the distribution of Virginia 
pine importance values after 100 years of climate 
change. 

3.1. DISTRIB Output 

The tree diagram for Virginia pine, one output 
from RTA, shows the importance of soil and 
climatic variables in the distribution of the species 
(Fig. 2). The length of the branches is propor- 
tional to the variance explained by the model, so 
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that pH, January temperature, and July tempera- 
ture each explain similar amounts of variance in 
the model. pH causes the initial split of the data 
records, with most of the Virginia pine occurring 
in locations with pH <4.35. If the pH is low 
(below 4.35), the greatest IV's are found when the 
mean January temperature exceeds 0.66OC. 
Within those 313 counties, maximum IV's (IV = 
35.1) are reached for eight counties in the south- 
ern Appalachians that have warmer July 
temperatures ( > 25. I0C), but also potential evap- 
otranspiration in excess of 67.4 mmlmonth and a 
depth to bedrock of at least 56.3 cm (Figs. 2 and 
3b). The next best conditions for Virginia pine are 
when the pH is ~ 4 . 3 5 ,  the January temperature 
is > 0.66"C, the mean July temperature is < 
25.1°C, and elevations exceed 889 m; under these 
conditions, IV's can reach up to 26.3 (Fig. 2). 
Temperatures and PET would be expected to 
change under 2 x CO,, but soil pH (assumed here 
not to change under future climate scenarios) 
remains as the most important variable dictating 
the current (and future) distribution of Virginia 
pine. 

The DISTRIB-predicted current estimate shows 
a reasonable relationship (correlation coefficient 
of 0.71) to the actual FIA data as aggregated to 
the county level (Fig. 3a,b). The zones of rela- 
tively high importance (IV > 25), primarily in the 
southern Appalachians, are replicated on the ac- 
tual and predicted current maps, with more error 
associated with the locations of low IV. As de- 
scribed in Iverson and Prasad (1998), a 20% vali- 
dation data set was withheld for comparison to 
DISTRIB estimates, with good agreement. Be- 
cause we have established a model that predicts 
current IV reasonably well for Virginia pine, we 
proceeded to 'change' the climate and evaluate 
potential future distributions based on this 
changed climate. 

The smoothed IV map (Fig. 3c) shows the 
modified IV's for the current distribution of Vir- 
ginia pine that are used as input into the SHIFT 
model. This smoothed map allowed a more gener- 
alized output from SHIFT than when migration is 
depicted out from disjunct, rectangular counties 
near the edge of its range. 

The potential distribution of Virginia pine 
abundance under a doubled CO, climate, as pre- 
dicted by DISTRIB using one GCM output 
GISS, (Wetherald and Manabe, 1988), is shown in 
Fig. 3d. There is a large reduction in overall 
suitable habitat, with some northward movement 
of the species distribution limit and a northward 
expansion of regions of high species abundance. 
In this scenario, the suitable habitat is primarily 
restricted to the southern Appalachians. Area oc- 
cupied by Virginia pine is expected to decrease 
substantially. The models project a decrease in 
suitable habitat of roughly 88% from the GFDL 
GCM and 54% for the GISS GCM scenario (Fig. 
3d; Fig. 4a). Still, there is expansion northward so 
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Fig. 4. Predicted area changes for Virginia pine according to 
(a) DISTRIB model and (b) SHIFT model. 
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Fig. 5. Predicted maximum northward movement (km) of the 
front of Virginia pine according ro two DlSTRlB outputs 
( G F D L  and GISS GCMs), S H I n  without restriction, and 
SHIFT combined with the DISTRIB outputs (GFDL and 
GISS had the same northward projections when combined 
with SHIFT). 

that with GISS, 72000 km2 of new area, into 
Pennsylvania, Massachusetts, Connecticut, and 
Rhode Island would be suitable habitat after a 
climate change (Fig. 3d; Fig. 4a). With GFDL, 
the northward expansion would be 27 000 km2. 

The DISTRIB model estimates a potential 
for Virginia pine to find suitable habitat north- 
ward for up to 260 km, with some northward 
movement of the southern boundary as well (Fig. 
5). Flannigan and Woodward (1994), working 
with another pine species (Pinzu resinosa) in east- 
ern North America (but using only climatic 
ariables), estimated a potential northeast- 
ward movement of up to 800 km, with a sharp 
northward movement of the southern boundary 
as well. 

3.2. SHIFT otitput 

The SHIFT output (Fig. 3e) shows the percent 
probability of colonization after five generations 
of migration ( - 100 years) for Virginia pine. For 
example, a 50% colonization probability means 
that 50% of the 3 x 3 km cells would become 
occupied by the species. Under this unrestricted 
model, the estimated changes in range area show 
expansion of 4.8, 9.1 and 24.9% for colonization 
probabilities exceeding 50, 20 and 1%, respec- 
tively. Similarly, because SHIFT incorporates the 

rare chance of long-distance dispersal (which will 
occur, see blalanson and Armstrong, 1996; Clark, 
1998; Clark et al., 1998), maximum northward 
movement of the northern boundary can be as 
much as 480 km in this model (SHIFT alone with 
> 1% colonization probability, Fig. 5). This ob- 
servation is partly a result of our using a long- 
tailed dispersal curve such that long-distance 
colonization events are modeled at the upper end 
of observed rates. Thus, the SHIFT is inherently 
biased toward an optimistic projection of future 
migration potential. In contrast to the chance, 
long-distance events, the maximum northward ex- 
tension is estimated at 62 km with > 50% and 145 
km with > 20% colonization probability (Fig. 5). 

Because of the limited range expansion pro- 
jected under SHIFT, especially if we consider only 
those places with > 50% probability of coloniza- 
tion, we project that migration is not likely to 
result in the saturation of the potential new distri- 
bution (i.e. DISTRIB output, Fig. 3d) of Virginia 
pine during the next century if climate warms as 
predicted. Thus, migration is projected to be slow 
over the next century through the fragmented 
forest currently in existence. However, because of 
newly colonized 'islands' due to successful long 
distance dispersal, colonizations would 'fill' be- 
tween occupied cells and the overall migration 
rate would be expected to accelerate with time. 

To  further quantify the relationships between 
colonization probability as output from SHIFT 
compared with the inputs of habitat availability 
and species importance, four 'transects' were cre- 
ated across varying levels of IV and forest density 
(Fig. 6). Within the 180 x 90 km boxes outside the 
current range boundary and 90 x 90 km boxes 
inside the current range boundary, we calculated 
weighted averages of IV, forest cover, and colo- 
nization probabilities (Table 2). By subdividing 
the 180 x 90 km outside transect boxes into 10 
zones, we calculated average colonization proba- 
bility as a function of distance from the current 
front (Fig. 7). 

For transect A (high IV and high forest den- 
sity), the maximum colonization probability was 
achieved, averaging 34.6% and with probabilities 
exceeding 80% for the first 50 km (Table 2; Fig. 
7). The probabilities were lower in the 75- 100 km 
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Tablc 2 
Colonization probabilities for four tranjects through a range of IV and forest density.' 

- 

Transect IV, inside Forest density ('%I) Colonization probability ('A,) 

" S e e  Fiz. 6 for locatiorl of tranxcts. 

range because of relatively lower forest densities 
there, then increase again to 8- 10% between 1 10 
and 130 km before dropping off (Fig. 7). Migra- 
tion rates are much higher in regions where, 
near the range boundary, both the abundance of 
Virginia pine and habitat availability is high 
(Fig. 6). 

Expectantly, transect D, representing low IV 
(3.7) and low forest density (15.6%). recorded 
the lowest values of colonization probabilities 
(1.6% overall and > 5% colonization only for 
the first 18 km, Table I ;  Fig. 7). Thus, accord- 
ing to our model, the geographical distribution 
of abundance and available habitat strongly infl- - - 
uences predictions of migration potential. 

By evaluating transects B and C (one input 
low and the other high), one can determine that, 
although both are important, the SHIFT output 
appears more strongly influenced by habitat 
availability than by abundance near the range 
boundary. This result makes sense because habi- 

Colonization Probability by Transect 
100 41 I 1 1 )  ap ! I 

0 50 100 150 200 
Distance from Front, km 

Fig. 7. Colonization probabilities for transects A - D  (see Fig, 
6 for locations) as a function of distance from the current 
front. 

tat quality influences colonization likelihoods 
based on both the donor cells and recipient cells, 
while IV applies only to donor cells (Eq. (I)). 
Transect C had a low IV, but because of higher 
forest density. still had colonization probabilities 
slightly higher than those of transect B especially 
near the boundary (Table 2; Fig. 7). Our limited 
sample of transects also shows that forest cover 
must be high before significant northward ex- 
pansion will occur with a probability exceeding 
50%. 

3.3. DISTRIB-SHIFT combination 

Finally. the potential future distributions as 
output from DISTRIB (e.g. Fig. 3d for GISS) 
was intersected with SHIFT output (Fig. 3e) to 
yield the possible migration locations according 
to the combination of both models (Fig. 30. 
Here we see the northward migrations poten- 
tially occurring in eastern Ohio, western Penn- 
sylvania, and a little bit into New Jersey. These 
would be the locations with the highest likeli- 
hood of becoming newly colonized by Virginia 
pine over the next several decades. 

Quantitatively, the projected change in area 
outside the current range of Virginia pine is 
small (Fig. 30. With > 50% probability of colo- 
nization, 3550 km' of new habitat would be col- 
onized under the GISS scenario, which 
represents just 15.4% of the area available from 
the SHIFT output prior to intersection with 
DISTRIB output (Fig. 4b). With GFDL, the 
corresponding percentage is only 8.3. With a 
> !'XI probability, the total new range expansion 
would be 24390 and 7120 km' for GISS and 
GFDL. respectively. The maximum northward 
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shift would be about 30-40 km with a > 50% 
colonization probability, and about 240 km with 
a colonization probability of > l"/o (the rare, 
long-distance events, Fig. 5). 

4. Conclusions 

Using three computational steps to predict 
smoothed current abundance and distribution, 
potential future distribution and abundance, and 
migration potential into the new window of dis- 
tribution, we have tried to produce realistic sce- 
narios for the future distribution of Virginia 
pine under a 2 x C 0 2  climate. This effort con- 
tributes to two areas previously lacking in mi- 
gration research on real landscapes: (1) the 
effects of fragmented habitat and varying species 
abundance on rates of migration; and (2) the 
effects of unsuitable future habitats (e.g. barriers 
in soil quality, elevation, climate regimes) on 
possible migration outcomes (Davis and Sugita, 
1997). 

Because of the uncertainty connected with 
many assumptions imbedded in the models, pro- 
jections of future distribution and migration po- 
tential must be viewed as hypotheses for future 
responses. Still, this approach uses a two-prong 
method to increase the acceptability of model 
outputs. First, we capture current bounds on 
species importance that then can be adjusted ac- 
cording to potential future climate scenarios (en- 
velope analysis). Second, we simulate the actual 
movement of the species through actual land- 
scapes and time to represent the possible future 
distributions within the suitable envelope. These 
results provide a quantified model against which 
observational data may be collected to measure 
both validity of current abundance predictions 
and future distribution and abundance changes, 
These predictions are important because they 
suggest a scale of research with which we can 
verify vegetation change in response to climatic 
change. Indeed, we need to build similar projec- 
tions as more is learned about climate change 
(Schneider and Root, 1996). 

From the combination of the two model out- 
puts for Virginia pine (DISTRIB and SHIFT), 

one can determine that both of the following 
scenarios apply: ( 1 )  although land may be 'suit- 
able' for colonization (as determined by DIS- 
TRIB), limitations of species abundance and 
forest habitat preclude the migration of the spe- 
cies into the new potential habitat; (2) although 
the species may have the physical abundance 
near the range boundary and the forest cover to 
migrate into (as determined especially by long- 
distance rare events in SHIFT), the remaining 
environmental factors may not be suitable for 
the species to survive a r d  reproduce. 

There will be migration lag time, especially 
since we are working with generally long-lived 
trees. SHIFT was calibrated for an average of 
50 kmlcentury of migration; here we project a 
maxirn~im migration of 30-40 km in 100 years 
with a > 50% colonization probability. Many re- 
gions of low IV and habitat will have migrations 
near zero over the next 100 years. Both habitat 
availability and species abundance are important 
for migration to proceed. Of the two, habitat 
availability seems the more critical component if 
the species is present at some level. 

For Virginia pine, our models show a large 
decrease in suitable habitat and a fairly small 
northward migration of range for the 2 x CO, 
scenarios of the GISS and especially GFDL 
models. Thus, the current distribution of Vir- 
ginia pine, though not seriously threatened, 
would see a restriction in habitat from a 2 x 
CO1-driven climate change. Current studies, us- 
ing DISTRIB on SO species, indicate that 
roughly equal numbers of tree species in the 
eastern United States will have a reduced versus 
expanded range of suitable habitat after climate 
change (Iverson and Prasad, 1998; Iverson et al., 
in press). Efforts continue, usmg SHIFT, to de- 
termine colonization probabilities of the new 
suitable habitat for additional species. 
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