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Abstract. Projected climate warming will potentially have profound effects on the
earth’s biota, including a large redistribution of tree species. We developed models to
evaluate potential shifts for 80 individual tree species in the eastern United States. First,
environmental factors associated with current ranges of tree species were assessed using
geographic information systems (GIS) in conjunction with regression tree analysis (RTA).
The method was then extended to better understand the potential of species to survive and/
or migrate under a changed climate. We collected, summarized, and analyzed data for
climate, soils, land use, elevation, and species assemblages for .2100 counties east of the
100th meridian. Forest Inventory Analysis (FIA) data for .100 000 forested plots in the
East provided the tree species range and abundance information for the trees. RTA was
used to devise prediction rules from current species–environment relationships, which were
then used to replicate the current distribution as well as predict the future potential distri-
butions under two scenarios of climate change with twofold increases in the level of at-
mospheric CO2. Validation measures prove the utility of the RTA modeling approach for
mapping current tree importance values across large areas, leading to increased confidence
in the predictions of potential future species distributions.

With our analysis of potential effects, we show that roughly 30 species could expand
their range and/or weighted importance at least 10%, while an additional 30 species could
decrease by at least 10%, following equilibrium after a changed climate. Depending on the
global change scenario used, 4–9 species would potentially move out of the United States
to the north. Nearly half of the species assessed (36 out of 80) showed the potential for
the ecological optima to shift at least 100 km to the north, including seven that could move
.250 km. Given these potential future distributions, actual species redistributions will be
controlled by migration rates possible through fragmented landscapes.

Key words: climate change; envelope analysis; forest inventory; geographic information systems
(GIS); global change; landscape ecology; predictive vegetation mapping; regression tree analysis
(RTA); species–environment relationships; tree species distribution; tree species migration; tree species
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INTRODUCTION

The buildup of anthropogenic greenhouse gases is
related to a general warming trend on the planet, and
current estimates from global circulation models
(GCMs) predict 18–4.58C temperature increases as a
result of doubling atmospheric CO2, probably by the
end of the next century (Kattenberg et al. 1996). This
trend suggests a potential to trigger major changes in
the earth’s living systems, including temperate forests.
Many research lines, including this one, are devoted to
predicting these potential major changes in the earth’s
biota, especially with respect to the potential necessary
migration of plant species.

Studies of the Holocene, when there was climatic
warming at a lower rate than is projected by current
GCMs, show the following points with respect to spe-
cies migration (Jacobson et al. 1987, Delcourt and Del-
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court 1988, Davis and Zabinski 1992, Webb and Bart-
lein 1992, Malanson 1993): (1) Species did shift their
geographical ranges, generally northward. (2) Species’
responses were individualistic—the rates and direction
of migration differed among taxa and species assem-
blages did not remain the same. (3) Species responded
to climate change in an equilibrium manner, and, at the
continental scale of evaluation, competition and dis-
persal mechanisms did not seem to play a large role in
the responses of species. Migrations were occurring
over thousands of years and over a relatively uninter-
rupted landscape. Under current greenhouse warming
scenarios, however, the climate is projected to change
at a faster rate. In today’s fragmented landscapes, com-
petition, dispersal ability, and nonequilibrium re-
sponses may be critical in the final species assemblage,
and individual-species models are necessary to account
for the expected individualistic responses.

With advances in the use of geographic information
systems (GIS) and the increased abundance of data
available for landscapes, several techniques can now
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be used to predict the geographic distribution of veg-
etation from mapped environmental variables (Franklin
1995). For continuous data, these include regression
models, general linear models, general additive models,
and regression tree models. Especially important driv-
ers to vegetation models are climatic, edaphic, and to-
pographic variables. At local scales, modeling of veg-
etation pattern depends largely on local variations of
topography and geomorphology (e.g., Reed et al. 1993,
Ertsen et al. 1995, Iverson et al. 1996b, 1997). At re-
gional scales, overall vegetation patterns have been as-
sumed to depend more on general climatic patterns
(e.g., Booth 1990, Prentice et al. 1992, Woodward
1992, Box et al. 1993, Neilson 1995). To some extent,
we evaluate both in this study.

Various GCMs are being built to simulate the future
climate system, which can then be used to predict pos-
sible changes in the earth’s forest biota. Several ap-
proaches are being taken at a number of scales and
locations. Because such models cannot be truly vali-
dated (Rastetter 1996), multiple avenues of research
are encouraged, with the hope of eventual convergence.
Much discussion centers on the various approaches and
the comparisons among them (e.g., McGuire et al.
1993, Hobbs 1994, Melillo et al. 1995). Several models
assess changes in global biomes (e.g., Prentice et al.
1992, Woodward 1992, Neilson and Marks 1994), in-
cluding recent models that couple vegetation effects
directly into the GCMs so that feedbacks are contin-
uously incorporated into the outcome (e.g., Foley et al.
1996), while others assess a selected number of species
over a regional scale (e.g., Bonan and Sirois 1992,
Mackey and Sims 1993, Burton and Cumming 1995,
Dyer 1995, Hughes et al. 1996, Starfield and Chapin
1996). For example, Huntley et al. (1995) used a three-
way climate response surface to model the present and
future distributions of eight species in Europe.

However, there have been few or no studies that
model the entire suite of major tree species, individ-
ually, across their continental ranges. Such an approach
is the only way to begin to identify the possible new
outcomes in species assemblages after climate change.
Most of the previously cited studies also deal only with
range shifts, not with projected shifts in the importance
of species. In this study, we empirically model each of
80 species across the eastern United States, so that the
different habitat requirements among species are ac-
commodated by the models. We statistically evaluate,
using regression tree analysis (RTA), the relationship
of 33 environmental variables to tree importance values
in the eastern United States, and then use the derived
relationships to predict their present and potential fu-
ture ranges and importance values. Our approach is
unique in the sense that it is a multiple-species effort
at a continental scale.

METHODS

Database generation
Data were extracted from several sources for land

east of the 100th meridian (Fig. 1). The county was

chosen as the mapping unit because it is the reporting
unit for many sources of data and, for the most part
except for some northern counties, has roughly the
same area across the study region. The Modifiable Area
Unit Problem, where spatial aggregations can lead to
problems with scaling and zoning (Jelinski and Wu
1996), was an issue, though it was minimized by using
percentages and area-weighted averages as input vari-
ables. We evaluated .100 environmental/land use/so-
cioeconomic variables for each of nearly 2500 counties
in the East. Because of missing tree information on
some counties, only 2124 counties were finally
mapped. To reduce autocorrelation and enable better
interpretation, the final number of variables was re-
duced to 33 (Table 1) by (a) removing highly redundant
variables as deduced via correlation analysis; (b) drop-
ping variables selected by experts as excessively dif-
ficult to interpret; and (c) scoring 65 variables for their
value in an earlier RTA run on all species and dropping
the variables of lower importance. To evaluate overall
importance of each of the resulting 33 variables, they
were scored for frequency of occurrence and rank-
based weight in the RTA outputs for the 80 species
(Table 1).

Tree ranges and importance values.—The USDA
Forest Service periodically determines the extent, con-
dition, and volume of timber, growth, and removals of
the Nation’s forest land by the work of six Forest Ser-
vice Forest Inventory and Analysis (FIA) units. Four
FIA units produced a database of standard format called
the Eastwide Data Base (EWDB) for the 37 states from
North Dakota to Texas and east. These data are stored
in three record types (Hansen et al. 1992): county data,
plot data, and tree data. Plot locations are not precisely
located but county location was provided for each plot.
We used the data from .100 000 plots and nearly 3 3
106 trees to summarize the desired county-level infor-
mation needed for this study. We evaluated 196 species
of trees from the EWDB, but as described later, only
80 species were modeled due to sample restrictions.

We first summarized the information for individual
forested plots. Tree records represented observations
of seedlings, saplings, and overstory trees. Tree spe-
cies, tree status, and diameter at breast height were
combined with information on plot size to compute a
single summary record for each plot. This record con-
tained, by species, estimates of the average number of
stems and total basal area of understory and overstory
trees per unit area. From this information, we generated
importance values (IV) for each species as follows:

100BA(x) 100NS(x)
IV(x) 5 1

BA(all species) NS(all species)

where x is a particular species on a plot, BA is basal
area, and NS is number of stems (summed for overstory
and understory trees). In monotypic stands, the IV
would reach the maximum of 200. The IVs were round-
ed to decimal numbers with one exception. If 1 . IV
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FIG. 1. Study area is the United States east of the 100th meridian. Horizontal lines correspond to the row number for
the study area, in increments of 10 km. For example, row 50 corresponds to 500 km above the southern limit of the study
area. Latitude and longitude (in degrees) are also given in dashed lines.

. 0, it was assigned to 1, since rounding would have
falsely turned species-present counties to species-ab-
sent counties.

For each species, average IV per county was cal-
culated by aggregating plot-level information. These
values were linked with a county coverage of the Unit-
ed States (ESRI 1992) for mapping into density slices
of IV. With these maps, biogeographical characteristics
(such as absolute and optimum range) of the species
can be visualized. Further details on the methodology,
along with a table summarizing the number of plots,
number of species, percentage of forest, and dates of
the inventories by state, are in Iverson et al. (1996a).

Climatic factors.—Monthly means (averaged from
1948 to 1987) of precipitation, temperature, and po-
tential evapotranspiration for the current climate were
extracted from a database generated by the USEPA
(1993). The data had been interpolated into 10 3 10
km grid cells for the conterminous United States. From
these data, we extracted January and July temperatures,
calculated annual means, and derived two attributes
based on their physiological importance to tree growth
for this region: July–August ratio of precipitation to
potential evapotranspiration (PET) (the time most

prone to drought stress in the eastern United States),
and May–September (i.e., growing season) mean tem-
perature. The data were then transformed to county
averages via area-weighted averaging.

Two scenarios of future monthly temperature and
precipitation under an equilibrium state of twice the
present levels of atmospheric CO2 were used for pre-
dictions of potential future species distributions: the
Geophysical Fluid Dynamics Laboratory (GFDL)
(Wetherald and Manabe 1988) and Goddard Institute
of Space Studies (GISS) (Hansen et al. 1988) models,
which depict a divergent set of possible outcomes.
These GCM output data were prepared by USEPA
(1993) into future equilibrium estimates, by 10 3 10
km grid, for monthly precipitation, temperature, and
potential evapotranspiration. These variables, along
with the derived variables mentioned above, were sub-
stituted into the database for predicting potential future
species distributions.

Soil factors.—The State Soil Geographic Data Base
(STATSGO) was developed by the USDA Soil Con-
servation Service (now Natural Resource Conservation
Service) to help achieve their mandate to collect, store,
maintain, and distribute soil survey information for
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TABLE 1. County environmental and land-use variables reported for each county and used in
the RTA process. Frequency indicates the number of times the variable appeared in the RTA
models, while rank-weighted score is the sum of (1/rank in the RTA model) for all 80 species.

Abbreviation Variable Frequency

Rank-
weight
score

Climatic factors
AVGT
JANT
JULT
PPT
PET
MAYSEPT
JARPPET

Mean annual temperature (8C)
Mean January temperature (8C)
Mean July temperature (8C)
Annual precipitation (mm)
Potential evapotranspiration (mm/mo)
Mean May–September temperature (8C)
July–August ratio of precipitation to PET

47
115

44
79
70
30
27

12.0
34.8

9.6
12.9
17.6

9.1
6.1

Soil factors
TAWC
CEC
PH
PERM
CLAY
BD
KFFACT
OM
ROCKFRAG

Total available water capacity (cm, to 152 cm)
Cation exchange capacity
Soil pH
Soil permeability rate (cm/h)
Percent clay (,0.002 mm size)
Soil bulk density (g/m2)
Soil erodibility factor, rock fragments free
Organic matter content (% by mass)
Percent mass of rock fragments 8–25 cm

47
58
45
75
66
50
92
60
54

6.9
8.5
8.9

15.4
12.4

5.7
23.2
13.0

9.7
NO10
NO200
ROCKDEP
SLOPE
ORD
ALFISOL
INCEPTSL
MOLLISOL
SPODOSOL

Percent passing sieve Number 10 (coarse)
Percent passing sieve Number 200 (fine)
Depth to bedrock (cm)
Soil slope (%)
Potential soil productivity (m3 of timber/ha)
Alfisol (%)
Inceptisol (%)
Mollisol (%)
Spodosol (%)

43
46
29
57
61
34
14
30
13

6.5
10.5

2.8
15.7
12.2

9.3
1.9
7.9
2.6

Land use/cover factors
FORST.LND
CROPS
GRAZE.PST
DIST.LND

Forest land (%)
Cropland (%)
Grazing pasture land (%)
Disturbed land (%)

54
46
54
35

6.7
13.9

8.6
4.0

Elevation
MAX.ELV
MIN.ELV
ELV.CV

Maximum elevation (m)
Minimum elevation (m)
Elevation coefficient of variation

67
46
46

18.3
6.6
8.0

Landscape pattern
ED Edge density (m/ha) 50 6.4

U.S. lands. STATSGO data contain physical and chem-
ical soil properties for ;18 000 soil series recognized
in the Nation (Soil Conservation Service 1991).
STATSGO maps were compiled by generalizing more
detailed soil-survey maps into soil associations in a
scale (1:250 000) more appropriate for regional anal-
ysis. We selected 14 soil variables related to tree spe-
cies’ habitat (Table 1). Weighted averages by depth and
by area were calculated for county estimates of the soil
variables, as detailed in Iverson et al. (1996a). Addi-
tional soil information was obtained from the GEO-
ECOLOGY databases (Olson et al. 1980), including
percentage of the county in each of four soil orders
(Table 1).

Land use/cover factors.—GEOECOLOGY (Olson et
al. 1980) data were used for estimations of percentage
forest, crop, grazing/pasture, and disturbed land (Table
1). These estimates originated from the USDA Soil

Conservation Service’s National Resources Inventory
for 1977.

Elevation.—Maximum, minimum, and variation of
elevation were derived for each county from 1:250 000
U.S. Geological Survey (USGS) Digital Elevation
Model (DEM) files obtained from the USGS internet
site (U.S. Geological Survey 1987).

Landscape pattern.—The 1-km AVHRR forest cover
map (U.S. Forest Service 1993) was used to generate
statistics on forest-cover pattern by county. Several
landscape pattern indices were calculated using
FRAGSTATS (McGarigal and Marks 1995), but only
edge density was used in the final analysis.

Regression tree analysis

We use regression tree analysis (RTA, also known
as classification and regression trees, or CART), to de-
cipher the relationships between environmental factors
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and species distribution. The methods can either predict
classes (classification trees) or average values (regres-
sion trees), depending on the nature of the response
variable. Developed by Breiman et al. (1984), and used
first in the medical field, the methods have only been
used in ecological studies since about 1987 (Verbyla
1987). Not incidentally, their use has coincided with
the use of geographic information systems, which allow
model outputs to be readily mapped across landscapes.
Since then, they have been used primarily in classifi-
cation (e.g., Borchert et al. 1989, Lees and Ritman
1991, Moore et al. 1991, Baker 1993, Lynn et al. 1995),
though examples of the ecological use of regression
trees are found in Davis et al. (1990) and Michaelsen
et al. (1994).

RTA is a recursive data partitioning algorithm that
initially splits the data set into two subsets based on a
single best predictor variable (the variable that mini-
mizes the variance in the response). It then does the
same on each of the subsets and so on recursively. The
output is a tree with branches and terminal nodes. The
predicted value at each terminal node is the average at
that node, which is relatively homogeneous (Chambers
and Hastie 1993). RTA is therefore much more flexible
in uncovering structure in data that have variables that
may be hierarchical, nonlinear, nonadditive, or cate-
gorical in nature. RTA is rapidly gaining popularity as
a means of devising prediction rules for rapid and re-
peated evaluation, as a screening method for variables,
as a diagnostic technique to assess the adequacy of
linear models, and for summarizing large multivariate
data sets (Clark and Pregibon 1992).

There are several key advantages to using RTA in
our application, which covers such a wide spatial do-
main, over classical statistical methods (Verbyla 1987,
Clark and Pregibon 1992, Breiman et al. 1984, Mi-
chaelsen et al. 1994). First, RTA is adept at capturing
nonadditive behavior, where relationships between the
response variable and some predictor variables are con-
ditional on the values of other predictors. RTA deals
with interaction effects by subsetting data without
specifying the interaction terms in advance of the sta-
tistical analysis (as is necessary in multiple linear re-
gression). For example, in our study, the factors as-
sociated with the northern range limits for a species
may be quite different from the factors regulating the
southern limit of the species. This advantage allows,
in effect, a stratification of the country so that some
variables may be most related to the IV of species A
for a particular region of the country, but a different
set of variables may drive its importance elsewhere.
Second, numerical and categorical variables can easily
be used together and interpreted, because RTA essen-
tially converts continuous data into two categories at
each node. The outcome is a set of step functions that
provides a better capturing of nonlinear relationships,
while also providing a reasonable solution for linear
relationships. Last, the variables that operate at large

scales are used for splitting criteria early in the model,
while variables that influence the response variable lo-
cally are used in decision rules near the terminal nodes
(Moore et al. 1991). Thus we could expect that broad
climatic patterns are captured higher up on the tree,
while more local effects (soil, elevation, etc.) determine
more local distributional variations. It should, however,
be recognized that since our data set is aggregated to
a county-level scale, RTA cannot capture the environ-
mental drivers that operate on species at a very fine
scale (e.g., individual slopes or valley bottoms).

There are limitations of RTA, however. While RTA
may be the most appropriate tool for analyzing data
sets with many possibly interacting predictor variables
and for separating macro-level and micro-level effects
on the response, the response ideally should be ap-
proximately normal, since least squares and the group
mean are used in deriving the best split (Clark and
Pregibon 1992). Even though the IV response in our
example more closely resembles a Poisson distribution
due to the high frequency of zeros, the effect of long
tails is much more confined than in a linear regression
model as the regression is local (B. D. Ripley, personal
communication). Also, since we are mainly interested
in variables that are driving the distribution geograph-
ically, we believe this is a reasonable approach; trans-
forming the response would complicate the interpret-
ability of the results. We are taking a further step and
predicting the effect of a changed climate based on the
model. While there is danger of extrapolating the re-
sults beyond the model’s predictive ability for some
species, it does provide a reasonable estimate of the
species’ potential migration under changed climatic
conditions, whose preferences we know a priori.

Prediction of current species importance values.—
Regression trees were generated in S-PLUS (Statistical
Sciences 1993) for each tree species. Species impor-
tance value (IV, based on basal area and number of
stems) was the response variable, with the 33 predictor
variables (see Table 1). The regression trees were gen-
erated on a split data set—a random selection of 80%
of the data—so that 20% of the data remained for val-
idation efforts. RTA models were generated after prun-
ing the full tree to 12–20 nodes, depending on the rate
of change of deviance explained. When the additional
deviance explained was small for added nodes, the RTA
model building was stopped. The resulting model was
used to generate predictions of IV of each species for
each county. While this pruning effort carried some
subjectivity, it is the most reasonable approach while
evaluating 80 tree species; picking nodes through cross
validation by resampling is not without some major
limitations (Venables and Ripley 1994).

In addition to the RTA models using all the 33 pre-
dictors, we built models using only the seven climatic
variables (Table 1). This analysis was done to compare
prediction effectiveness with that using edaphic and
land use variables. For several species, maps were also
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generated that depict the counties that fall along par-
ticular branches of the RTA tree. The environmental
variables most responsible for the predicted IV are
shown geographically, which is a major strength of
RTA.

The response predicted by RTA for zero values of
IV was almost always a fraction ,1. Through testing
across all species, we determined that predicted IV
scores ,1.0 were essentially zero and were set as such.
Predicted IV scores between 1.0 and 3.0 were classed
‘‘fuzzy’’ in that we were not confident in the prediction
of these low IV scores. The predictions of IV classes
were then output to Arc/Info for mapping, using Unix
tools and Arc/Info’s Arc Macro Language (ESRI 1993).

Validation/verification of the RTA outputs.—To
evaluate the model outputs, a comparison between pre-
dicted current and actual (FIA) distributions was made
using correlation, verification, and validation process-
es. Scattergrams and correlations of IV were calculated
for each species. Verification, to assess how well the
models recreate the distributions with the entire data
set, was performed by assessing for each species the
number and proportion of counties found in (a) both
the actual and predicted scenarios, (b) only the actual,
and (c) only the predicted. This allowed calculation of
the percent correct assignment ([a/(a 1 b 1 c)] 3 100,
hereafter referred to as classification accuracy), and
also the calculation of omission errors, where the model
failed to predict the presence of the target species even
though it was recorded in the FIA data ([a/(a 1 b)] 3
100, hereafter referred to as omission accuracy). We
were especially interested in the omission accuracy.
The error was deemed less serious if the model pre-
dicted a county to contain a species that was not re-
corded because it is quite possible that the FIA sam-
pling may have missed it. FIA attempts to place a plot
for about every 2000 ha of forest land; uncommon or
habitat-specific species could easily be missed by the
plots. A validation comparison was made by using a
randomly selected portion of the counties (80%) to pre-
dict the IV of the remaining 20% (n 5 424). Similar
calculations of error were then made on this 20% data
set.

Prediction of future species importance values.—
Once the regression trees were generated, they were
used to generate not only predictive maps of current
distributions, but also potential future distributions un-
der a scenario of a changed climate. We did this by
replacing the climate-related variables in our predictor
variable set with those based on the GFDL and GISS
models. The replaced variables were (see Table 1 for
the description): MAYSEPT, JARPPET, JANT, JULT,
AVGT, PET, and PPT. The previously established re-
gression trees then were used with the new predictive
variables, and the data output to Arc/Info as before.

Assessment of potential species changes.—We de-
vised several metrics to assess the potential species
shifts as a result of the modeled changes in IV of each

species. The first metric, change in area, is the differ-
ence, in percent, between the predicted current areal
extent and the predicted potential future areal extent
under the two climate change scenarios. So, a score of
100 means no change, scores ,100 represent a con-
traction of the range, and scores .100 are an expansion
of the species range. Because of relatively large un-
certainty in the ‘‘fuzzy’’ class of predicted IV (1.0–
3.0), we took a conservative approach and calculated
this metric only for counties with IV . 3.0.

The second metric, change in weighted average of
IV, is a weighted (by area of counties) average of IV
for all counties calculated for predicted current vs. the
two climate change scenarios; as above, a score below
100 indicates the overall importance of the species will
decline (though areal extent may or may not decline).
In this case, we included the ‘‘fuzzy’’ class of predicted
IV in the calculation, since county areas with low IV
would not contribute much to the overall score.

The third metric is the change in northern and south-
ern range limits. Because we were not interested in
spurious shifts out on the tails of the distribution, we
statistically identified the range limits for predicted cur-
rent and future ranges. The country was subdivided
into a grid cell network of 10 3 10 km cells; a total
of 277 rows, or latitudinal strips, was generated (Fig.
1). The relative IVs were calculated for each row (total
IV/total area in row), and box plots were generated, in
S-PLUS (Statistical Sciences 1993), for the summed
IV for each species. From this distribution, the IV of
the first quartile was identified; the first and last row
where this IV was exceeded was deemed the northern
and southern limit of the distribution, respectively.
Shifts in the northern or southern limits were simply
calculated by taking the difference between current and
projected future limits.

The fourth metric is the change in ecological opti-
mum. The mean of the interquartile range was deemed
the ‘‘optimum’’ latitude range for the species. Both of
the latter metrics used only those areas with predicted
IV values .3.0; the ‘‘fuzzy’’ class was not included.

Model assumptions and limitations

Here we attempt to state our assumptions explicitly
so that progress can continue as uncertainties are re-
duced. First, uncertainty remains in projected climate
change under a doubled CO2 scenario, especially as it
plays out spatially across the continent. The impacts
of this uncertainty on our results are reduced by using
two scenarios, but changes in estimates of future cli-
mate will continue to occur. Second, any time multiple
GIS layers from disparate sources and scales are over-
laid, errors will propagate through the data (Goodchild
and Gopal 1989). This impact is minimized in this
study by using a large sampling unit, the county, as
the common spatial unit. On the other hand, some coun-
ties are very diverse, and some important ecological
factors could be averaged out at this scale. For example,
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FIG. 2. Regression tree for quaking aspen (Populus tremuloides), using a nonuniform tree of 12 nodes. If the rule at the
top of a branch is true, follow the left branch; if false, follow the right branch. The numbers at the termination points refer
to predicted IV for that particular branch of the model, which is the average IV at that node. The length of the vertical line
below each true–false split corresponds to the importance of the variable.

small zones of high elevation, bottomlands, or unique
soils, which harbor specialized flora, may be lost in the
averaging process. There is also error associated with
the FIA sampling of trees; occasionally species that do
in fact reside in the county will be missed by the FIA
sampling plots. Third, the method described here does
not account for changes in physiological and species-
interaction effects in the model outputs. Therefore,
there is no way to assess changes in competition among
the ‘‘new’’ species mix, nor is there a way to account
for whatever gains in water-use efficiency may accom-
pany elevated CO2 (Neilson 1995). Fourth, in a criti-
cism of model-based assessments of climate change
effects on forests, Loehle and LeBlanc (1996) note that
many forest simulation models assume that tree species
occur in all environments where it is possible for them
to survive, and that they cannot survive outside the
climatic conditions of their current range (fundamental
vs. realized niche). The RTA models here reduce this
problem by considering a wide range of variables and
only trying to evaluate potential range changes due to
climate change. These models assume equilibrium con-
ditions, and that there are no barriers to migration.
Finally, RTA does have limitations, and spurious or
noncausative relationships will appear, especially when
RTA methodology is applied to 80 species without fine-
tuning for individual species preferences. Improvement

of models may be possible for many of the species, if
individual characteristics and spatial trends are taken
into account.

RESULTS AND DISCUSSION

Regression trees

Regression trees were generated for each species; an
example for quaking aspen (Populus tremuloides) is
shown in Fig. 2. At the terminal ends of each branch,
a predicted IV is presented. In this example, the rela-
tively large importance of mean annual temperature is
apparent, for the distance between nodes is in propor-
tion to the variance explained by the variable. The high-
est predicted importance occurs on the left branch,
where a maximum IV of 91 was obtained if the mean
annual temperature was ,4.48C, the coefficient of vari-
ation of elevation in the county was ,17.8% (i.e., the
county is homogeneously rather flat), the average po-
tential evapotranspiration was ,60.0 mm/mo, and
.92.3% of soil can pass a number 10 sieve (i.e., the
soils are primarily sands and finer material). Only eight
counties matched these criteria. On the other branch,
the lowest IV, 0.14, was found for counties that had an
average temperature .8.128C; this condition occurs in
1704 counties. Because we used a cutoff of 1.0 for a
species to be considered present, none of the 1704
counties was predicted to have quaking aspen.
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FIG. 3. Mapped environmental variables most related to the distribution of three species: (a) southern red oak (Quercus
falcata var. falcata), (b) Virginia pine (Pinus virginiana), and (c) American beech (Fagus grandifolia). The indented legend
shows the hierarchical structure of the data; see Table 1 for definitions of the variables in the first column. The second column
is the number of counties that the equation pertains to, and the third column is the average IV for the species for those
counties. An asterisk indicates that the branch is a terminal node for the tree.

The distribution of variables most responsible for the
predicted IV for three species shows the additional val-
ue of the RTA in that different variables operate in
controlling the distribution (Fig. 3). For example, with
southern red oak (Quercus falcata var. falcata), there
is essentially no representation of the species in 1222
counties with an average January temperature
,0.348C. In this example, the maximum IV (8.0) is
found in 94 counties that have: a January temperature
.0.348C, an average slope in the county exceeding
2.3%, average total water-holding capacity exceeding
19.5 cm, and a maximum elevation .160 m (Fig. 3).
The northern band of southern red oak presence is
found where January temperature is ,3.28C, indicating
that temperature may be the key factor regulating the
northern boundary of the species.

For Virginia pine (Pinus virginiana), pH is the first
controlling variable, with the species found only where
pH , 4.35, except for 26 counties with higher pH but
with average slopes exceeding 21% (Fig. 3). If the pH
criterion is satisfied and January temperatures ,0.78C,
then the species is found (IV . 1) only in counties
where slopes . 20.8%. This could be a situation where
the species can survive colder winters in protected
steep valleys or on more southerly exposures. Virginia
pine prefers warmer temperatures in January (.0.78C)
but relatively cooler temperatures in July (,25.18C),
unless the maximum elevation in the county exceeds
889 m (Fig. 3). The importance of the species is thus
distributed spatially by soil and climate factors.

American beech (Fagus grandifolia) reaches its
maximum IVs when potential evapotranspiration (PET)
is ,46.5 mm/mo and when maximum elevation ex-
ceeds 663 m, conditions met by 76 counties in the
northern Appalachians. For lower elevations in the
north, beech can be prevalent if precipitation exceeds
850 mm. For counties with higher PET, beech is mostly
found in the high sloping regions of the southern Ap-
palachians (Fig. 3).

As can be seen from the legend of Fig. 3, a com-
bination of climate and edaphic variables was neces-
sary to achieve the best RTA models. This pattern held
true for nearly all species. Scores of frequency of oc-
currence in RTA outputs for all 80 species showed
January temperature to be the most influential variable
overall. It appeared 115 times at RTA nodes summed
across all species (a variable can appear more than once
in any given RTA model), and had a rank-weighted
score (sum of 1/rank for all species, with rank being
the node position of the variable in the model) of 34.8
(Table 1). Next most important was the K factor, or

wind erodibility of the soil. It relates to texture, being
highest with silty soils. By weighted score, the next
most important variables, in order, were maximum el-
evation, potential evapotranspiration, slope, soil per-
meability, percent cropland, percent organic matter,
precipitation, and percent clay (Table 1). Edaphic fac-
tors thus occupy 6 of the top 10 positions in relative
importance. Most work of this type has ignored edaphic
factors (Loehle and LeBlanc 1996).

Prediction of current species distributions

Tree models work best if sufficient samples are avail-
able (Moore et al. 1991, Clark and Pregibon 1992).
Analysis of the verification data set revealed there was
a significant correlation between the number of coun-
ties for which the target species was recorded in the
FIA data and the classification accuracy (Table 2).
Those species with larger samples tend to have in-
creased model success based on correlations between
predicted and actual IV. Rarer species also tend to have
more specific habitat requirements that would be dif-
ficult for the coarse, county-level data to capture. Some
species that are not so rare, with more specific habitat
requirements, also fall into this category. It should be
borne in mind that the model was not fine-tuned for
individual species preferences, as we were interested
in macro-scale comparison among several species.
Also, the added benefit of the analysis is that it high-
lights species that require more individual attention
and/or finer resolution data. In light of the above con-
siderations, only those species with a recorded mini-
mum IV of 3.0 in each of at least 100 counties (out of
a possible 2124, or 4.7% of the counties) are included
in the reporting here. A total of 80 species matches
this criterion (Table 2).

Predicted current distributions match FIA data rea-
sonably well for most species. For example, for quak-
ing aspen (Populus tremuloides, Fig. 4), the FIA data
recorded the species in a total of 338 counties. Total
classification accuracy was 71% on the entire data set,
and 67% on the 20% validation data set. If only con-
sidering error of omission (the RTA model predicted
no target species when the FIA sampling recorded it),
the accuracies are 81 and 77%, respectively (Table 2).
The correlation of IVs (for counties with IV at least
3.0) between predicted and FIA data is 0.81. The spe-
cies is a generalist, being the most widely dispersed
species in the United States, and can grow on a wide
variety of soil types (Elias 1980, Perala 1990). The
county level of resolution is, therefore, adequate to
capture the major environmental variables driving its
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TABLE 2. Verification/validation table for species known from FIA plot data to be present in .100 counties, and with an
IV of at least 3.0.

Species

Verification

PF PP PB CA (%) EOA (%) CORR

Validation

PF PP PB CA (%) EOA (%)

Abies balsamea
Acer negundo
Acer pensylvanicum
Acer rubrum
Acer saccharinum

9
170

34
53

161

45
250

12
339

91

104
317

55
1341

124

65.8
43.0
54.5
77.4
33.0

92.0
65.1
61.8
96.2
43.5

0.87
0.70
0.72
0.75
0.68

5
31

8
9

35

6
61

8
69
18

18
70
15

262
20

62.1
43.2
48.4
77.1
27.4

78.3
69.3
65.2
96.7
36.4

Acer saccharum
Betula alleghaniensis
Betula lenta
Betula nigra
Betula papyrifera

106
66
55
31
47

238
13
16
20
18

731
86
88
32

154

68.0
52.1
55.3
38.6
70.3

87.3
56.6
61.5
50.8
76.6

0.61
0.77
0.73
0.19
0.61

31
17
15

9
9

41
2
7

14
13

154
21
18

1
32

68.1
52.5
45.0

4.2
59.3

83.2
55.3
54.5
10.0
78.0

Carpinus caroliniana
Carya cordiformis
Carya glabra
Carya ovata
Carya sp.

357
104

70
76

188

20
49

9
171
196

95
139

88
234
761

20.1
47.6
52.7
48.6
66.5

21.0
57.2
55.7
75.5
80.2

0.30
0.26
0.52
0.63
0.64

63
29
19
23
42

9
12

6
21
28

20
19
11
39

149

21.7
31.7
30.6
47.0
68.0

24.1
39.6
36.7
62.9
78.0

Carya tomentosa
Celtis laevigata
Celtis occidentalis
Cercis canadensis
Cornus florida

47
68
72

108
176

18
12

221
60

109

84
52

351
108
776

56.4
39.4
54.5
39.1
73.1

64.1
43.3
83.0
50.0
81.5

0.55
0.80
0.73
0.43
0.56

10
14
27
34
44

11
15
45
17
30

14
14
67
12

139

40.0
32.6
48.2
19.0
65.3

58.3
50.0
71.3
26.1
76.0

Crataegus sp.
Diospyros virginiana

153
161

86
13

168
58

41.3
25.0

52.3
26.5

0.59
0.55

30
36

27
7

41
6

41.8
12.2

57.7
14.3

Fagus grandifolia
Fraxinus americana
Fraxinus nigra
Fraxinus pennsylvanica
Fraxinus sp.

236
206

56
139

90

87
150

18
389

35

308
612

94
452
108

48.8
63.2
56.0
46.1
46.4

56.6
74.8
62.7
76.5
54.5

0.63
0.65
0.57
0.81
0.36

38
47
12
38
14

34
31

6
82
14

68
123

15
78
13

48.6
61.2
45.5
39.4
31.7

64.2
72.4
55.6
67.2
48.1

Gleditsia triacanthos
Ilex opaca
Juglans nigra
Juniperus virginiana
Liquidambar styraciflua

126
88

231
120

85

52
8

102
322

92

109
61

205
287
689

38.0
38.9
38.1
39.4
79.6

46.4
40.9
47.0
70.5
89.0

0.52
0.85
0.60
0.57
0.75

27
20
37
22
16

16
4

28
73
21

19
1

50
60

120

30.6
4.0

43.5
38.7
76.4

41.3
4.8

57.5
73.2
88.2

Liriodendron tulipifera
Maclura pomifera
Magnolia virginiana
Morus rubra
Nyssa aquatica

172
72
54

100
59

144
38
20
38

9

563
95

124
52
36

64.1
46.3
62.6
27.4
34.6

76.6
56.9
69.7
34.2
37.9

0.65
0.49
0.58
0.77
0.84

26
16
11
22

8

31
19
10

5
5

109
20
15

8
5

65.7
36.4
41.7
22.9
27.8

80.7
55.6
57.7
26.7
38.5

Nyssa biflora
Nyssa sylvatica
Ostrya virginiana
Oxydendrum arboreum
Pinus echinata

44
96

364
87

154

36
201

63
49
38

193
675
130
233
321

70.7
69.4
23.3
63.1
62.6

81.4
87.5
26.3
72.8
67.6

0.77
0.40
0.57
0.66
0.73

8
24
73
18
27

8
32
21
17
24

29
118

33
42
67

64.4
67.8
26.0
54.5
56.8

78.4
83.1
31.1
70.0
71.3

Pinus elliottii
Pinus palustris
Pinus resinosa
Pinus strobus
Pinus taeda

39
36
55

132
68

45
60
29
59
86

176
169

78
177
591

67.7
63.8
48.1
48.1
79.3

81.9
82.4
58.6
57.3
89.7

0.86
0.71
0.67
0.72
0.75

8
5
8

29
4

4
9
8

11
22

33
34
17
34

108

73.3
70.8
51.5
45.9
80.6

80.5
87.2
68.0
54.0
96.4

Pinus virginiana
Platanus occidentalis
Populus deltoides
Populus grandidentata
Populus tremuloides

83
159
147
107

57

101
29

113
5

41

212
76

142
70

240

53.5
28.8
35.3
38.5
71.0

71.9
32.3
49.1
39.5
80.8

0.71
0.38
0.82
0.71
0.81

32
36
42
27
16

18
17
27

5
10

31
12
22
12
52

38.3
18.5
24.2
27.3
66.7

49.2
25.0
34.4
30.8
76.5

Prunus serotina
Quercus alba
Quercus coccinea
Quercus falcata

var. falcata

392
130
134

89

208
411
117

93

557
1130

249

443

48.1
67.6
49.8

70.9

58.7
89.7
65.0

83.3

0.73
0.59
0.47

0.41

59
34
36

25

80
71

9

19

129
199

30

77

48.1
65.5
40.0

63.6

68.6
85.4
45.5

75.5
Quercus falcata

var. pagodaefolia
Quercus laurifolia
Quercus macrocarpa
Quercus marilandica
Quercus muehlenbergii

35
54
95
71
91

21
22

109
19
12

77
166
211

78
59

57.9
68.6
50.8
46.4
36.4

68.8
75.5
69.0
52.3
39.3

0.59
0.71
0.72
0.76
0.59

18
6

18
15
21

10
6

47
11
10

4
33
44
17

8

12.5
73.3
40.4
39.5
20.5

18.2
84.6
71.0
53.1
27.6

Quercus nigra
Quercus palustris
Quercus phellos
quercus prinus
Quercus rubra

80
55

128
161
161

45
16
16
27

256

421
46
65

265
857

77.1
39.3
31.1
58.5
67.3

84.0
45.5
33.7
62.2
84.2

0.62
0.44
0.75
0.68
0.64

21
13
19
22
35

10
3
1

14
45

66
6
9

60
179

68.0
27.3
31.0
62.5
69.1

75.9
31.6
32.1
73.2
83.6
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TABLE 2. Continued.

Species

Verification

PF PP PB CA (%) EOA (%) CORR

Validation

PF PP PB CA (%) EOA (%)

Quercus stellata
Quercus velutina
Robinia pseudoacacia
Salix nigra
Salix sp.

89
133
182
164

75

312
311

26
13

9

410
692
125

42
28

50.6
60.9
37.5
19.2
25.0

82.2
83.9
40.7
20.4
27.2

0.86
0.76
0.33
0.65
0.56

8
29
43
29
15

48
75
20
18

7

90
143

24
9
5

61.6
57.9
27.6
16.1
18.5

91.8
83.1
35.8
23.7
25.0

Sassafras albidum
Taxodium distichum
Taxodium distichum

var. nutans
Thuja occidentalis

183
40

21
26

143
54

21
16

331
75

68
75

50.4
44.4

61.8
64.1

64.4
65.2

76.4
74.3

0.49
0.82

0.78
0.77

40
14

4
1

17
9

9
9

59
6

16
15

50.9
20.7

55.2
60.0

59.6
30.0

80.0
93.8

Tilia americana
Tsuga canadensis
Ulmus alata
Ulmus americana

119
57
51

207

147
48
82

169

258
148
257
674

49.2
58.5
65.9
64.2

68.4
72.2
83.4
76.5

0.67
0.70
0.69
0.68

19
15
18
58

53
6

20
36

64
28
50

130

47.1
57.1
56.8
58.0

77.1
65.1
73.5
69.1

Ulmus rubra
Ulmus sp.

83
161

284
7

445
65

54.8
27.9

84.3
28.8

0.42
0.54

26
26

62
12

68
15

43.6
28.3

72.3
36.6

Mean 52.24 63.93 0.64 45.59 59.15

Note: PF 5 number of counties present in FIA data only; PP 5 number of counties present in predictive model only; PB
5 number of counties present in both; CA 5 classification accuracy (PB/[PB 1 PF 1 PP] 3 100); EOA 5 error of omission
accuracy (PB/[PB + PF] 3 100); CORR 5 correlation between actual and predicted IV.

distribution, and conditions represented by county av-
erages are adequate to model the species.

For flowering dogwood (Cornus florida) (Fig. 5), the
model has classification accuracies of 73 and 65% for
the full and 20% data set, and omission accuracies of
82 and 76%, respectively (Table 2). This species too
is a generalist, but favors lighter soils with good drain-
age (McLemore 1990).

For all 80 species, classification accuracies ranged
widely, from 19% for black willow (Salix nigra) to
80% for sweetgum (Liquidambar styraciflua); the av-
erage was 52% in the full verification data set (Table
2). The omission accuracies were somewhat better,
ranging from 20 to 96%, with an average accuracy
of 63%. In general, the more specialized the species
is with respect to edaphic conditions, the less ac-
curacy in the RTA model predictions. In fact, in near-
ly all situations where the accuracy was less than
;40%, the species is known to be a habitat specialist,
preferring bottomlands, alkaline areas, or disturbed
systems. These are not attributes readily captured in
the coarse-resolution data set used here. Several
poorly classified species, including Morus rubra,
Nyssa aquatica, Platanus occidentalis, Populus
grandidentata, Salix nigra, and Taxodium distichum,
are all bottomland species. Bottomland habitats
would occupy a small minority of most counties, and
county-resolution data would not be expected to con-
sistently capture the appropriate information in the
RTA process. Lower classification accuracies were
also apparent in taxa that were reported at the genus
level (for example, Salix sp. and Ulmus sp., Table
2). Because these taxa include a number of different
species, with varying habitat requirements, the RTA
would be less likely to uncover precise trends. An

exception is Carya sp., in which several species of
hickory have similar habitat requirements.

Species that showed high classification and omission
accuracies (greater than ;70% classification accuracy
or 80% omission accuracy), on the other hand, tended
to be capable of occupying a large variety of habitats
within their range of distribution. For example, Acer
rubrum is one of the most common species in eastern
North America (Elias 1980, Golet et al. 1993). Liquid-
ambar styraciflua, Nyssa sylvatica, Pinus taeda, Quer-
cus alba, and Q. rubra are also generalist species, oc-
cupying a wide variety of sites within their ranges (Eli-
as 1980). County-level environmental data are much
more likely to represent conditions for these species
than the specialist species.

When the RTA analysis using only climatic variables
as inputs was compared to the results described above,
we found the inclusion of edaphic and land-use vari-
ables to be vitally important for many species. For
example the climate-only model failed for Taxodium
distichum, whose distribution is mainly driven by el-
evation and permeability. For 70 of the 80 species, the
correlation between actual and predicted IV was im-
proved with the addition of the extra variables. In ad-
dition, when using only climate variables, one could
cause the resultant model to be overly sensitive to cli-
mate under changed climate scenarios. These results
indicate the importance of assessing edaphic con-
straints in the prediction of species shifts following
climate change.

Prediction of potential future species
importance and area

Projected potential species distributions, following
equilibrium of predicted climate changes, show major
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FIG. 4. Example model outputs for quaking aspen (Populus tremuloides), including (a) actual county importance value
(IV) as calculated from FIA data; (b) predicted current IV from the RTA model; (c) predicted potential future IV after climate
change according to the GISS GCM; (d) predicted potential future IV after climate change according to the GFDL GCM;
(e) difference between predicted current and predicted future IV according to the GISS model; and (f) difference between
predicted current and predicted future IV according to the GFDL model. This example shows a species with the potential
to contract its range and importance in the United States under climate change.
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FIG. 5. Example model outputs for flowering dogwood (Cornus florida), including (a) actual county importance value
(IV) as calculated from FIA data; (b) predicted current IV from the RTA model; (c) predicted potential future IV after climate
change according to the GISS GCM; (d) predicted potential future IV after climate change according to the GFDL GCM;
(e) difference between predicted current and predicted future IV according to the GISS model; and (f) difference between
predicted current and predicted future IV according to the GFDL model. This example shows a species with the potential
to expand its range and importance under climate change.
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TABLE 3. Predicted potential changes of area and weighted average importance values, after GISS and GFDL, with twofold
increases in CO2 levels. Scores above 100 correspond to increases; those less than 100 correspond to decreases.

Species

IV score

GISS GFDL

Area score

GISS GFDL Species

IV score

GISS GFDL

Area score

GISS GFDL

Abies balsamea
Acer negundo
Acer pensylvanicum
Acer rubrum
Acer saccharinum

1
101

27
65

104

0
101

25
34

104

3
100

20
100

98

0
100

17
100

98

Pinus echinata
Pinus elliottii
Pinus palustris
Pinus resinosa
Pinus strobus

149
148
187

7
135

146
149
170

0
134

123
165
208

4
92

119
162
204

0
84

Acer saccharum
Betula alleghaniensis
Betula lenta
Betula papyrifera
Carpinus caroliniana

8
27
51
14

117

0
0

49
0

129

9
53
42

9
230

0
0

41
0

289

Pinus taeda
Pinus virginiana
Platanus occidentalis
Populus deltoides
Populus grandidentata

180
141
157
119

2

179
167
156
210

0

158
108
127
112

2

158
106
130
155

0
Carya cordiformis
Carya glabra
Carya ovata
Caya sp.
Carya tomentosa

101
37

120
94

176

88
37
81
81

358

93
10
87
87

154

86
10
93
73

315

Populus tremuloides
Prunus serotina
Quercus alba
Quercus coccinea
Quercus falcata

var. falcata

10
52
97
90

230

0
47

102
64

229

13
7

77
105
206

0
0

69
63

206

Celtis laevigata

Celtis occidentalis
Cercis canadensis
Cornus florida

329

225
144
113

624

228
191
116

278

72
180
118

1031

65
252
124

Quercus falcata
var. pagodaefolia

Quercus laurifolia
Quercus macrocarpa
Quercus marilandica

151

149
61

180

148

148
55

955

159

120
48

184

154

121
49

851
Crataegus sp.
Diospyros virginiana
Fagus grandifolia
Fraxinus americana
Fraxinus nigra

8
196

24
63
44

5
217

11
60
46

6
330

30
58
58

3
350

21
52
63

Quercus muehlenbergii
Quercus nigra
Quercus palustris
Quercus phellos
Quercus prinus

197
158

32
199
101

212
171

36
216

98

233
127

28
167
112

259
127

33
177
112

Fraxinus pennsylvanica
Fraxinus sp.
Gleditsia triacanthos
Ilex opaca
Juglans nigra

112
91

160
75

247

116
120
155

78
717

100
40

119
52

143

100
135
113

52
313

Quercus rubra
Quercus stellata
Quercus velutina
Robinia pseudoacacia
Salix nigra

68
237

94
94

100

52
889
108

87
100

72
105
107

98
100

70
199

91
109
100

Juniperus virginiana
Liquidambar styraciflua
Liriodendron tulipifera
Maclura pomifera

362
113

86
279

579
113

83
526

242
153

97
202

325
154

96
370

Salix sp.
Sassafras albidum
Taxodium distichum
Taxodium distichum

var. nutans

105
80

102
628

105
63

102
557

100
70

100
316

100
44

100
280

Magnolia virginiana
Morus rubra
Nyssa aquatica
Nyssa biflora
Nyssa sylvatica

253
114

79
133
120

242
100

79
133

99

181
109

75
100
104

169
100

75
100
104

Thuja occidentalis
Tilia americana
Tsuga canadensis
Ulmus alata
Ulmus americana

0
31
60

359
98

0
25
66

898
99

0
20
47

210
100

0
2

48
472
100

Ostrya virginiana
Oxydendrum arboreum

61
90

61
84

29
78

30
75

Ulmus rubra
Ulmus sp.

101
117

184
117

87
173

103
173

shifts for many species (Table 3). For example, quaking
aspen is projected to move north of the United States
boundary under the GFDL scenario, and nearly so with
the GISS scenario (Fig. 4), while flowering dogwood
is projected to move to the northeast (Fig. 5). For most
species, area and weighted average IV shift together,
though Acer rubrum is predicted to keep the same dis-
tribution but decrease markedly in importance. A sum-
mary of species predictions shows that approximately
equal numbers of species would decrease or would in-
crease in IV and area importance, according to this
analysis (Fig. 6). The figure shows that 27 to 36 species
would increase by at least 10% ($110 on the relative
IV or area scale), while 30 to 34 species would decrease
by at least 10% (#90). The remaining species would
change little in overall weighted importance or area.
Further, most species behave similarly, regardless of
the GCM model being used, as 28–33 species increased

in both GISS and GFDL models, while 31 species de-
creased in both scenarios. Only one species, Carya ova-
ta, showed a reversal of trend between GCM scenarios,
where IV is projected to increase under GISS and de-
crease under GFDL.

Comparisons of potential changes in distribution and
abundance were made with published examples for a
few species; this type of work has been done for only
a few eastern North American species. General agree-
ment was found. For example, Jacobson and Dieffen-
backer-Krall (1995) predicted that white pine (Pinus
strobus) would be favored, while spruce–fir would be
decreased under a climate change. We found a 35%
increase predicted in area-weighted IV for white pine
(even though it is likely to move substantially north-
ward), but that balsam fir (Abies balsamea) would be
nearly eliminated from the United States as it migrated
northward (Table 3). Similarly, Flannigan and Wood-
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FIG. 6. Number of species showing decreases or increases
of importance value (IV) or area for the two GCM scenarios
evaluated. The total number of species is ,80 for the ‘‘Both’’
categories, because those species that fall in different classes
between GCM scenarios are not tallied.

TABLE 4. Predicted change in importance values (IV) for
tree species from Vinton County, Ohio (GISS model only).

Species Change

Acer saccharum
Prunus serotina
Crataegus sp.
Fagus grandifolia
Fraxinus americana
Ulmus rubra
Pinus virginiana
Cercis canadensis
Platanus occidentalis
Robinia pseudoacacia

214.5
210.0
27.1
24.9
23.6
23.3
22.9
22.6
21.7
21.7

Asimina triloba
Carpinus caroliniana
Carya glabra
Malus sp.
Populus grandidentata
Acer negundo
Acer rubrum
Carya sp.
Cornus florida
Fraxinus pennsylvanica

21.3
21.2
21.1
21.1
21.0

0
0
0
0
0

Liriodendron tulipifera
Nyssa sylvatica
Ostrya virginiana
Quercus coccinea
Quercus prinus
Quercus rubra
Quercus velutina
Sassafras albidum
Ulmus americana
Quercus alba
Oxydendrum arboreum

0
0
0
0
0
0
0
0
0
4.0
7.5

ward (1994) predicted red pine (Pinus resinosa) to mi-
grate 600–800 km to the northeast, but with an increase
in volume per unit area. We predict that the species
may migrate completely out of the United States into
Canada.

Overpeck et al. (1991) predicted the above general
patterns for northern pines, as well as large increases
in oak abundance in the northern Great Lakes and New
England (also found by us for black, northern red, and
white oak; Quercus velutina, Q. rubra, and Q. alba,
respectively). They also predicted a severe northern
shift for birch, especially with the GFDL over the GISS
global change scenario. Again, these results agree with
ours for paper birch (Betula papyrifera). Finally, Over-
peck et al. (1991) predicted a large northward expan-
sion for southern pines, as exemplified by loblolly pine
(Pinus taeda). Joyce et al. (1990) also report a predicted
expansion for loblolly. Our results concur by predicting
an 80% increase in area-weighted IV, and a 58% in-
crease in range area (Table 3).

Predicted changes in potential species
importance by county

Predicted changes in major species importance for
any county can be generated with the RTA outputs
(Table 4). For example, in Vinton County in southern
Ohio, the GISS climate projections show that, among
15 species projected to decline, Acer saccharum and
Prunus serotina would decline sharply, while Oxyden-
drum arboreum and Quercus alba would increase in
importance. An additional 14 species are projected to
change very little (less than one IV unit, on average)
under the changed climate.

Predicted changes in potential species boundaries
and optima

Estimates of southern limit, northern limit, and zone
of ecological optimum, along with the estimated IV at
the ecological optimum, were calculated using quartile
distributions (Table 5). Though this statistical method
of calculating limits is flawed for some species by out-
lier counties having predicted distributions according
to the models, it gives us a metric for quantifying po-
tential migration for most species. Because each num-
ber corresponds to a latitudinal strip of 10 km starting
from the southern tip of Florida, we can begin to es-
timate potential shifts in the northern and southern lim-
its. According to this analysis, four species (Betula
papyrifera, Pinus resinosa, Populus grandidentata, and
Thuja occidentalis) are projected by the GISS GCM
model to have their southern optimum move north of
the United States border, while five additional species
(Abies balsamea, Acer saccharum, Betula alleghanien-
sis, Populus tremuloides, and Prunus serotina) are pro-
jected to disappear according to the GFDL model.
Shifts of the southern optima are also apparent for sev-
eral species that do stay in the United States: Acer
pensylvanicum, Betula lenta, Carya glabra, Celtis oc-
cidentalis, Cercis canadensis, Cornus florida, Cratae-
gus sp., Diospyros virginiana, Oxydendrum arboreum,
Pinus virginiana, Quercus muehlenbergii, Q. palustris,
Tilia americana, and Tsuga canadensis show a sizable
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TABLE 5. Calculated north–south ranges, shifts, and estimated importance values due to GISS and GFDL model forecasts.
Scores of 299 indicate that the species is projected to become absent in the United States, while a score of 208 indicates
that the species abuts the Canadian border, and a score of 70 indicates the species abuts the Gulf of Mexico.

Species

Southern optimum

FIA Pred. GISS GFDL

Northern optimum

FIA Pred. GISS GFDL

Abies balsamea 191 135 199 299 208 208 204 299

Acer negundo
Acer pensylvanicum
Acer rubrum
Acer saccharinum

71
118
104

95

76
143
104
118

76
166

70
76

76
166

70
76

208
208
208
208

208
208
208
208

208
203
208
208

208
203
199
208

Acer saccharum 120 110 148 299 208 208 208 299

Betula alleghaniensis
Betula lenta
Betula papyrifera

109
120
179

146
144
188

191
157

299

299
157

299

208
202
208

208
208
207

208
208

299

299
208

299

Carpinus caroliniana 70 70 70 70 206 205 191 208

Carya cordiformis
Carya glabra
Carya ovata
Carya sp.
Carya tomentosa

96
86

132
73
76

140
129
110

73
76

140
153
110

82
76

140
153
110

81
76

208
191
208
201
194

208
179
208
204
208

208
179
208
208
208

208
179
207
206
208

Celtis laevigata
Celtis occidentalis

70
85

70
113

70
140

70
140

134
208

128
208

208
208

208
208

Cercis canadensis

Cornus florida

Crataegus sp.

86

70

70

104

70

153

121

89

194

121

89

185

183

201

208

182

186

208

208

201

203

208

197

203

Diospyros virginiana

Fagus grandifolia

Fraxinus americana

70

71

71

70

103

70

80

102

70

80

102

70

161

208

208

156

208

208

208

208

208

208

163

208
Fraxinus nigra
Fraxinus pennsylvanica
Fraxinus sp.

150
70
70

181
70
70

185
70
70

185
70
70

208
208
157

208
208
170

208
208
170

208
208
170

Gleditsia triacanthos

Ilex opaca

74

70

81

111

81

99

81

99

203

161

197

160

206

147

206

147

Juglans nigra

Juniperus virginiana

Liquidambar styraciflua

Liriodendron tulipifera

Maclura pomifera

110

70

70

74

93

70

85

70

92

70

70

70

70

94

70

81

70

70

94

71

207

208

173

189

189

198

208

173

208

202

208

208

202

208

201

208

208

205

208

208

Magnolia virginiana

Morus rubra

70

95

70

144

70

144

70

144

168

206

168

201

126

197

138

201

Nyssa aquatica
Nyssa biflora
Nyssa sylvatica

70
70
70

77
70
70

77
70
70

77
70
70

139
143
191

138
195
177

138
160
204

138
162
204

Ostrya virginiana

Oxydendrum arboreum

73

81

80

83

80

99

80

99

208

163

208

152

208

175

205

175

Pinus echinata
Pinus elliottii
Pinus palustris

70
70
70

70
70
70

70
70
70

70
70
70

168
115
114

129
91

111

190
127
154

191
127
180

Pinus resinosa
Pinus strobus
Pinus taeda
Pinus virginiana

157
104

70
89

176
104

70
75

299
104

70
91

299
104

70
93

208
208
153
169

208
208
153
204

299
208
171
187

299
208
176
190

Platanus occidentalis 72 86 86 86 191 171 177 202

Populus deltoides
Populus grandidentata
Populus tremuloides

128
152
162

145
135
135

145
299
205

145
299
299

208
208
208

208
208
208

208
299
208

208
299
299

Prunus serotina 70 93 188 299 208 208 208 299
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TABLE 5. Extended.

Latitudinal optimum

FIA Pred. GISS GFDL

IV at optimum latitude

FIA Pred. GISS GFDL

200 180 202 299 4.8 5.4 4.0 299

145
170
156
161

144
177
156
167

144
182
147
163

144
182
127
159

11.0
6.2

20.2
12.8

6.0
7.4

15.6
13.0

6.0
3.0
8.3

14.6

6.0
3.0
4.9

14.8
164 161 183 299 16.2 12.8 10.0 299

169
164
198

182
173
198

200
184

299

299
184

299

6.0
8.5
6.6

6.4
9.1

11.0

4.6
8.1

299

299
7.4

299

138 147 128 139 4.9 5.9 4.6 4.6

161
152
174
133
137

174
150
167
130
134

174
165
167
137
145

174
165
167
140
146

6.0
6.5

10.5
10.3

6.8

4.9
6.7
6.2
8.6
6.1

5.0
5.8
6.6
9.3
6.1

4.9
5.8
6.5
8.3
6.1

99
156

97
160

143
174

139
178

12.7
14.7

20.1
10.0

21.7
39.6

14.0
44.2

140

129

147

143

124

182

170

145

198

170

143

194

5.3

8.7

7.8

4.3

8.0

8.5

4.6

8.4

12.7

4.6

8.3

8.7

116

155

156

116

164

163

148

144

159

149

132

160

4.8

9.3

10.7

6.3

9.8

11.1

6.6

7.6

9.8

6.4

6.2

10.1
185
145
117

150

117

195
137
118

164

134

196
140
122

173

123

196
140
117

173

123

6.8
15.0

5.4

7.7

7.2

7.2
10.4

3.6

6.9

10.7

7.7
11.5

4.1

14.1

6.2

7.5
11.8

3.5

14.3

6.2

167

151

114

134

146

135

150

118

141

143

140

139

128

142

134

150

139

132

142

144

8.5

13.5

18.6

9.3

12.2

5.5

8.3

18.3

9.8

15.6

21.5

12.6

13.0

9.0

18.0

27.8

13.7

13.6

8.4

18.7

114

162

105
101
132

109

173

103
123
122

97

169

103
112
132

101

173

103
113
132

5.4

10.1

6.4
12.3

7.0

5.2

16.9

8.2
9.3
5.3

10.8

20.1

7.3
17.6

6.6

11.0

16.9

7.3
17.5

5.4

143

119

108
90
93

164

119

103
79
92

147

137

121
95

104

153

137

120
98

121

6.7

6.7

11.7
12.6

9.6

9.3

6.1

13.2
13.1

7.2

8.9

10.0

16.7
17.9

8.9

16.0

9.6

17.7
19.0
10.3

185
156
109
126

134

194
155
110
126

127

299
156
112
137

137

299
156
121
140

140

7.5
10.4
35.4
11.6

6.2

6.9
10.7
35.2

7.5

5.5

299
15.2
41.0
11.6

9.3

299
15.5
36.9
14.5

9.6

173
183
188

177
185
186

175
299
206

177
299
299

27.1
6.6
9.1

26.4
9.0
7.9

21.8
299

8.7

28.8
299
299

139 153 198 299 8.0 7.7 10.3 299
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TABLE 5. Continued.

Species

Southern optimum

FIA Pred. GISS GFDL

Northern optimum

FIA Pred. GISS GFDL

Quercus alba
Quercus coccinea
Quercus falcata var. falcata
Quercus falcata var. pagodaefolia

70
70

100
92

70
70
92
92

70
73
95
99

70
71
95
99

145
158
208
201

141
158
208
204

182
196
208
198

182
198
208
196

Quercus laurifolia
Quercus macrocarpa
Quercus marilandica
Quercus muehlenbergii
Quercus nigra

70
148

70
105

70

70
156

74
106

70

70
156

79
127

70

70
156

90
127

70

116
208
171
200
154

113
208
159
173
120

131
208
208
208
154

138
208
208
208
171

Quercus palustris
Quercus phellos
Quercus prinus
Quercus rubra
Quercus stellata

123
70
93

110
74

133
70
93

106
74

173
70
89

109
77

172
70
89

137
86

204
151
204
208
175

191
128
187
208
157

190
191
208
208
208

190
208
208
208
208

Quercus velutina 105 93 109 109 208 208 208 208

Robinia pseudoacacia

Salix nigra
Salix sp.

Sassafras albidum

87

123
70

79

106

164
70

95

106

164
70

95

106

164
70

95

207

208
207

206

198

207
123

208

206

207
122

182

198

207
122

208

Taxodium distichum
Taxodium distichum var. nutans

Thuja occidentalis

Tilia americana

Tsuga canadensis

70
70

194

110

109

70
70

144

150

109

70
70

299

182

128

70
70

299

175

128

123
145

208

208

208

78
193

208

208

208

108
193

299

205

208

121
193

299

205

208

Ulmus alata
Ulmus americana
Ulmus rubra
Ulmus sp.

74
83
78
76

70
70
80
73

70
70
70
70

70
70
70
70

145
208
208
206

146
208
208
206

208
208
208
206

208
208
208
206

Note: FIA 5 Forest Inventory Analysis data; Pred. 5 predicted current; predicted future with GISS 5 Goddard Institute
of Space Sciences model; predicted future with GFDL 5 Geophysical Fluid Dynamics Laboratory model. Numbers correspond
to row numbers shown in Fig. 1.

(.100 km) northward shift in their southern boundaries
(Table 5). Of course, because of tree longevity and
remnant refugia, it would take centuries for these shifts
to be realized (Loehle and LeBlanc 1996).

For a large portion of the species, the northern op-
timum abuts the Canadian border so an estimate of
potential migration is not possible (row number 208
for northern optimum in Table 5). However, for the
species where the northern optimum is projected to stay
south of the Canadian border, sizable shifts in northern
optima are apparent. For example, the following spe-
cies are projected to shift their northern limit by at least
100 km to the north: Celtis laevigata, Cercis canaden-
sis, Cornus florida, Diospyros virginiana, Liquidambar
styraciflua, Nyssa sylvatica, Oxydendrum arboreum,
Pinus echinata, P. elliottii, P. palustris, P. taeda, Quer-
cus alba, Q. coccinea, Q. laurifolia, Q. marilandica,
Q. muehlenbergii, Q. nigra, Q. phellos, Q. stellata, and
Ulmus alata. Many of these species do not concomi-
tantly shift their southern limits northward. Differing
environmental factors are related to the range bound-
aries on the north vs. south. This geographic shift in
variable importance shows the power of the RTA anal-
ysis; for general linear or general additive methods, the
variables have to operate equally everywhere.

Because calculations of the ecological optimum lat-
itude are not as prone to outliers and boundary effects,
they may provide the best indicator of projected species
movement (Table 5). A total of 36 species are projected
to have their zone of maximum IV migrate at least 100
km north. Of these, seven are estimated to move in
excess of 250 km: Cercis canadensis, Prunus serotina,
Quercus coccinea, Q. marilandica, Q. stellata, Tsuga
canadensis, and Ulmus alata. Interestingly, five taxa
are projected to have their ecological optima shift
south: Carpinus caroliniana, Fagus grandifolia, Ju-
niperus virginiana, Magnolia virginiana, and Sassafras
albidum. In these cases, there seems to be a relative
constriction of range to the higher elevations of the
southern Appalachians.

Estimated IV for the ecological optima are also pre-
sented for current and future projections (Table 5).
Some species are projected to significantly increase in
importance at their ecological optima, including Celtis
occidentalis, Gleditsia triacanthos, Juglans nigra,
Magnolia virginiana, Nyssa biflora, Pinus elliottii, Pi-
nus strobus, Quercus stellata, Taxodium distichum, Til-
ia americana, and Ulmus alata. On the other hand,
significant decreases in importance are projected for
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TABLE 5. Extended.

Latitudinal optimum

FIA Pred. GISS GFDL

IV at optimum latitude

FIA Pred. GISS GFDL

107
111
154
146

104
111
150
143

121
136
155
147

120
139
154
145

5.3
6.7

13.1
7.0

5.3
5.5
9.5
5.3

5.0
7.0

11.9
5.5

5.2
6.9

13.7
8.1

91
180
119
149
103

90
183
115
147

92

105
182
150
170
108

107
182
146
170
117

6.3
18.6

7.5
6.9
8.5

6.5
20.7

8.8
7.9
9.0

10.8
15.3
10.2

8.3
9.4

10.9
15.3
12.6

8.4
9.9

162
108
142
161
120

162
94

145
157
115

181
129
155
172
146

180
135
152
172
146

7.9
5.2

12.1
8.6

13.6

7.3
7.1

13.8
6.5
9.9

8.1
8.1

12.9
5.7

27.4

8.9
7.9

12.8
4.6

42.3
156

153

173
129

150

151

151

184
98

148

163

151

184
94

138

154

146

184
94

145

10.0

6.5

10.9
9.3

6.9

6.8

9.4

20.3
13.2

5.9

7.5

9.4

20.3
14.7

6.2

11.0

9.6

20.3
14.7

6.3

88
105

201

165

159

73
110

188

179

159

88
110

299

193

189

90
110

299

190

189

4.2
7.1

8.6

7.0

7.8

5.0
6.4

7.0

6.6

6.3

17.1
5.0

299

13.5

9.3

15.5
5.0

299

16.6

9.8

105
149
156
137

108
141
144
138

136
141
142
131

144
140
135
131

9.2
13.5

8.0
6.7

6.8
10.9

5.0
8.9

11.5
10.6

9.1
8.9

16.7
10.7
13.2

8.9

several species, including Acer rubrum, Liquidambar
styraciflua, and Quercus macrocarpa.

CONCLUSIONS

The work described here differs from most in that it
operates at the species level over a large geographic
region for most of the major species in the eastern
United States. Regression tree analysis has been shown
to be a valuable tool to improve understanding of spe-
cies–environment relations for 80 tree species. Space
has limited the information portrayed for each species,
but the key variables correlated with the present IV
distributions of each species have been identified. The
operating variables differ geographically, so that, as
we have shown, the northern range boundary can be
related to different variables than the southern range
boundary. Accuracy of prediction of current IVs varied
widely among species. Species more related to distur-
bance or specialized habitats area did not model as well
as those regionally controlled by environmental vari-
ables. Model improvements could be expected, es-
pecially for specialist species, with finer scale input
data and fine tuning of individual models.

RTA was used here to predict potential migrations
of trees under a climate scenario associated with a two-

fold increase in the level of atmospheric CO2. We em-
phasize that potential future ranges presented here do
not represent forecasts, but rather an indication of the
potential impact on species distributions. With our
analysis of potential effects, we show that 27–36 spe-
cies would significantly increase in area and/or weight-
ed IV, while an additional 30–34 species would de-
crease by at least 10%, following equilibrium after a
changed climate. Nearly half of the species assessed
(36 out of 80) showed the potential for the ecological
optima to shift at least 100 km to the north, including
seven that could move .250 km. Depending on the
GCM used, 4–9 species would potentially move out of
the United States. Results obtained here compare fa-
vorably with those obtained by other researchers (for
some species). However, only a few eastern U.S. spe-
cies had been assessed for changes in potential distri-
bution and abundance prior to this study.

Historic rates of migration (;10–50 km/100 yr) will
not likely occur with current fragmented habitat. Even
at historic rates, many species would not reach the
potential distributions predicted here within the next
century without major intervention. In work underway
in a related research effort (e.g., Schwartz 1996; L. R.
Iverson, A. Prasad, and M. W. Schwartz, unpublished
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manuscript), we are investigating more realistic mi-
gration scenarios based on historic species migration
rates and actual landscapes.
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